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Abstract

A real symmetric matrix A is called completely positive if there is an entrywise nonnegative matrix
B such that A “ BBT . The set CPn consisting of all n ˆ n completely positive matrices is called
the completely positive cone.

Chapter 1 covers some basic facts about complete positivity in terms of applications, open prob-
lems, and mathematical properties. One of the open problems is how to check whether a given
matrix is completely positive. As shown by Dickinson and Gijben in 2014, this problem is, unfor-
tunately, NP-hard in general. Even for a given matrix A P CPn, it is still hard to find a completely
positive (CP) factorization B P Rnˆr

` , so as to provide a completely positive criterion. This thesis
is devoted to the CP factorization for a given completely positive matrix.

We propose a new numerical method of CP factorization, which stems from the idea presented
by Groetzner and Dür in 2020, wherein the CP factorization problem can be reformulated as a
feasibility problem. We describe it in Chapter 2.

As the core of the new method, in Chapter 3, we introduce the outstanding curvilinear search
method proposed by Wen and Yin in 2013, which is designed for general orthogonality optimization
problem. In Chapter 4, we begin to solve the feasibility problem through the use of curvilinear
search method. To be able to apply this method, we use a smooth approximation function named
LogSumExp. Furthermore, some improvements are proposed here.

Chapter 5 is a collection of our numerical experiments. It shows that our method is much
faster than most of the other CP factorization algorithms. It also is reliable for most completely
positive matrices. In the end, in Chapter 6, we summarize this thesis, and then briefly introduce the
advantages and disadvantages of our method and new directions that can be explored.

Keywords: completely positive matrix, matrix factorization, orthogonality constrained optimiza-
tion, smooth approximation



Contents

List of Figures ii

List of Tables iii

1 Introduction 1
1.1 The Copositive and the Completely Positive Cone . . . . . . . . . . . . . . . . . . 1

1.1.1 Copositive and Completely Positive Matrices . . . . . . . . . . . . . . . . 2
1.1.2 Relationship with Other Important Matrix Cones . . . . . . . . . . . . . . 2

1.2 Applications and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The cp-rank and Interior of CPn . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 CP factorization as a Feasibility Problem 10
2.1 Rewrite via Feasibility Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Some Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 CP factorization as a Feasibility Problem . . . . . . . . . . . . . . . . . . 13

2.2 Alternating Projections to CP factorization . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Applying Alternating Projections . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Modifying Alternating Projections . . . . . . . . . . . . . . . . . . . . . . 16

3 Curvilinear Search on the Stiefel Manifold 17
3.1 Optimality Conditions and Update Scheme . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 First-order Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Update Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Curvilinear Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Monotone Curvilinear Search . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Global Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 CP factorization via Curvilinear Search 26
4.1 LogSumExp: Smooth Approximation to Maximum Function . . . . . . . . . . . . 27

4.1.1 Vector Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Matrix Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

i



4.2 CP factorization via Monotone Curvilinear Search . . . . . . . . . . . . . . . . . . 31
4.3 CP factorization via Nonmonotone Curvilinear Search . . . . . . . . . . . . . . . 32
4.4 Heuristic Extension: Decreasing Parameter µ . . . . . . . . . . . . . . . . . . . . 33
4.5 A Family of Smooth Approximations to the Maximum Function . . . . . . . . . . 34

4.5.1 2-dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 n-dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Numerical Results 39
5.1 A Specifically Structured Example in Different Dimensions . . . . . . . . . . . . . 39
5.2 Comparison of Algorithms 4, 5 and 6 . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Comparison of Algorithm 6 and Groetzner’s method . . . . . . . . . . . . . . . . 41
5.4 On the Boundary of CPn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Randomly Generated Examples of High Order . . . . . . . . . . . . . . . . . . . . 44

6 Conclusion and Further Remarks 45

Acknowledgements 47

Bibliography 47

ii



List of Figures

1.1 Inclusion and duality relationship among the main matrix cones in the space Sn. . 4
1.2 Example of an independent set and independence number αpGq . . . . . . . . . . 6

2.1 Alternating projections between a closed convex set and a compact but nonconvex
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Illustration of classical gradient descent on a contour plot of R2 plane. . . . . . . . 20
3.2 Illustration of curvilinear search on a contour plot of the unit sphere M1

3. . . . . . 20
3.3 Diagram of update scheme at each iteration. . . . . . . . . . . . . . . . . . . . . . 21

4.1 Graph of maxpx, yq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Graph of logpex ` eyq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Slices through the line y “ 1 of maxpx, yq and some µ logpex{µ ` ey{µq on R2. . . 29
4.4 Detailed iterative processes of two different values µ for the same instance under

Algorithm 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Performance of Algorithm 6 for An from Example 5.1.1 with different dimensions
n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iii



List of Tables

4.1 Example of approximation effect with different parameters µ. . . . . . . . . . . . 30

5.1 Comparison of Algorithm 4, 5 and 6 for Example 5.1.1 with different dimensions n. 41
5.2 A direct comparison of Algorithm 6 and Groetzner’s method. . . . . . . . . . . . . 42
5.3 Performance of Algorithm 6 for Example 5.4.2 with n “ 2 and n “ 3. . . . . . . 42
5.4 Performance of Algorithm 6 for slight perturbations Aλ with different values of

λ P r0, 1s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 Performance of Algorithm 6 for randomly generated matrices A of high order. . . . 44

iv



Chapter 1

Introduction

In this chapter, we introduce the copositive and the completely positive matrix cone, which are
closely related to many familiar matrix cones. We also show some applications and open problems
on the completely positive cone. The purpose of the thesis is to find a new CP factorization method
for a given completely positive matrix. To this end, we introduce the notation of the cp-(plus)-
rank to obtain more characteristics about the completely positive cone. We will also introduce the
existing methods of CP factorization.

1.1 The Copositive and the Completely Positive Cone

Most of the symbols used in this thesis are standard. Rn is the usual Euclidean space, and Rn
` is the

nonnegative orthant. We consider the space of m ˆ n real matrices, Rmˆn, with inner product de-
fined as xX,Y y :“ tr

`

XTY
˘

“
řn

i,j“1XijYij and Frobenius norm defined as }X} :“
a

xX,Xy

for all X,Y P Rmˆn. The definitions also reduce to the space of n ˆ n real symmetric matrices,
Sn. A matrix X ě 0pX ą 0q means that every element is nonnegative (positive). A square matrix
Q P Rnˆn is defined to be orthogonal if QTQ “ I or QQT “ I , where I is the identity matrix.
For a set K Ď Sn, we define:

• K is a cone if λX belongs to K for all X P K and scalar λ ě 0. Additionally, it is convex
if p1 ´ λqX ` λY belongs to K for all X,Y P K and λ P r0, 1s. It is a convex cone if both
conditions are met.

• A convex cone K is proper if it is (i) closed, (ii) pointed (i.e., if both X,´X P K, we get X “ 0),
and (iii) has a nonempty interior, i.e., intK ‰ H.

• The dual of K, K˚ :“ tX P Sn | xX,Y y ě 0 for all Y P Ku .

• The convex hull of K, convpKq :“ t
řn

i“1 λiXi | n P N,@λi ě 0,
řn

i“1 λi “ 1,@Xi P Ku.

With the above definitions in hand, we can now introduce the fundamental concepts of this thesis.
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1.1.1 Copositive and Completely Positive Matrices

Definition 1.1.1. A matrix A P Sn is called completely positive if for some r P N, there exists
B P Rnˆr, B ě 0, such that A “ BBT .

In this case, A “ BBT is called a CP factorization of A. In this thesis, for convenience we call
such B a CP factor of A. We refer to CPn as the set of all n ˆ n completely positive matrices, that
is,

CPn :“
␣

A P Sn|A “ BBT where B P Rnˆr, B ě 0
(

,

or equivalently

CPn “
␣

BBT P Sn | B is a nonnegative matrix
(

“ conv
␣

xxT | x P Rn
`

(

,

where convp¨q is the convex hull of a given set. The dual of the set CPn gives rise to the set of
copositive matrices.
Definition 1.1.2. A matrix A P Sn is called copositive if the quadratic form xTAx is nonnegative
for all nonnegative vectors x. We denote the set of all n ˆ n copositive matrices by

COPn :“
␣

A P Sn | xTAx ě 0 for all x P Rn
`

(

.

Theorem 1.1.3. CPn and COPn are dual to each other in the space Sn, i.e., CP˚
n “ COPn and

COP˚
n “ CPn.

The proof can be found in [29, Theorem 2.6]. This property motivates their joint study. From
the definitions, it is immediately apparent that both CPn and COPn are convex cones. Moreover,
both of them are proper; a proof can be found in [18, Chapter 5]. For a comprehensive monograph,
the book [1] is recommended.

1.1.2 Relationship with Other Important Matrix Cones

In order to show that these matrix cones are also closely related to other important matrix cones in
Sn, consider the following definitions.
Definition 1.1.4. 1. The cone of symmetric nonnegative matrices is defined by

Nn :“ tA P Sn | Aij ě 0 for all i, j “ 1, . . . , nu .

2. The cone of symmetric positive semidefinite matrices is defined by

S`
n :“

␣

A P Sn | xTAx ě 0 for all x P Rn
(

.

3. A matrix is called doubly nonnegative if it is nonnegative and positive semidefinite at the same
time. We denote the set of all such matrices by

DNN n :“ S`
n X Nn.

4. The Minkowski sum of S`
n and Nn is defined by

S`
n ` Nn :“ tA ` B P Sn | A P S`

n , B P Nnu.

2



Obviously, every A P S`
n is also copositive by definition. A P Nn gives xTAx ě 0 for every

nonnegative vector x. A trivial fact is that BBT is positive semidefinite for any matrix B, so every
X P CPn is doubly nonnegative. Finally, we have the following inclusion relationship among those
cones (see also [16, 35]).
Theorem 1.1.5. For any positive integer n,

CPn Ď DNN n Ď S`
n Ď S`

n ` Nn Ď COPn.

In particular, if n ď 4, the following holds:

CPn “ DNN n Ď S`
n Ď S`

n ` Nn “ COPn.

To show that equality S`
n ` Nn “ COPn does not hold for n ě 5, consider the Horn matrix,

H “

¨

˚

˚

˚

˚

˝

1 ´1 1 1 ´1
´1 1 ´1 1 1
1 ´1 1 ´1 1
1 1 ´1 1 ´1

´1 1 1 ´1 1

˛

‹

‹

‹

‹

‚

P COP5zpS`
5 ` N5q,

which cannot be decomposed into the sum of a positive semidefinite and a nonnegative matrix, cf
[30]. To see that H is copositive, write

xTHx “ px1 ´ x2 ` x3 ` x4 ´ x5q
2

` 4x2x4 ` 4x3 px5 ´ x4q

“ px1 ´ x2 ` x3 ´ x4 ` x5q
2

` 4x2x5 ` 4x1 px4 ´ x5q .

The first expression shows that xTHx ě 0 for nonnegative x with x5 ě x4, while the second
expression shows xTHx ě 0 for nonnegative x with x5 ă x4. Similarly, to show that DNN n “

CPn does not hold for n ě 5, a counterexample is
¨

˚

˚

˚

˚

˝

1 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 6

˛

‹

‹

‹

‹

‚

P DNN 5zCP5.

which is not completely positive by using a criterion based on graph theory, cf. [1, Theorem 2.8].
It is easy to show that S`

n `Nn and DNN n are also a pair of dual matrix cones in the space Sn.
The dual cone of S`

n is itself, leading to a nice property called “self-dual”. Clearly, neither COPn

nor CPn have the self-dual property. Fig. 1.1 illustrates the inclusion and duality relationship among
those cones.

1.2 Applications and Open Problems

Conic optimization is a subfield of convex optimization that studies the minimization of linear func-
tions over proper cones. A very important concept in the field of conic optimization is duality. From
the previous results, we can consider a conic optimization over COPn and CPn.

3



Fig. 1.1. Inclusion and duality relationship among the main matrix cones in the space Sn.

1.2.1 Applications

For some given matrix C,Ai P Sn and scalar bi P R for i “ 1, . . . ,m. A copositive programming
has the following form:

min
X

xC,Xy

s.t. xAi, Xy “ bi pi “ 1, . . . ,mq

X P CPn.

(Primal)

Interpreting this as the primal problem, one can associate a corresponding dual problem that is a
maximization problem over the dual cone. The corresponding dual problem is easily found to be

max
yi

řm
i“1 biyi

s.t. C ´
řm

i“1 yiAi P COPn.
(Dual)

Copositive programming is nothing but a special case of conic optimization. As is other clas-
sical conic programming, namely linear/semidefinite/second-order cone programming, copositive
programming covers various problems. In particular, copositive programming is closely related to
many nonconvex, NP-hard quadratic and combinatorial optimizations. A short list of examples is:

• Quadratic Problems: standard quadratic problem, quadratic binary problem, fractional quadratic
problem, quadratic assignment problem, etc.

• Combinatorial Problems: maximum clique problem, maximum independent set problem, chro-
matic number, etc.

Since we are mainly interested in the cone of completely positive matrices in this thesis, the cor-
responding results for COPn are omitted here. For surveys on applications of copositive program-
ming, see [9, 12, 14, 22].

Bomze et al. [11] were the first to establish an equivalent completely positive formulation for

4



the so-called standard quadratic optimization (STQP), i.e.,

min xTMx
s.t. eT x “ 1

x P Rn
`,

(STQP)

where M P Sn is possibly not positive semidefinite, and e denotes the all-ones vector in Rn. They
gave the following completely positive reformulation:

min xM,Xy

s.t. xE,Xy “ 1
X P CPn.

Here, E “ eeT is the all-ones matrix. Equivalence holds because if we let X be an optimal solution
of the completely positive reformulation, then x is an optimal solution of (STQP) when rankpXq “

1, by X “ xxT . When rankpXq ą 1, i.e., X can be factorized as X “
řr

i“1 xixTi , and an
appropriately scaled version of each xi is an optimal solution of (STQP).

Burer [13] reported a more general result where any nonconvex quadratic problem with binary
and continuous variables can be rewritten as a linear program over CPn. More precisely, it is
possible to derive a completely positive reformulation of the following quadratic problem:

min xTMx ` 2cT x
s.t. aTi x “ bi pi “ 1, . . . ,mq

x P Rn
`

xj P t0, 1u pj P Bq,

where M P Sn is possibly not positive semidefinite, and B represents the index subset of binary
variables. This question can be equivalently formulated as follows:

min xM,Xy ` 2cT x
s.t. aTi x “ bi pi “ 1, . . . ,mq

@

aiaTi , X
D

“ b2i pi “ 1, . . . ,mq

xj “ Xjj pj P Bq
ˆ

1 xT
x X

˙

P CPn.

As an application to combinatorial problems, consider the problem of computing the indepen-
dence number αpGq of a graph G with n nodes. Recall that an independent set is a set of vertices
where no two vertices are adjacent, and the independence number αpGq is the cardinality of the
largest possible independent set of a graph; see Fig. 1.2. De Klerk and Pasechnik [15] showed that
αpGq is the solution of a maximization problem over CPn:

αpGq “ max txE,Xy | xA ` I,Xy “ 1, X P CPnu ,

where A is the adjacency matrix of G, and E is the all-ones matrix.

5



Fig. 1.2. Example of an independent set and independence number αpGq .

1.2.2 Open Problems

We have known that many NP-hard problems can reduce to the completely positive formulations.
It is easy to see that the difficulty of the original problems lies entirely in the cone constraint since
all the others are linear constraints. Note that neither COPn nor CPn is self-dual. The primal-dual
interior point methodology for conic optimization does not work as it is. Besides this fact, there
are many fundamental open problems in completely positive cones. Here is a list of these open
problems, from [7]:

1. Checking membership in CPn.

2. Determining geometry of CPn.

3. Factoring completely positive matrices.

(a) Finding a factorization of a matrix in CPn.

(b) Computing the cp-rank*.

4. Finding cutting planes for completely positive optimization problems.

A typical open problem is the checking membership in CPn, which was shown to be NP-hard
by [20]. For a more detailed discussion of the other unresolved issues, we refer the reader to [7, 22].
One can modify the membership check in CPn by minimizing xA,Xy over COPn as A P CPn if
and only if xA,Xy ě 0 for all X P COPn. Another way is that A P CPn if the optimal value of
the following problem is equal to zero.

min
BPRnˆk

`

}A ´ BBT }2,

where k is large enough. More exactly, k ě cppAq (see the next section). Clearly, neither of them
is easy to deal with. Here we focus on another issue closely related to the membership problem.
Our goal. In this thesis, we focus on a fundamental problem of completely positive matrices —
finding a CP factorization for the given A P CPn.

*The concept of cp-rank will be presented in the next section
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Such a CP factorization offers a natural criterion for whether a matrix is completely positive.
Sometimes, in fact, some matrices can be shown to be completely positive through duality, but
no CP factorizations can be found for them. On the other hand, it is easy to create an arbitrary
completely positive matrix. For example, we can obtain A :“ BBT by using a nonnegative matrix
B; meanwhile, we naturally have a trivial CP factor B. Nonetheless, finding an extra CP factor is
still a challenging task.

1.3 The cp-rank and Interior of CPn

Now let us establish more characteristics on the factorization of a completely positive matrix.
Lemma 1.3.1. Let A P Rmˆn; then,

rank
`

ATA
˘

“ rank
`

AAT
˘

“ rankpAq.

Proof. We show that the singular values of ATA and AAT are nothing but the squares of the singular
values of A. Let r be the rank of A. We then have the singular value decomposition of A,

Amˆn “ UmˆrΣrˆrV
T
rˆn.

Here, the subscripts mean the number of rows and columns. This gives ATA and AAT :

ATA “ V ΣpUTUqΣV T “ VnˆrΣ
2
rˆrV

T
rˆn,

AAT “ UΣpV TV qΣUT “ UmˆrΣ
2
rˆrU

T
rˆm.

It follows that ATA and AAT also have rank r.

The next lemma tell us that every CP factor of A P CPn is of the same rank as A.
Lemma 1.3.2. Given A P CPn with any CP factor B of A, then

rankpAq “ rankpBq.

Proof. This is clear from Lemma 1.3.1.

Example 1.3.3. Consider the matrix A P CP3,

A “

¨

˝

18 9 9
9 18 9
9 9 18

˛

‚.

A “ BiB
T
i for each of the following matrices.

B1 :“

¨

˝

4 1 1
1 4 1
1 1 4

˛

‚, B2 :“

¨

˝

3 3 0 0
3 0 3 0
3 0 0 3

˛

‚, B3 :“

¨

˝

3 3 0
3 0 3
0 3 3

˛

‚,

B4 :“

¨

˝

3 3 0 0
3 0 3 0
0 3 3 0

˛

‚, B5 :“

¨

˝

3 3 0 0 0
3 0 3 0 0
0 3 3 0 0

˛

‚.

7



From the example above, generally, one can have many CP factorizations even if the numbers
of columns are distinct. Of course, the numbers of rows must consistently be n under the rules of
multiplication of matrices. This gives rise to the following definitions.
Definition 1.3.4. We define the cp-rank of A P Sn as the minimum number of columns for all CP
factors of A, i.e.,

cppAq :“ min
B

␣

r P N|DB P Rnˆr, B ě 0, A “ BBT
(

.

Notice that cppAq :“ 8 if A R CPn. We define the cp-plus-rank of A P Sn as

cp`pAq :“ min
B

␣

r P N|DB P Rnˆr, B ą 0, A “ BBT
(

.

Immediately, we obtain the following inequalities about rank, cp-rank and cp-plus-rank.
Proposition 1.3.5. For all A P Sn, we have

rankpAq ď cppAq ď cp`pAq.

Proof. It is clear that cppAq ď cp`pAq holds by definition. We will show that rankpAq ď cppAq.
If A R CPn, then cppAq “ 8 ą rankpAq. If A P CPn, then according to lemma 1.3.2, we have

rankpAq “ rankpBq ď the number of columns of B,

for each CP factor B of A. Thus, rankpAq ď cppAq.

It is an open problem to compute the cp-rank or the cp-plus-rank of a matrix. Nevertheless,
there are results on the upper bound for the cp-rank of a completely positive matrix. For instance,
the following result is the best one we currently have, cf. [10, Theorem 4.1].
Theorem 1.3.6. For all A P CPn, we have

cppAq ď cpn :“

"

n for n P t2, 3, 4u
1
2npn ` 1q ´ 4 for n ě 5.

Sometimes, we need to distinguish completely positive matrices in either the interior or on the
boundary of CPn. The result below, from [17, Theorem 3.8], is very useful.
Theorem 1.3.7. We have

int CPn “
␣

A P Sn | rankpAq “ n, cp`pAq ă 8
(

,

“ tA P Sn | rankpAq “ n,A ą 0u ,

“ tA P Sn | rankpAq “ n,A “ BBT , B P Rnˆr, B ě 0,

bj ą 0 for at least one column bju.

1.4 Related Work

Many different methods of solving CP factorization problems have been studied. Here, we catego-
rize the relevant literature according to their practical applicability and complexity:

8



Some methods work well for matrices with specific properties. Dickinson and Dür [19] deal
with decomposition of special sparse matrices in CPn and show that it can be done in linear time.
Sikirić, Schürmann, and Vallentin [41] developed a simplex-like method for a rational CP factoriza-
tion if the input matrix allows a rational CP factor. Anstreicher, Burer, and Dickinson [18, Section
3.3] used the ellipsoid method; their method works for the matrices of int CPn admitting a rational
CP factorization. Bomze [14] showed that a factorization of an n ˆ n matrix can be constructed if
the decomposition of the pn ´ 1q ˆ pn ´ 1q principal submatrix is known.

Some methods are numerically expensive, i.e., impractical for reasonably big input matrices,
although they can compute CP factorizations for general matrices. Expensive subproblems are
usually included in their methods. Jarre and Schmallowsky [33] stated a criterion of complete
positivity, based on the augmented primal dual method. They intended to solve certain second-order
cone problems, where the Lyapunov equations need be solved to get a CP factorization. Nie [36]
dealt with the CP factorization problem as a case of an A-truncated K-moment problem, for which
Nie developed an algorithm that solves a series of semidefinite optimization problems. Sponsel and
Dür [43] considered the problem of projecting a matrix onto the cones of copositive and completely
positive matrices by using polyhedral approximations of the cones. With these projections, they
devised a method to compute the factorizations of completely positive matrices.

In 2020, Groetzner and Dür [28] applied the alternating projection method to the CP factoriza-
tion problem under a feasibility form. They aimed to compute a singular value decomposition and
solve a second-order cone problem alternatively at every iteration. The numerical performance of
their method is higher than that of the previous method.

As will be seen in the next chapter, we propose a new method that is based on the core idea from
Groetzner and Dür [28].

9



Chapter 2

CP factorization as a Feasibility Problem

This chapter consists of two parts. First, we introduce an idea about how to reformulate the CP fac-
torization problem as a feasibility problem. This idea was first mentioned in [31] and was formally
established for CP factorization by Groetzner and Dür in [28]. Second, we briefly introduce how
Groetzner and Dür deal with that feasibility problem (an approach called alternating projections)
and then analyze its drawbacks.

2.1 Rewrite via Feasibility Problem

2.1.1 Some Lemmas

The following two lemmas are simple but necessary.
Lemma 2.1.1. Given A P CPn. If we have a CP factor B P Rnˆr of A, then for any positive
integer r1 ě r, there is another CP factor pB P Rnˆr1

of A.

Proof. The simplest way to construct an n ˆ r1 matrix pB with A “ pB pBT is to append k :“ r1 ´ r
zero columns to B, i.e.,

pB :“ rB,Onˆks ě 0.

For instance, see B3, B4, B5 in Example 1.3.3. Another way to extend B to r1 columns is column
replication, i.e.,

pB :“ rb1, . . . ,bn´1,
1

?
m

bn, . . . ,
1

?
m

bn
looooooooooomooooooooooon

m:“r1´n`1 columns

s, (2.1)

where bi denotes the i-th column of B. It is easy to verify that pB pBT “ BBT “ A.

Lemma 2.1.2. Suppose that A P Sn, r P N. Then, r ě cppAq if and only if A has a CP factor B
with r columns.

Proof. The “if” part is trivial. The “only if” part follows from Lemma 2.1.1.

Corollary 2.1.2.1. For any A P CPn, there exists an n ˆ cpn CP factor B, where the constant cpn
is defined in Theorem 1.3.6.
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The following lemma will be used throughout this thesis. We will prove just the “only if”
part, since the “if” part is trivial. Unlike other authors who proved the theoretical existence of an
orthogonal matrix X (see, e.g., [46, Lemma 1] and [28, Lemma 2.6]), we provide a specific X here.
Lemma 2.1.3. Let Or denote the set of r ˆ r orthogonal matrices. Suppose that B,C P Rnˆr.
Then, BBT “ CCT if and only if DX P Or such that BX “ C.

Proof. Suppose that BBT “ CCT . Let k be rankpBq “ rankpCq because of Lemma 1.3.1.

Case 1. Consider the first special case that k “ n, i.e., B and C are of full row rank, and n ď r. We
will find two pr ´ nq ˆ r matrices B1 and C 1 such that BB1T “ O,CC 1T “ O. Let NullpBq resp.
NullpCq denote the null space of B resp. C. It is clear that dimNullpBq “ dimNullpCq “ r ´ n.
For B, we construct a matrix B1 as below,

B1 “

¨

˚

˝

b1
1
...

b1
r´n

˛

‹

‚

,

where the row vectors b1
j’s are an arbitrary orthogonal basis of NullpBq. This gives

BB1T “

¨

˚

˝

b1
...

bn

˛

‹

‚

¨

˚

˝

b1
1
...

b1
r´n

˛

‹

‚

T

“

¨

˚

˝

b1b1T
1 ¨ ¨ ¨ b1b1T

r´n
...

...
bnb1T

1 ¨ ¨ ¨ bnb1T
r´n

˛

‹

‚

“ O,

where bi denotes the i-th row of B for every i P t1, . . . , nu. The same operation can be applied to
C, we obtain C 1 such that CC 1T “ O. Moreover, it is clear that B1B1T “ C 1C 1T “ I by their
construction. Now, let us construct the desired orthogonal matrix X by

X :“ BT pBBT q´1C ` B1T pB1B1T q´1C 1.

Because B,B1 are of full row rank, BBT , B1B1T are invertible and X is well-defined. It is clear
that

BX “ BBT pBBT q´1C ` BB1T pB1B1T q´1C 1

“ C ` O “ C.

Hence, it remains to prove that X is an orthogonal matrix. We observe that

XXT “
“

BT pBBT q´1C ` B1T pB1B1T q´1C 1
‰ “

CT pBBT q´1B ` C 1T pB1B1T q´1B1
‰

“ BT pBBT q´1CCT pBBT q´1B ` BT pBBT q´1CC 1T pB1B1T q´1B1`

B1T pB1B1T q´1C 1CT pBBT q´1B ` B1T pB1B1T q´1C 1C 1T pB1B1T q´1B1

“ BT pBBT q´1B ` B1T pB1B1T q´1B1.

Let the singular value decomposition of B and B1 be

Bnˆr “ UnˆnΣnˆnV
T
nˆr,

B1
pr´nqˆr “ U 1

pr´nqˆpr´nqΣ
1
pr´nqˆpr´nqV

1T
pr´nqˆr,

11



where U and U 1 are orthogonal matrices, V and V 1 have orthonormal columns. Then, BBT “

UΣ2UT and pBBT q´1 “ UpΣ´1q2UT , which in turn give

BT pBBT q´1B “ V ΣUTUpΣ´1q2UTUΣV T “ V V T .

Similarly,
B1T pB1B1T q´1B1 “ V 1V 1T .

Finally, we get
XXT “ V V T ` V 1V 1T “

`

V V 1
˘ `

V V 1
˘T

.

We complete part (1) by showing r ˆ r square matrix rVrˆn V 1
rˆpr´nq

s is orthogonal. Notice that
BB1T “ pUΣqV TV 1pΣ1U 1T q “ O. Since both UΣ and Σ1U 1T are invertible, the above equation
holds if and only if V TV 1 “ O. We find that

`

V V 1
˘T `

V V 1
˘

“

ˆ

V TV V TV 1

V 1TV V 1TV 1

˙

“

ˆ

In O
O Ir´n

˙

.

Case 2. In the case that k ă n, let

B̄ :“ PB “

ˆ

B˚
kˆr

B1
pn´kqˆr

˙

,

where P is a product of a series of elementary row permutation matrices (hence orthogonal) such
that the first k rows of B̄ are linearly independent; i.e., B˚ is of full row rank. B1 represents the
remaining rows. For the same permutation P , let

C̄ :“ PC “

ˆ

C˚
kˆr

C 1
pn´kqˆr

˙

,

where C˚ denotes the first k rows of C̄ and C 1 represents the remaining rows. Next, we show that
C˚ is also full row rank. Note that

B̄B̄T “ PBBTP T “ PCCTP T “ C̄C̄T ,

and

B̄B̄T “

ˆ

B˚

B1

˙

`

B˚T B1T
˘

“

ˆ

B˚B˚T B˚B1T

B1B˚T B1B1T

˙

,

C̄C̄T “

ˆ

C˚

C 1

˙

`

C˚T C 1T
˘

“

ˆ

C˚C˚T C˚C 1T

C 1C˚T C 1C 1T

˙

.

This implies that B˚B˚T “ C˚T C˚T ; hence, C˚ is also full row rank by Lemma 1.3.1. Since
B˚, C˚ have rank k, then DX,Y P Rrˆk such that B1 “ XB˚, C 1 “ Y C˚. In fact, all the rows
of B1 are linearly dependent of the rows of B˚ (similarly for C 1 and C˚). We claim that X “ Y.
Notice that

C 1C˚T “ Y C˚C˚T “ Y B˚B˚T ,

12



and

B1B˚T “ XB˚B˚T .

Because of C 1C˚T “ B1B˚T , we have

XB˚B˚T pB˚B˚T q´1 “ Y B˚B˚T pB˚B˚T q´1

X “ Y.

We rewrite the matrices

B̄ “

ˆ

B˚

XB˚

˙

“

ˆ

I
X

˙

B˚ and C̄ “

ˆ

C˚

XC˚

˙

“

ˆ

I
X

˙

C˚.

For the full row rank matrices B˚, C˚, from part (1), there exits an r ˆ r orthogonal matrix Q such
that B˚Q “ C˚. We will show that BQ “ C holds for the same Q.

B̄Q “

ˆ

I
X

˙

B˚Q “

ˆ

I
X

˙

C˚ “ C̄.

Hence,

pP´1B̄qQ “ pP´1C̄q

BQ “ C.

2.1.2 CP factorization as a Feasibility Problem

The next proposition puts all the previous results together to explain why we can rewrite the original
question.
Proposition 2.1.4. Let A P CPn, r ě cppAq, A “ BBT , where B P Rnˆr is not nonnegative.
Then there exists an orthogonal matrix X P Or such that BX ě 0, A “ pBXqpBXqT .

Proof. We have

r ě cppAq ðñ DB1 P Rnˆr, B1 ě 0, A “ B1B1T .

ùñ A “ B1B1T “ BBT .

ùñ DX P Or such that BX “ B1 ě 0.

This lemma tells us that one can find an orthogonal matrix X which can take a “bad” factoriza-
tion into a “good” factorization. Thus, the task of finding a CP factorization of A can be formulated
as the following feasibility problem:

find X
s.t. BX ě 0

X P Or,
(FeasP)

13



where r ě cppAq, B P Rnˆr is an arbitrary initial factorization A “ BBT and not nonnegative.
We must notice that the condition r ě cppAq is necessary; otherwise, (FeasP) has no solution,

although A P CPn. Regardless of cppAq, one can use pn or other upper bound. Moreover, finding
an initial matrix B is very easy. One can use Cholesky decomposition or spectral decomposition
and then extend its columns to r columns by using the technique in Lemma 2.1.1.

The following theorem shows that the feasibility of (FeasP) is precisely a criterion for complete
positivity.
Theorem 2.1.5. We have

A P CPn ðñ pFeasP q is feasible.

In this case, for any feasible solution X , we have A “ pBXqpBXqT with BX ě 0.

Proof. The “if” part is obvious. The “only if” part is derived using Lemma 2.1.4.

2.2 Alternating Projections to CP factorization

Now, solving (FeasP) is the key to finding a CP factorization. Groetzner and Dür [28] applied the
so-called alternating projection method. This method obtains points in the intersection of two or
more sets. For an introduction, the reader is referred to [5, 21].

2.2.1 Applying Alternating Projections

Groetzner added the polyhedral cone,

P :“
␣

X P Rrˆr|BX ě 0
(

,

and rewrote (FeasP) as
find X
s.t. X P P X Or.

Here, the alternating projections method to solve it is as follows: choose a starting point X0 P Or;
then compute P0 “ projP pX0q , compute X1 “ projOr

pP0q, and iterate this process (see Fig 2.1).
In order to apply this method, we need to project onto the sets P and Or.

Since P is a polyhedral cone and hence convex, the projection of a matrix M P Rrˆr onto P is
unique, and computing it amounts to solving a second-order cone problem (SOCP). We have

min }X ´ M}

s.t. BX ě 0,

which can be transformed as

min t
s.t. BY ě ´BM

pt, vecpY qq P SOCr2`1,
(SOCP)

where Y :“ X ´ M , vecpY q is the r2 ` 1 column vector obtained by stacking the columns of
the matrix Y on top of one another, and the second-order cone of order n is defined as SOCn :“
␣

pt, xq P R ˆ Rn´1 | t ě }x}2
(

.
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𝑠1

𝑟1

𝑠3

𝑠2

𝑟3 𝑟2

𝑠′

𝑟′

Fig. 2.1. Alternating projections between a closed convex set and a compact but nonconvex set.

On the other hand, the projection of a matrix M onto Or always exists since Or is compact;
however it may not be unique because of the nonconvexity* of Or. projOr

pMq can be computed
through the following lemma, a proof of which can be found in [8, Corollary 5.6.4 and Fact 9.9.42].
Lemma 2.2.1. Let M P Rrˆr. Then there exists the so-called polar decomposition of M ; i.e.,
there exist a positive semidefinite matrix T P Rrˆr and an orthogonal matrix Q P Rrˆr such that
M “ TQ. We have

}M ´ Q} ď }M ´ U} for all U P Or.

We take this Q as projOr
pMq and compute Q :“ UV T from the singular value decomposi-

tion of M, since M “ UΣV T “
`

UΣUT
˘ `

UV T
˘

“ TQ. Finally, the alternating projection to
compute the factorization of a completely positive matrix now reads as:

Algorithm 1: CP factorization by alternating projection

1 Given A “ BBT with B P Rnˆr and r ě cppAq; initial matrix Q0 P Or, k Ð 0.
2 while BQk ğ 0 do
3 Pk Ð projP pQkq (solve an SOCP);
4 Qk`1 Ð projOr

pPkq (compute an SVD decomposition);
5 k Ð k ` 1 ;
6 end

Local convergence can be ensured by the following theorem. Global convergence fails; for
example, see s1, r1 in Fig 2.1.
Theorem 2.2.2 ([28, Theorem 4.2]). Let A P CPn, A “ BBT be any initial factorization with
B P Rnˆr and r ě cppAq. If one starts at a point Q0 sufficiently close to P X Or, Algorithm 1
converges to a point Q˚ P P X Or. In this case, A “ pBQ˚q pBQ˚q

T is a completely positive
factorization of A.

*To see nonconvexity of Or , note that the zero matrix O “ 1
2
X ` 1

2
p´Xq is not in Or for a matrix X P Or .
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2.2.2 Modifying Alternating Projections

Although this algorithm has the local convergence property, in practice it usually fails because it
is difficult to find a starting point close enough to a solution. For some hard instances, it seems
impossible to find any starting point, and thus, the algorithm fails in those instances.

Moreover, we need to solve a second-order cone problem alternately at every iteration. Al-
though solving an SOCP can be done in polynomial time, it is still very costly overall. Clearly,
if subproblems have to be solved in each iteration, algorithm will always be slow. After all, the
subproblem itself typically needs an iterative method rather than a closed-form computation by
arithmetical operations, for example computing an SVD decomposition. For this reason, ultimately,
they provided a modified alternating projections for CP factorization. Instead of computing the
projection projPpQq of Q onto P , they take pP as an approximation of projPpQq. Define

pP :“ B`D `
`

I ´ B`B
˘

Q,

where D P Rnˆr is defined through Dij :“ maxtpBQqij , 0u, and B` denotes the Moore Penrose
inverse of B. The numerical experiments show that Algorithm 2 is often faster than Algorithm 1,
but the local convergence property was lost as a result.

Algorithm 2: CP factorization by modified alternating projection

1 Given A “ BBT with B P Rnˆr and r ě cppAq; initial matrix Q0 P Or, k Ð 0.
2 while BQk ğ 0 do
3 D Ð max tBQk, 0u entrywise ;
4 xPk Ð B`D ` pI ´ B`BqQk (compute Moore Penrose inverse B`) ;
5 Qk`1 Ð projOr

pxPkq (compute an SVD decomposition);
6 k Ð k ` 1 ;
7 end

Recall that our goal is solving (FeasP); that is the key to finding a CP factorization. Naturally,
we would wonder: is there any other way to solve (FeasP), instead of alternating projections? This
leads to the topic of the next chapter — a curvilinear search method that we want to apply to (FeasP).
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Chapter 3

Curvilinear Search on the Stiefel
Manifold

In this chapter, we introduce the curvilinear search method proposed by Wen and Yin [45], which is
designed for general optimization with orthogonality constraints:

min
XPMp

n

FpXq, (StOp)

where FpXq : Rnˆp Ñ R is continuously differentiable, and the feasible set

Mp
n :“

␣

X P Rnˆp : XTX “ I
(

is often called the Stiefel manifold, on which optimization problems have a variety of applications,
including matrix rank minimization, polynomial optimization, sparse principal component analysis,
eigenvalue problems, p-harmonic flows, combinatorial optimization, etc.

To keep the thesis self-contained, we provide exhaustive proofs throughout this chapter.

3.1 Optimality Conditions and Update Scheme

We start with two auxiliary lemmas. The following lemma states the most important property of the
feasible set Mp

n. Note that Mp
n is just the set of orthogonal matrices if p “ n and is the unit sphere

of Rn if p “ 1.
Lemma 3.1.1. The feasible set Mp

n :“
␣

X P Rnˆp : XTX “ I
(

is a compact subset in the space
Rnˆp.

Proof. Define f : Rnˆp Ñ Sp, X ÞÑ XTX. Then, Mp
n “ f´1ptIuq, where I is the identity matrix.

Continuity follows from that the every entry of fpXq is a polynomial of the entries of X. Since f is
continuous, Mp

n is closed as a preimage of a singleton.
In particular, XTX “ I if and only if all columns of X are orthonormal, so }X} “

?
r. Let

X,Y P Rnˆp; then, }X ´Y } ď }X}`}Y } “ 2
?
r, which means boundedness. In the space Rnˆp,

a subset K is compact if and only if it is closed and bounded.
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A Cayley transformation can map skew-symmetric matrices, i.e., W T “ ´W , to orthogonal
matrices, which is a well-known property in matrix analysis (see, for instance, [26, P2.1.9]).
Lemma 3.1.2 (Cayley transformation). Given any skew-symmetric matrix W P Rnˆn, the matrix
Q :“ pI ` W q´1pI ´ W q is well-defined and orthogonal.

Proof. Note that xTWx “ 0 holds for any x P Rn, which follows from

xTWx “ xTW T x “ ´xTWx ñ 2pxTWxq “ 0.

Then, xT pI ` W qx “ }x}22 ą 0 holds for any nonzero x P Rn. Suppose that there exists a nonzero
x P Rn such that pI ` W qx “ 0, then xT pI ` W qx “ 0, which is a contradiction. Thus, pI ` W q

is invertible and Q is well-defined. On the other hand, if W is skew-symmetric, so is ´W ; thus,
pI ´ W q is invertible too.

Since pI ` BqpI ´ Bq “ pI ´ BqpI ` Bq for any matrix B, if we replace B with W and take
inverse of both sides, we have pI ´ W q´1pI ` W q´1 “ pI ` W q´1pI ´ W q´1. Hence,

QTQ “ pI ´ W qT pI ` W q´T pI ` W q´1pI ´ W q

“ pI ` W qpI ´ W q´1pI ` W q´1pI ´ W q

“ pI ` W qpI ` W q´1pI ´ W q´1pI ´ W q “ I.

3.1.1 First-order Optimality Conditions

The Lagrangian function of (StOp) is

LpX,Λq “ FpXq ´
1

2
tr
`

Λ
`

XTX ´ I
˘˘

,

where Λ P Sp is a Lagrange multiplier and trp¨q denotes the trace of matrix. Note that since XTX
is symmetric, the Lagrange multiplier Λ corresponding to XTX “ I is a symmetric matrix. The
second term tr

`

Λ
`

XTX ´ I
˘˘

comes from xΛ, XTX ´ Iy.

Let the gradient of FpXq at point X be G :“ DFpXq “

´

BFpXq

BXi,j

¯

, which is continuous in X .
Differentiating the Lagrangian function with respect to X and Λ yields

DXLpX,Λq “ DFpXq ´
1

2

ˆ

B trpΛXTXq

BX
´

B trpΛq

BX

˙

“ G ´
1

2
pXΛT ` XΛq

“ G ´ XΛ,

and

DΛLpX,Λq “ XTX ´ I,

where we use the fact B trpBXTXq

BX “ XBT ` XB, cf. [38, (112) Page 13]. Imitating the equality
constraints problem of vector form, we give the first-order optimality conditions of (StOp) below.
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Lemma 3.1.3 (First-order optimality conditions [45, Lemma 1.]).

• Suppose that X is a local minimizer of (StOp). Then, X satisfies the first-order optimality condi-
tions

G ´ XGTX “ 0 and XTX “ I,

with the associated Lagrange multiplier Λ “ GTX.

• Define
∇FpXq :“ G ´ XGTX and A :“ GXT ´ XGT .

Then, ∇FpXq “ AX. Moreover, ∇FpXq “ 0 if and only if A “ 0.

Proof. It follows from XTX “ I that the linear independence constraint qualification is satisfied.
Hence, there exists a Lagrange multiplier Λ such that

DXLpX,Λq “G ´ XΛ “ 0, (3.1)

DΛLpX,Λq “XTX ´ I “ 0.

Left multiplying both sides of (3.1) by XT and using XTX “ I, we have Λ “ XTG. Since Λ
must be a symmetric matrix, we obtain Λ “ GTX and DXLpX,Λq “ G ´ XGTX “ 0. It is easy
to verify the last two statements.

In a word, it is follows from the optimality conditions that we aim to find a feasible point X such
that X satisfies ∇FpXq :“ G ´ XGTX “ 0 or equivalently A :“ GXT ´ XGT “ 0. Remember
that G is the gradient of FpXq at point X , depending on X .

3.1.2 Update Scheme

Next, we review the update scheme. Recall that a smooth curve on a set S is a smooth mapping:
R Ñ S, the real argument is often called the step size.

At a point X on the Stiefel manifold Mp
n, we construct a curve Y pτq on Mp

n starting from X .
This means that the curve goes through X , and we obtain X at zero step size; in addition, the curve
maintains orthogonality with an arbitrary step size; i.e., the image of Y pτq is contained in Mp

n.
Simultaneously, as long as the point X is not a local minimizer of (StOp), the objective value

can become smaller along this curve at a certain step size; i.e., we are able to find an suitable τ̄ such
that

F pY pτ̄qq ă F pY p0qq .

In fact, the composition map pF ˝ Y qpτq “ F pY pτqq is just a real-valued function on R. If
pF ˝Y q1p0q :“ dFpY pτqq

dτ

ˇ

ˇ

ˇ

τ“0
ă 0 holds, then a positive τ̄ that satisfies the condition exists by basic

calculus.
Obviously, the above framework is precisely the classical gradient descent method of uncon-

strained optimization. Let us consider the unconstrained optimization problem

min
xPRn

fpxq, (UnOp)
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where f : Rn ÞÑ R is continuously differentiable. We want to produce a sequence x0, x1, x2, . . . ,
where xk`1 is generated from xk, the current direction dk, and the step size αk ą 0 by the rule,

xk`1 “ xk ` αkdk.

In general, αk is chosen so that f pxk`1q ă f pxkq. Fig. 3.1 illustrates the process of the classical
gradient descent for some real-valued function defined on R2. Likewise, Fig. 3.2 shows the process
of the curve search for some real-valued function defined on the unit sphere M1

3 Ď R3. The
difference is that one searches along a straight line, the other along a curve. Whether it is a straight
line or a curve, they all search within the feasible region, and each iteration finds a better result.
Hence, we can recast the constrained optimization as an unconstrained one. An interesting insight
is that fpxq in (UnOp) can be regarded as an optimization constrained on Rn, or conversely, FpXq

in (StOp) as one unconstrained on Mp
n.

Fig. 3.1. Illustration of classical gradient descent on
a contour plot of R2 plane.

Fig. 3.2. Illustration of curvilinear search on a con-
tour plot of the unit sphere M1

3.

The next lemma gives us a good way to construct such a curve on Mp
n.

Lemma 3.1.4 (Update scheme [45, Lemma 3.]).

1. Let X be a feasible point. Given any skew-symmetric matrix W P Rnˆn, Y pτq : R Ñ Rnˆp,
defined below, satisfies Y pτqTY pτq “ XTX for any τ and Y p0q “ X ,

Y pτq :“
´

I `
τ

2
W

¯´1 ´

I ´
τ

2
W

¯

X, (3.2)

or in an equivalent implicit form,

Y pτq “ X ´ τW

ˆ

X ` Y pτq

2

˙

. (3.3)

It is a smooth curve on the Stiefel manifold Mp
n, and its derivative with respect to τ is

Y 1pτq “ ´

´

I `
τ

2
W

¯´1
W

ˆ

X ` Y pτq

2

˙

. (3.4)

In particular, Y 1p0q “ ´WX .
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Fig. 3.3. Diagram of update scheme at each iteration.

2. Let W “ A :“ GXT ´ XGT . Then, Y pτq is a descent curve at τ “ 0, that is,

pF ˝ Y q1p0q :“
dFpY pτqq

dτ

ˇ

ˇ

ˇ

ˇ

τ“0

“ ´
1

2
}A}2.

Moreover, as long as X is not yet a local minimizer, pF ˝ Y q1p0q ă 0 holds.

Proof. Part 1. Since τ
2W is skew-symmetric for any real τ , Lemma 3.1.2 gives Y pτqTY pτq “

XTX . In particular, Y pτqTY pτq “ I for any real τ ; thus, Y pτq is a curve in Mp
n. It can be seen

from (3.2) that it is smooth with respect to τ . It is easy to verify that (3.2) and (3.3) are equivalent
and Y p0q “ X . Differentiating both sides of (3.3) with respect to τ, we obtain p3.4q.

Part 2. It is easy to see A :“ GXT ´ XGT is skew-symmetric. Using the chain rule, we obtain

pF ˝ Y q1pτq “ xDFpY pτqq, Y 1pτqy “ tr
`

DFpY pτqqTY 1pτq
˘

.

At τ “ 0,DFpY p0qq “ DFpXq “ G and Y 1p0q “ ´WX “ ´
`

GXT ´ XGT
˘

X. Thus, we
have

pF ˝ Y q1p0q “ ´ tr
`

GT
`

GXT ´ XGT
˘

X
˘

“ tr
`

GTXGTX ´ GTG
˘

and

´
1

2
}A}2 “ ´

1

2
trpATAq “ ´

1

2
trtpXGT ´ GXT qpGXT ´ XGT qu

“ tr
`

GTXGTX ´ GTG
˘

.

Finally, we obtain pF ˝ Y q1p0q “ ´1
2}A}2. Since ∇FpXq “ 0 if and only if A “ 0, so if X is not

yet a local minimizer, then A ‰ 0 and pF ˝ Y q1p0q ă 0.

From the lemma above, for any step size τ , the matrix Y pτq keeps orthogonality. We should
notice that the curve Y pτq, defined by an arbitrary skew-symmetric matrix W P Rnˆn, has this
property. But if the set W “ A :“ GXT ´ XGT , then Y pτq is a descent curve at τ “ 0. (We may
well wonder if there are other W s such that pF ˝ Y q1p0q ă 0, but this is not the topic of this thesis.)

Notice that by setting W “ A, the curve Y pτq is completely determined by the current point X
(see Fig. 3.3). If Xk denotes the current point at the k-th iteration, the subscript k is used for Ykpτq,
and similarly for Gk,Ak,Wk,Ykpτq, and pF ˝ Ykqpτq.
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3.2 Curvilinear Search Algorithm

3.2.1 Monotone Curvilinear Search

At iteration k, one can choose the step size by finding a τk ą 0 satisfying the Armijo-Wolfe condi-
tions:

pF ˝ Ykqpτkq ď pF ˝ Ykqp0q ` c1τkpF ˝ Ykq1p0q, (3.5a)

pF ˝ Ykq1pτkq ě c2pF ˝ Ykq1p0q, (3.5b)

where 0 ă c1 ă c2 ă 1 are two parameters. The proof of the existence of τk is exactly the same as
in the classical line search, cf. [37, Lemma 3.1]. To find such τk in practice, we refer the reader to
algorithms 3.5 and 3.6 in [37].
Lemma 3.2.1 (Existence of Armijo-Wolfe Step [45, Lemma 6.]). If 0 ă c1 ă c2 ă 1 and pF ˝

Ykq1p0q ă 0, there exist nonempty intervals of step lengths satisfying the Armijo-Wolfe conditions.
Every iteration of Algorithm 3 is well defined. Note that if rewrite (3.5a) as

FpXk`1q ď FpXkq ` c1τkpF ˝ Ykq1p0q,

where pF˝Ykq1p0q ď 0 for all k by Lemma 3.1.4, the generated sequence tFpXkqu is monotonically
decreasing.

Algorithm 3: Monotone Curvilinear Search

1 Initialization: Set 0 ă c1 ă c2 ă 1, ϵ ą 0, k Ð 0, an initial point X0 P Or;
2 while }∇FpXkq} ą ϵ do
3 Generate Ak Ð GkX

T
k ´ XkG

T
k ,Wk Ð Ak ;

4 Find a step size τk ą 0 that satisfies the Armijo-Wolfe conditions (3.5a) and (3.5b);
5 Set Xk`1 Ð Yk pτkq;
6 k Ð k ` 1 and continue;
7 end

To prove the global convergence of Algorithm 3, we need an assumption about the skew-
symmetric matrix W that yields the curve Y pτq:
Condition 1. The matrix W in (3.3) is continuous in X and satisfies

pF ˝ Y q1p0q ď ´σ}A}2,

where σ ą 0 is a constant.
It is clear that condition 1 is satisfied since W pXq “ GpXqXT ´ XGpXqT is continuous with

respect to X and σ “ 1
2 by Lemma 3.1.4.

3.2.2 Global Convergence

Here, we give a detailed proof of convergence. For the original content, we refer the reader to [44].
For given arbitrary starting point X0 P Mp

n, let us define the level set:

Θ “ tX | FpXq ď F pX0q , X P Mp
nu ,
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which is compact. To see this, the per-image of the closed set p´8,FpX0qs under a continuous
map FpXq is also closed, and Mp

n is compact by Lemma 3.1.1. A closed subset of a compact set is
compact.

Starting from X0 P Mp
n, the sequence tXku generated by Algorithm 3 lies in Θ since F pXkq

decreases monotonically and Xk P Mp
n for all k. We start with an auxiliary lemma as follows.

Lemma 3.2.2. Suppose that Condition 1 is satisfied and tXkukPK is an infinite subsequence gen-
erated by Algorithm 3. If limkPK τk “ 0, then the sequence tYk pτkqukPK satisfies

lim
kPK

}Yk pτkq ´ Ykp0q} “ 0 and lim
kPK

›

›Y 1
k pτkq ´ Y 1

kp0q
›

› “ 0.

Proof. Part 1. We first have Yk pτkq ´ Ykp0q “ ´τk
`

I `
τk
2 Wk

˘´1
WkXk for each k. To see this,

omitting subscripts for simplicity, we have

Y pτq ´ Y p0q “ ´
τ

2
W pX ` Y pτqq

“ ´
τ

2
W

ˆ

X `

´

I `
τ

2
W

¯´1 ´

I ´
τ

2
W

¯

X

˙

“ ´
τ

2
W

ˆ

I `

´

I `
τ

2
W

¯´1 ´

I ´
τ

2
W

¯

˙

X

“ ´
τ

2
W

ˆ

´

I `
τ

2
W

¯´1 ´

I `
τ

2
W

¯

`

´

I `
τ

2
W

¯´1 ´

I ´
τ

2
W

¯

˙

X

“ ´
τ

2
W

´

I `
τ

2
W

¯´1 ´´

I `
τ

2
W

¯

`

´

I ´
τ

2
W

¯¯

X

“ ´τ
´

I `
τ

2
W

¯´1
WX.

Hence, we observe that

}Yk pτkq ´ Ykp0q} ď τk

›

›

›

›

´

I `
τk
2
Wk

¯´1
›

›

›

›

}WkXk} .

Since W pXq is a continuous function with respect to X, which stays in the compact set Θ, the se-
quences }WkXk} * and

›

›

›

`

I `
τk
2 Wk

˘´1
›

›

›
are bounded. Hence, we obtain limkPK }Yk pτkq ´ Ykp0q} “

0.

Part 2. On the other hand, we have

Y 1
k pτkq ´ Y 1

kp0q “ ´

´

I `
τk
2
Wk

¯´1
ˆ

1

2
Wk pYk pτkq ´ Xkq ´

τk
2
W 2

kXk

˙

,

*Do not regard Wk as a different function for each k; actually, Wk means W pXkq.
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which follows from (omitting subscripts)

Y 1 pτq ´ Y 1p0q “ WX ´

´

I `
τ

2
W

¯´1
W

ˆ

X ` Y pτq

2

˙

“

´

I `
τ

2
W

¯´1
ˆ

´

I `
τ

2
W

¯

WX ´ W

ˆ

X ` Y pτq

2

˙˙

“

´

I `
τ

2
W

¯´1
ˆ

1

2
WX ´

1

2
WY pτq `

τ

2
W 2X

˙

“ ´

´

I `
τ

2
W

¯´1
ˆ

1

2
W pY pτq ´ Xq ´

τ

2
W 2X

˙

.

Therefore, we obtain

›

›Y 1
k pτkq ´ Y 1

kp0q
›

› “

›

›

›

›

´

I `
τk
2
Wk

¯´1
ˆ

1

2
Wk pYk pτkq ´ Xkq ´

τk
2
W 2

kXk

˙›

›

›

›

ď

›

›

›

›

´

I `
τk
2
Wk

¯´1
›

›

›

›

ˆ

1

2
}Wk} }Yk pτkq ´ Xk} `

›

›

›

τk
2
W 2

kXk

›

›

›

˙

.

Using Part 1, one can similarly show limkPK }Y 1
k pτkq ´ Y 1

kp0q} “ 0.

Theorem 3.2.3. Suppose Condition 1 is satisfied for the sequence tXku generated by Algorithm 3.
Then,

lim
kÑ8

}∇F pXkq} “ 0.

Proof. Part 1. It suffices to prove limkÑ8 }Ak} “ 0 by Lemma 3.1.3. For a proof by contradiction,
we suppose that limkÑ8 }∇Ak} ‰ 0; then there exists a constant ϵ ą 0 and an infinite index set K
such that

}Ak} ą ϵ, for all k P K. (3.6)

Part 2. From Condition 1,
σ}Ak}2 ď ´pF ˝ Ykq1p0q (3.7)

and (3.5a), we have

σc1τk}Ak}2 ď ´c1τkpF ˝ Ykq1p0q ď F pXkq ´ F pXk`1q

and finally get

σc1τk}Ak}2 ď F pXkq ´ F pXk`1q .

Observe that

σc1τ0}A0}2 ďF pX0q ´ F pX1q ,

σc1τ1}A1}2 ďF pX1q ´ F pX2q ,

...
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Summing up the above inequalities gives

8
ÿ

k“0

σµ1τk }Ak}
2

ď F pX0q ´ lim
kÑ8

F pXkq .

Here, limkÑ8 F pXkq exists. To see this, the continuity of FpXq and compactness of Θ imply that
there is a X˚ P Θ such that FpX˚q ď FpXkq for each k. Hence, tFpXkqu is lower bounded. The
descent property of F pXkq leads to the existence of limkÑ8 F pXkq. Finally, we have τk }Ak}

2
Ñ

0, which implies that τk Ñ 0 for k P K in light of (3.6). Now, we can use Lemma 3.2.2.

Part 3. From (3.5a) and (3.7), we have

pF ˝ Ykq1pτkq ´ pF ˝ Ykq1p0q ě pc2 ´ 1qpF ˝ Ykq1p0q ě p1 ´ µ2qσ }Ak}
2 ,

and finally, we find that, for all k P K,

p1 ´ µ2qσ }Ak}
2

ď pF ˝ Ykq1pτkq ´ pF ˝ Ykq1p0q.

On the other hand, it follows from the chain rule that

pF ˝ Ykq1pτkq ´ pF ˝ Ykq1p0q

“ tr
`

DFpYk pτkqqTY 1
kpτkq

˘

´
`

DFpYk p0qqTY 1
kp0q

˘

“ tr
´

DF pYk pτkqq
T “

Y 1
k pτkq ´ Y 1

kp0q
‰

¯

` tr
´

rDF pYk pτkqq ´ DF pYkp0qqs
T Y 1

kp0q

¯

Moreover, the Cauchy-Schwartz inequality implies that

p1 ´ µ2qσ }Ak}
2

ď }DF pYk pτkqq}
›

›Y 1
k pτkq ´ Y 1

kp0q
›

› (3.8)

` }DF pYk pτkqq ´ DF pYkp0qq}
›

›Y 1
kp0q

›

› .

Part 4. We easily have the following facts:

1. }DF pYk pτkqq} “ }DF pXk`1q} is bounded by the continuity of DFpXq.

2. }Y 1
kp0q} “ }WkXk} and }WkXk} is bounded.

3. Recalling limkPK }Yk pτkq ´ Ykp0q} “ 0 in Lemma 3.2.2, we have

lim
kPK

}DF pYk pτkqq ´ DF pYkp0qq} “ 0.

4. limkPK }Y 1
k pτkq ´ Y 1

kp0q} “ 0 by Lemma 3.2.2.

These facts together imply that the right-hand side of (3.8) converges to zero as k P K goes to 8.
This implies that limkPK }Ak} “ 0, which contradicts (3.6).
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Chapter 4

CP factorization via Curvilinear Search

A new method of solving the feasibility problem (FeasP) is proposed in this chapter. Here, maxxi
(minxi) denotes the largest (smallest) entry of x P Rn. As well, max p¨qij (min p¨qij) represents the
largest (smallest) entry of the given matrix. We say these are hard maximum or minimum functions
because they are not differentiable. Notice that ´min pxiq “ max p´xiq.

find X
s.t. BX ě 0

X P Or.
(FeasP)

First, we will establish the connection between (FeasP) and the following optimization problem:

max min pBXqij

s.t. X P Or.

For consistency of notation, we will turn the maximization problem into a minimization:

min ´min pBXqij

s.t. X P Or,

which is equivalent to
min max p´BXqij

s.t. X P Or.
(OptP)

Apparently, (FeasP) is feasible if and only if DX P Or such that minpBXqij ě 0 or maxp´BXqij ď

0. In this case, we find a CP factorization A “ pBXqpBXqT with BX ě 0.
Furthermore, as a special case of the Stiefel manifold, the feasible set of (OptP), Or, is known

to be compact and max p´BXqij : Rrˆr Ñ R is continuous. Following the well-known extreme
value theorem, (OptP) can obtain the global minimum, say t, with a global minimizer X˚. Then,
A P CPn if and only if t ď 0. Summarizing these results with Theorem 2.1.5 gives following
theorem.
Theorem 4.0.1. The following statements are equivalent:

1. A P CPn.
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2. (FeasP) is feasible.

3. In (OptP), there exists a feasible solution X such that max p´BXqij ď 0; alternatively,
min pBXqij ě 0.

4. In (OptP), the global minimum t ď 0.

Our goal has changed from (FeasP) to solving the optimization problem (OptP) with orthogo-
nality constraints. Due to the NP-hardness of checking membership, we cannot expect to compute
the global minimum easily. However, we still struggle to minimize the value max p´BXqij . Our
strategy for (OptP) is roughly as follows:

1. Introduce a smooth approximation to replace the hard maximum function.

2. Utilize the curvilinear search method on the approximation problem.

Note that the reason for using the approximate function is that the differentiability of the objective
function is required by the curvilinear search. Below, we review some facts about the approximate
function, namely the LogSumExp function.

4.1 LogSumExp: Smooth Approximation to Maximum Function

The logarithm of the sum of exponentials function, i.e., LogSumExp, is defined as LSEµpxq :
Rn Ñ R,

LSEµpxq “ µ log p
řn

i“1 exp pxi{µqq .

LSEµpxq is able to approximate the maximum (resp., minimum) function if the parameter µ ą 0
(resp., µ ă 0). In addition, it is a convex (resp., concave) function on Rn if µ ą 0 (resp., µ ă

0), cf. [25, Proposition 2]. For a summary including many other results on LogSumExp and its
gradient (i.e., softmax function), we refer readers to [25]. Similar to the vector form defined above,
LogSumExp with a matrix argument can be simply derived from entrywise operation:

LSEµpXq “ µ log
´

ř

i,j exp pXij{µq

¯

.

For simplicity, we will employ the vector argument to build the following crucial lemmas. Here, we
concentrate on the case µ ą 0 and µ Ñ 0.

4.1.1 Vector Argument

First, we shall show an auxiliary lemma, which is important for avoiding numerical overflow and
underflow when computing LSEµ pxq.
Lemma 4.1.1. Suppose that µ ą 0. Let 1 be a vector whose entries are all ones. Then, we have

LSEµ pxq “ LSEµ px ´ c1q ` c,

for any c P R. Alternately,

LSEµ pxq “ µ log

˜

n
ÿ

i“1

exp ppxi ´ cq{µq

¸

` c.
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Proof. The statement of the theorem follows from

µ log

˜

n
ÿ

i“1

exp ppxi ´ cq{µq

¸

` c “µ log

˜

expp´c{µq

n
ÿ

i“1

exp pxi{µq

¸

` c

“µ log pexpp´c{µqq ` µ log

˜

n
ÿ

i“1

exp pxi{µq

¸

` c

“µ log

˜

n
ÿ

i“1

exp pxi{µq

¸

.

Consider the two-variable case with µ “ 1, LSE1px, yq “ logpex ` eyq. The overflow problem
occurs in practice if x or y is large. For example, if x “ 1000 and y “ 2, the value of e1000 is
too big to be represented as a floating point number, and so it is treated as infinity in a computer.
Finally, we get the false result: logpinf `e2q “ logpinfq “ inf . In opposite, the underflow problem
occurs if both x and y are small. For example, if x “ ´1000 and y “ ´2000, then e´1000 and
e´2000 are both too small, and so they are treated as zeros, which leads to: logp0 ` 0q “ ´ inf .

logpe1000 ` e2q “ logpe1000´1000 ` e2´1000q ` 1000 « logp1 ` 0q ` 1000 “ 1000,

logpe´1000 ` e´2000q “ logpe´1000`1000 ` e´2000`1000q ´ 1000 « logp1 ` 0q ´ 1000 “ ´1000.

From Lemma 4.1.1, we can shift every argument by a constant c :“ maxpx, yq, so we can avoid
overflow and underflow. The multivariate situation is similar, where let c :“ maxxi.
Lemma 4.1.2. The gradient of LSEµpxq is named the softmax function, which is given by σ : Rn Ñ

int∆n´1,

σpxq :“
1

řn
j“1 exp pxj{µq

»

—

–

exp px1{µq
...

exp pxn{µq

fi

ffi

fl

,

where int∆n´1 :“ tx P Rn |
ř

i“1 xi “ 1, xi ą 0u is the interior of the unit simplex.

Proof.

BLSEµ

Bxi
pxq “

µ
řn

j“1 exp pxj{µq

exppxi{µq

µ
“

exppxi{µq
řn

j“1 exp pxj{µq
“ σipxq.

Rewrite the right-hand part by using the equality
řn

i“1 exp pxi{µq “ exptLSEµ pxq {µu. Then,
the components of the softmax function can be rewritten as

σipxq “
BLSEµ

Bxi
pxq “ exptpxi ´ LSEµpxqq{µu.

We will use this formula for σpxq in the numerical experiments for avoiding overflow and underflow.
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The next theorem indicates that LogSumExp is a pretty good approximation to the maximum
function, as it uniformly converges to the maximum function as µ Ñ 0. Analogous results hold
for µ ă 0 with regard to the minimum function. Here are the 3-D graphics of maxpx, yq and
logpex ` eyq on R2.

Fig. 4.1. Graph of maxpx, yq. Fig. 4.2. Graph of logpex ` eyq.

Theorem 4.1.3 (Approximation theorem of LogSumExp). Suppose that µ ą 0, and maxxi denotes
the minimum entry of x. For all x P Rn, we have

1. maxxi ă LSEµpxq ď maxxi ` µ logpnq, hence |maxxi ´ LSEµpxq| ď µ logpnq.

2. lim
µÑ0`

LSEµpxq “ maxxi.

3. if 0 ă µ2 ă µ1, then LSEµ2pxq ă LSEµ1pxq.

Proof. 1. In particular, if let c “ maxxi, say xj , then by Lemma 4.1.1 we have

LSEµpxq “ µ log
´

1 `
řn

i‰j exp ppxi ´ xjq{µq

¯

` xj .
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Fig. 4.3. Slices through the line y “ 1 of maxpx, yq and some µ logpex{µ ` ey{µq on R2.
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Table 4.1. Example of approximation effect with different parameters µ.

n “ 4 µ “ 1 µ “ 1{2 µ “ 1{4 µ “ 1{8

x1 “ p2, 5,´1, 3q 5.1719 5.0103 5.0001 5.0000
x2 “ p5, 5, 5, 5q 6.3863 5.6931 5.3466 5.1733
ϵµ “ µ logpnq 1.3863 0.6931 0.3466 0.1733

For every i ‰ j, µpxi ´ xjq ď 0 implies 1 ă 1 `
řn

i‰j exp ppxi ´ xjq{µq ď n. Then, taking the
logarithm gives

0 ă µ log
´

1 `
řn

i‰j exp ppxi ´ xjq{µq

¯

ď µ logpnq,

which means that 0 ă LSEµpxq ´ xj ď µ logpnq.

2. It directly follows from above.

3. We claim that for any fixed x P Rn, if we regard LSEµpxq as the function corresponding to
single variable µ P p0,8q, denoted by LSExpµq, then for all µ P p´8, 0q,

dLSEx

dµ
pµq ą 0.

For simplicity, we replace LSExpµq or LSEµpxq with LSE next. We have

dLSEx

dµ
pµq “ log p

řn
i“1 exp pxi{µqq ´

řn
i“1 xi exp pxi{µq

µ
řn

i“1 exp pxi{µq
“ LSE{µ ´

řn
i“1 xi exp pxi{µq

µ exptLSE{µu

“pLSE ´
řn

i“1 xi exptpxi ´ LSEq{µuq{µ “ pLSE ´
řn

i“1 xiσiq{µ

“pLSE ´ xTσq {µ ą 0.

For the last inequality, we observe from Lemma 4.1.2 that
řn

i“1 σi “ 1 and every entry σi ą 0;
hence, the term xTσ is a convex combination of all entries of x, which implies that xTσ ď maxxi ă

LSE.

Observe that the parameter µ plays the role of a controller. The third statement of the above
theorem is interpreted in Fig. 4.3. The upper bound of the error ϵµ :“ µ logpnq, which is completely
determined by µ, vanishes as µ Ñ 0. An example is shown in Table 4.1. Rows 2 and 3 consist of
the values of LSE corresponding to x and µ. The worst approximation appears if all entries of x
are the same. However, a sufficiently small µ can eliminate this concern.

4.1.2 Matrix Argument

Recall that we want to approximate maxp´BXqij : Rrˆr Ñ R. The following theorem and lemma
for the matrix argument directly comes from the resulting vector form and chain rule.
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Lemma 4.1.4. Given B P Rnˆr, the gradient of KpXq :“ LSEµ p´BXq : Rrˆr Ñ R at X is
given by

DKpXq “ ´BTDLSEµ p´BXq ,

where the gradient of the matrix-value function LSEµ pY q is denoted by DLSEµ pY q, whose ij-th
entry is exptpYij ´ LSEµpY qq{µu.
Theorem 4.1.5. Suppose that µ ą 0, B P Rnˆr, and maxp´BXqij denotes the minimum entry of
´BX . For all X P Rrˆr, we have

1. maxp´BXqij ă LSEµ p´BXq ď maxp´BXqij ` µ logpnrq, hence, |maxp´BXqij ´

LSEµ p´BXq | ď µ logpnrq.

2. lim
µÑ0`

LSEµ p´BXq “ maxp´BXqij .

3. if 0 ă µ2 ă µ1, then LSEµ2p´BXq ă LSEµ1p´BXq.

4.2 CP factorization via Monotone Curvilinear Search

Now, we can approximate problem (OptP) as problem (LseP):

min LSEµ p´BXq

s.t. X P Or.
(LseP)

Let us investigate some facts about these problems. Similar to maxp´BXqij , considering the
continuity of LSEµ p´BXq : Rrˆr Ñ R, (LseP) can obtain the global minimum, say tµ, with a
global minimizer X˚

µ . The following results show that as µ Ñ 0, the two global minimums almost
coincide.
Proposition 4.2.1. We have 0 ă tµ ´ t ď ϵµ, where ϵµ :“ µ logpnrq ą 0.

Proof. By Lemma 4.1.5, we have

LSEµp´BX˚q ě LSEµp´BX˚
µq “ tµ ą max p´BX˚

µqij ě max p´BX˚qij “ t.

Thus, 0 ă tµ ´ t. And

tµ ´ t “ LSEµp´BX˚
µq ´ max p´BX˚qij´ ď LSEµ p´BX˚q ´ max p´BX˚qij ď ϵµ.

If problem (LseP) has a feasible solution X such that LSEµ p´BXq ď 0, then for the same
X , max p´BXqij ă 0 for (OptP). Hence, we have found a CP factorization pBXqpBXqT “

A with BX ą 0.
We can directly use Algorithm 1 for solving (LseP). Here, FpXq :“ LSEµ p´BXq, p “ n :“

r. Finally, we get to optimize a convex function over the compact but nonconvex feasible set. There
are some adjustments: if A is full rank, we use Cholesky decomposition to obtain an initial B for
reason of precision. Algorithms 3.5 and 3.6 in [37] are used to compute the step size. Since our
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main goal is to find a feasible solution X such that max p´BXqij ď 0, rather than a minimizer,
we set max p´BXk`1qij ď 0 or min pBXk`1qij ě 0 in the place of }∇Fk`1} ď ϵ as the stopping
condition. In addition, the algorithm terminates unsuccessfully if the maximum number of iterations
(here 5000) is reached.

Algorithm 4: CP factorization via Monotone Curvilinear Search

1 Given A P CPn, r ě cppAq, an initial decomposition B P Rnˆr;
2 Initialization: Set 0 ă c1 ă c2 ă 1, k Ð 0, µ ą 0, an initial point X0 P Or;
3 while true do
4 Generate Gk Ð ´BTDLSEµ p´BXkq , Ak Ð GkX

T
k ´ XkG

T
k ,Wk Ð Ak ;

5 Find a step size τk ą 0 that satisfies the Armijo-Wolfe conditions (3.5a),(3.5b);
6 Set Xk`1 Ð Y pτkq;
7 if min pBXk`1qij ě 0 or k “ 5000 then
8 STOP;
9 end

10 k Ð k ` 1 and continue;
11 end

The inversion of I ` τ
2W on the curve Y pτq dominates the computation of this method. It is

numerically cheaper than calculating subproblems at each iteration, as other methods do. Thus, we
expect that its numerical performance will be excellent.

4.3 CP factorization via Nonmonotone Curvilinear Search

Instead of the Armijo-Wolfe rules, the well-known Barzilai-Borwein (BB) step size can usually be
used to speed up the gradient method without the extra cost of solving unconstrained optimization
problems on Rn, cf. [4]. Likewise for Stiefel manifold optimization, we can set τk`1 to either

τk`1,1 “
xSk, Sky

|xSk, Yky|
or τk`1,2 “

|xSk, Yky|

xYk, Yky
,

where Sk “ Xk`1 ´ Xk and Yk “ ∇F pXk`1q ´ ∇F pXkq. However, a poorly chosen BB step
size may rule out convergence.

To ensure global convergence, Wen and Yin suggested a non-monotone line search method
based on a strategy in [47]. In [47], this non-monotone technique guarantees global convergence
of the BB step size for unconstrained optimization on Rn. Although Wen and Yin suggested this
adaption, they did not discuss it in detail. Fortunately, the convergence of the adaption to Stiefel
manifold optimization was proved by [32].

Algorithm 5 with a BB step size is summarized below. The only difference from Algorithm
4 is how the convergence-guaranteed step size is chosen. The next section provides a heuristic
improvement that has a more significant effect.
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Algorithm 5: CP factorization with BB step

1 Given A P CPn, r ě cppAq, an initial decomposition B P Rnˆr;
2 Initialization: Set τ ą 0, ρ, δ, η P p0, 1q, µ ą 0, c0 Ð FpX0q, q0 Ð 1, k Ð 0, an initial

point X0 P Or;
3 while true do
4 Generate Gk Ð ´BTDLSEµ p´BXkq , Ak Ð GkX

T
k ´ XkG

T
k ,Wk Ð Ak ;

5 while pF ˝ Ykqpτq ě ck ` ρτpF ˝ Ykq1p0q do
6 τ Ð δτ
7 end
8 Set Xk`1 Ð Yk pτq;
9 if min pBXk`1qij ě 0 or k “ 5000 then

10 STOP;
11 end
12 qk`1 Ð ηqk ` 1 , ck`1 Ð pηqkck ` F pXk`1qq {qk`1;
13 τ Ð τk`1,1 or τk`1,2;
14 k Ð k ` 1 and continue;
15 end

4.4 Heuristic Extension: Decreasing Parameter µ

In practice, the parameter µ is not as small as possible. Although a smaller µ can give a more
rigorous approximation, the speed of convergence is usually slower. In contrast, too large a µ is
meaningless. It is unlikely that the best parameter µ is known for every matrix.

Fig. 4.4 shows the detailed iterative processes of two different fixed values of µ, 0.01 and 1,
for the same instance. Here, A “ HHT , where H P R20ˆ20 with entries randomly generated
in t5, 6, . . . , 10u and r “ 20. The solid and dashed lines respectively represent the values of
´LSEp´BXkq and minpBXkq. In particular, the blue solid line and the blue dashed line overlap,
because µ is so small that it has a high degree of fitness.

It can be seen that for a relatively larger µ, the value grows faster in the early stages of the
iteration; it, however, converges to a smaller number that may be less than zero, meaning that we
cannot obtain a CP factorization. For a smaller µ, it behaves in the opposite way. This observation
gives us the idea that we should use a large µ at the beginning and then reduce µ as the iteration
progresses. So we should use a reduction scheme for µ. A natural choice is the reciprocal function,
y “ 1{x, which yields Algorithm 6 below.

Algorithm 6: CP factorization with BB steps and decreasing µ

1 The steps are the same as in Algorithm 5 except:
2 Set the initial values µ0 ą 0 , µstep ą 0, and µk Ð µ0{p1 ` kµstepq after every iteration.

In Fig. 4.4, the red lines represent a reduction strategy, where µ0 “ 10 and µstep “ 1 . As
expected, Algorithm 6 increases rapidly in the early iterations and converges to a larger number in
the later iterations; thereby, it takes fewer iterations for it to reach zero. In the next chapter, we will
compare Algorithms 4, 5, and 6.
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Fig. 4.4. Detailed iterative processes of two different values µ for the same instance under Algorithm 5.

4.5 A Family of Smooth Approximations to the Maximum Function

Notice that LogSumExp is nothing but a smooth approximation to the maximum function. Are
there are other smooth approximation functions besides LogSumExp? What if we choose them
for the CP factorization problem? Unfortunately, there is not much relevant research on smooth
approximations to the maximum.

Hence, as a useful supplement, we propose here a method for constructing a smooth approxi-
mation to the maximum. Briefly, it shows that every smooth approximation to the absolute value
function leads to the maximum function. Nevertheless, due to the recursive definitions, calculating
the gradient of them is more expensive than that of LogSumExp. Hence, we did not run them in the
experiments.

4.5.1 2-dimensional Case

First, we try to construct a smooth approximation to the maximum function on R2, i.e., maxpx1, x2q.
Observe that

maxpx1, x2q “
1

2
px1 ` x2 ` |x1 ´ x2|q. (4.1)

Following this hint, it is enough to produce a smooth approximation to the absolute value function.
In fact, there are many parametric smooth approximations to |x|. Most of the following results come
from [3], [2]. We treat µ as a parameter in the function hp¨, µq, and h1 means the derivative of h
with respect to the first variable for a fixed µ.
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1. h1px, µq “
a

x2 ` µ2.

||x |´h1px, µq| ď µ, h1
1px, µq “

x
a

x2 ` µ2
.

2. h2px, µq “ x tanh
´

x
µ

¯

, where tanhpzq is hyperbolic tangent function.

||x |´h2px, µq| ď µ, h1
2px, µq “

x

µ
sech2

ˆ

x

µ

˙

` tanh

ˆ

x

µ

˙

.

3. h3px, µq “ 2µ log
´

1 ` e
x
µ

¯

´ x “ 2µ log
´

1 ` e
´ x

µ

¯

` x.

||x |´h3px, µq| ď 2 logp2qµ, h1
3px, µq “ 1 ´

2

1 ` e
x
µ

“
2

1 ` e
´ x

µ

´ 1.

4. h4px, µq “ x erfpxµq, where erfpzq :“ 2?
π

şz
0 e

´t2dt is the Gauss error function.

||x |´h4px, µq| ď
2

e
?
π
µ, h1

5px, µq “ erf

ˆ

x

µ

˙

`

ˆ

x

µ

˙

2
?
π
e

´

´

x
µ

¯2

.

5. Others:

(a) p2{πqxgdpx{µq, where gdpzq :“
şz
0

1
coshptqdt is the Gudermannian function.

(b) p2{πqx tan´1px{µq.

(c) x2
`

x2 ` µ2
˘´1{2.

All of them satisfy the following condition.
Condition 2. Suppose that hpx, µq is a smooth approximation to |x| on R, satisfying:

1. hpx, µq is parameterized by µ ą 0, and it converges uniformly to |x| on R as µ Ñ 0; i.e., there
exists a constant κ such that

|hpx, µq ´ |x|| ď κµ, @x P R.

2. hpx, µq is smooth on R for any µ ą 0.

Accordingly, we use hpx, µq to create a smooth approximation to maxpx1, x2q, namely, g :
R2 Ñ R, defined as

gpx1, x2q :“
1

2
px1 ` x2 ` hpx1 ´ x2, µqq. (4.2)

We will refer to hpx, µq as hpxq when µ is clear from the context. Immediately, we get similar
properties like hpx, µq.
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Lemma 4.5.1. 1. g is parameterized by µ ą 0, and it converges uniformly to maxpx1, x2q on R2

as µ Ñ 0, since

|gpx1, x2q ´ maxpx1, x2q| ď
1

2
κµ, @px1, x2q P R2.

2. g is smooth on R2, and

Bg

Bx1
px1, x2q “

1

2
p1 ` h1px1 ´ x2qq,

Bg

Bx2
px1, x2q “

1

2
p1 ´ h1px1 ´ x2qq. (4.3)

Proof. Using (4.1) and the properties of hpx, µq, we get 1
2 |hpx1 ´ x2, µq ´ |x1 ´ x2|| ď 1

2κµ.

4.5.2 n-dimensional Case

Thus, we have constructed a smooth approximation to the maximum function on R2. Can this idea
be extended to a general dimension n? Yes is the answer. Inspired by the equivalent formula of the
maximum function on Rn, i.e.,

maxpx1, . . . , xn´1, xnq

“maxpmaxpx1, . . . , xn´1q, xnq

...

“maxpmaxp. . .maxpmaxpx1, x2q, x3q . . . . . . , xnq,

we can be assured that the general maximum function can be reduced to a multiple composition of
maxpx1, x2q on R2. Thus, we will explore the multiple composition formula for gpx1, x2q.
Theorem 4.5.2. Suppose that g : R2 Ñ R is given by (4.2) in terms of hpx, µq satisfying Condition
2. If we recursively define gn´1 : Rn Ñ R for all n P N,

• g0 : R Ñ R, g0px1q :“ x1;

• g1 : R2 Ñ R, g1px1, x2q :“ gpx1, x2q “ gpg0px1q, x2q;

• gn´1 : Rn Ñ R, gn´1px1, . . . , xn´1, xnq :“ gpgn´2px1, . . . , xn´1q, xnq,

we have, for all n P N,

1. gn´1 is parameterized by µ ą 0, and it converges uniformly to maxpx1, . . . , xnq on Rn as
µ Ñ 0, since

|gn´1px1, . . . , xnq ´ maxpx1, . . . , xnq| ď
n ´ 1

2
κµ, @px1, . . . , xnq P Rn.

2. gn´1 is smooth on Rn, and we have for i “ 1, . . . , n,

Bgn´1

Bxi
px1, . . . , xnq “ AiBi,

where

B1 :“ 1, Bi :“
Bg

Bx2
pgi´2, xiq for i “ 2, . . . , n,

and An :“ 1, Ai :“ Ai`1p1 ´ Bi`1q for i “ n ´ 1, . . . , 1.
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Proof. 1. The proof is by induction. The statement trivially holds for n “ 0, and the previous
Lemma 4.5.1 proves the case for n “ 1. Suppose that |gn´2px1, . . . , xn´1q´maxpx1, . . . , xn´1q|

ď n´2
2 κµ holds. For simplicity, we will refer to gn´2px1, . . . , xnq as gn´2 and maxpx1, . . . , xn´1q

as ˚. Then, we have

|gn´1px1, . . . , xnq ´ maxpx1, . . . xnq| “ |gpgn´2, xnq ´ maxp˚, xnq|

“
1

2
|gn´2 ` xn ` hpgn´2 ´ xnq ´ ˚ ´ xn ´ | ˚ ´xn||

“
1

2
|pgn´2 ´ ˚q ` hpgn´2 ´ xnq ´ |gn´2 ´ xn| ` |gn´2 ´ xn| ´ | ˚ ´xn||

ď
1

2
|gn´2 ´ ˚| `

1

2
|hpgn´2 ´ xnq ´ |gn´2 ´ xn|| `

1

2
||gn´2 ´ xn| ´ | ˚ ´xn||

ď
1

2
|gn´2 ´ ˚| `

1

2
|hpgn´2 ´ xnq ´ |gn´2 ´ xn|| `

1

2
|pgn´2 ´ xnq ´ p˚ ´ xnq|

ď|gn´2 ´ ˚| `
1

2
|hpgn´2 ´ xnq ´ |gn´2 ´ xn||

ď
n ´ 2

2
κµ `

1

2
κµ “

n ´ 1

2
κµ.

2. From the definition gn´1 “ g
`

gn´2, xn
˘

and the chain rule, we have

Bgn´1

Bx1
px1, . . . , xnq “

Bg

Bx1

`

gn´2, xn
˘Bgn´2

Bx1
px1, . . . , xn´1q,

...

Bgn´1

Bxn´1
px1, . . . , xnq “

Bg

Bx1

`

gn´2, xn
˘Bgn´2

Bxn´1
pxn, . . . , xn´1q,

Bgn´1

Bxn
px1, . . . , xnq “

Bg

Bx2

`

gn´2, xn
˘

.

Further, we rearrange them to get

Bgn´1

Bx1
px1, . . . , xnq “

n´1
ź

k“1

Bg

Bx1
pgk´1, xk`1q,

Bgn´1

Bxi
px1, . . . , xnq “

Bg

Bx2

`

gi´2, xi
˘

n´1
ź

k“i

Bg

Bx1
pgk´1, xk`1q for i “ 2, . . . , n ´ 1,

Bgn´1

Bxn
px1, . . . , xnq “

Bg

Bx2

`

gn´2, xn
˘

.

Each term Bgn´1

Bxi
consists of only Bg

Bx1
and Bg

Bx2
. However, the formulas above are very expensive
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to calculate. If we expand and enumerate them in reverse order, we find that

Bgn´1

Bxn
px1, . . . , xnq “

Bg

Bx2

`

gn´2, xn
˘

looooooomooooooon

Bn

,

Bgn´1

Bxn´1
px1, . . . , xnq “

Bg

Bx1

`

gn´2, xn
˘

looooooomooooooon

An´1:“1´Bn

Bg

Bx2

`

gn´3, xn´1

˘

looooooooomooooooooon

Bn´1

,

Bgn´1

Bxn´2
px1, . . . , xnq “

Bg

Bx1

`

gn´2, xn
˘ Bg

Bx1

`

gn´3, xn´1

˘

looooooooooooooooooomooooooooooooooooooon

An´2:“An´1p1´Bn´1q

Bg

Bx2

`

gn´4, xn´2

˘

looooooooomooooooooon

Bn´2

,

Bgn´1

Bxn´3
px1, . . . , xnq “

Bg

Bx1

`

gn´2, xn
˘ Bg

Bx1

`

gn´3, xn´1

˘ Bg

Bx1

`

gn´4, xn´2

˘

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

An´3:“An´2p1´Bn´2q

Bg

Bx2

`

gn´5, xn´3

˘

looooooooomooooooooon

Bn´3

,

...

Note that Bg
Bx1

`
Bg

Bx2
“ 1 from (4.3). Thus, we have arrived at an easier form to calculate.
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Chapter 5

Numerical Results

Not only is our proposal inspired by Groetzner’s idea stated in Chapter 2, but Groetzner’s method
(specifically, Algorithm 2) is by far the best practical method of CP factorization; thus, we choose
it as the main object of comparison. Thanks Groetzner for his code is available on the website [27].
Our experiments used many of the same instances given in Groetzner’s paper [28]. The numerical
experiments were performed on a computer equipped with Intel Core i7-4770 3.40 GHz and 16GB
Ram. The algorithms were implemented in MatlabR2020a. The details of the experiments are as
follows.

If A is full rank, for accuracy reasons, we obtain the initial B by using Cholesky decomposition.
Otherwise, it is obtained by spectral decomposition. Then, we extend B to r columns by using
column replication; see (2.1). We use this manner of extension throughout, same as Groetzner’s
experiments. Here, r “ cppAq if cppAq is known, or r is sufficiently larger than cppAq, e.g. cpn. We
use RandOrthMat.m [40] to generate the random starting point X0 based on the Gram–Schmidt
process.

In Algorithm 4, we set c1 “ 10´4, c2 “ 0.9 and use algorithm 3.5 and 3.6 in [37] to compute
the step size. We set τ “ 0.5, c1 “ 10´4, δ “ 0.5, η “ 0.5 in Algorithm 5 and the same setting
together with the initial setting of µ0 “ 10 and µstep “ 1 for Algorithm 6. We set fixed µ “ 0.1
in Algorithm 4 and 5. Algorithm 6 is usually used for most experimental scenarios if there are no
special instructions.

The termination conditions are exactly same as Groetzner’s experiments. All the algorithms
terminate successfully at iteration k if minpBXkqij ě ´10´15, or a maximum number of iterations
(5000) is reached. In other words, it is considered successful as long as it terminates within 5000
iterations.

5.1 A Specifically Structured Example in Different Dimensions

Example 5.1.1 ([28, Example 7.1]). Let en denote the all-ones vector in Rn and consider the matrix,

An “

ˆ

0 eTn´1

en´1 In´1

˙T ˆ

0 eTn´1

en´1 In´1

˙

P CPn.

It has been shown in [39, Example 7.4] that An P int CPn for every n ě 2. By construction, it
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Fig. 5.1. Performance of Algorithm 6 for An from Example 5.1.1 with different dimensions n.

is obvious that cppAnq “ n. As in Groetzner’s experimental setting, we try to factorize An for the
values n P t10, 20, 50, 75, 100, 150u. For each An, using r “ cppAnq “ n we tested 100 starting
points and performed at most 5000 iterations for each starting point.

In contrast to [28, Fig. 1] where the success rate of Groetzner’s method decreases to 15% as
n increases to 150, it can be seen from Fig. 5.1 that Algorithm 6 succeeds for all dimensions n
and all starting points. It should be noted that Algorithm 6 succeeds within 1000 iterations for each
instance and does not require 5000 iterations in all cases.

5.2 Comparison of Algorithms 4, 5 and 6

The next experiment is based on Example 5.1.1, and it compares the performances of Algorithms 4,
5, and 6. All algorithms were run on the same experiment as in Example 5.1.1. For each algorithm
and each An, we tested 100 starting points and performed at most 5000 iterations for each starting
point, r “ cppAnq “ n.

Table 5.1 demonstrates that each algorithm succeeds in all dimensions n and all starting points
within 5000 iterations. As mentioned earlier, the BB step often accelerates the gradient method. We
can see that Algorithm 5 does indeed take less time in each dimension n compared with Algorithm
4. Although Algorithm 5 may entail more iterations, the cost of a single iteration is much smaller.

Moreover, a decreasing µ leads to a remarkable improvement. From Table 5.1, Algorithm 6
takes much less time and much fewer iterations than either Algorithm 4 or 5. Although the best
initial µ0 and µstep are not yet clear, a heuristic setting µ0 “ 10 and µstep “ 1 can reduce the
computational time and iterations.
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Table 5.1. Comparison of Algorithm 4, 5 and 6 for Example 5.1.1 with different dimensions n.

av. no. of iterations
n r “ n Alg 4 Alg 5 Alg 6
10 10 34 40 72
20 20 152 176 147
50 50 554 899 237
75 75 545 1574 310

100 100 1771 2289 386
150 150 1584 3947 543

av. time (sec.)
n r “ n Alg 4 Alg 5 Alg 6
10 10 0.007 0.007 0.009
20 20 0.069 0.044 0.038
50 50 1.7 1.0 0.3
75 75 3.6 3.5 0.6

100 100 19.7 8.6 1.4
150 150 47.4 36.1 4.2

5.3 Comparison of Algorithm 6 and Groetzner’s method

In this section, we compare our approach and Groetzner’s method directly. We use Algorithm 6
and Groetzner’s method (Algorithm 2) to factorize A :“ HHT , where H P Rnˆn with entries
randomly generated in t1, 2, . . . , 10u for the values n P t10, 15, 20, 25, 30u. Hence, cppAq “ n,
We take r “ tn for t P t1, 1.5, 2, 3u. For each pair of n and r, we generated 100 instances to
examine. For each instance, both methods have up to 100 initial point opportunities. If it is not
successful after 5000 iterations, then the next initial point will be tried. As long as one succeeds, no
other initial points are tried. The time for a single instance is calculated from the first initial point
to the last successful one.

It can be seen from Table 5.2 that our approach only took a very short time to succeed for all
100 instances in any pair of n and r. However, no matter time and success rate, Groetzner’s method
is worse than ours in any case of n and r. In particular, the number of successes is falling as r
approaches to n.

5.4 On the Boundary of CPn

Now, let us examine how well our method works for a matrix on the boundary of CPn.
Example 5.4.1. Consider the following matrix from [42, Example 2.7].

A “

¨

˚

˚

˚

˚

˝

41 43 80 56 50
43 62 89 78 51
80 89 162 120 93
56 78 120 104 62
50 51 93 62 65

˛

‹

‹

‹

‹

‚

.

The sufficient condition from [42, Theorem 2.5] ensures that this matrix is completely positive
and cppAq “ rankpAq “ 3. Theorem 1.3.7 tells that A P bd CP5, since rankpAq ‰ 5.

Referring to the results of [28, Example 7.2], we find that both Groetzner’s method and Algo-
rithm 6 can easily factorize this matrix, which implies that our method can also factorize a matrix
on the boundary of CPn. However, Algorithm 6 returns the resulting factorization with the smallest
entry as large as possible if we don’t stop it as soon as it reaches zero. For example, our approach
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Table 5.2. A direct comparison of Algorithm 6 and Groetzner’s method.

N “ 100 Algorithm 6 Groetzner’s method (Algorithm 2)

n r “ n
no. of

successful cases
av. time (sec.)

for successful cases
no. of

successful cases
av. time (sec.)

for successful cases
10 10 100 0.0010 95 3.17
15 15 100 0.0016 77 13.98
20 20 100 0.0025 2 26.76
25 25 100 0.0043 0 -
30 30 100 0.0056 0 -

n r « 1.5n
no. of

successful cases
av. time (sec.)

for successful cases
no. of

successful cases
av. time (sec.)

for successful cases
10 15 100 0.0014 100 0.39
15 23 100 0.0027 100 3.78
20 30 100 0.0044 93 18.33
25 38 100 0.0089 65 55.10
30 45 100 0.0121 36 122.37

n r “ 2n
no. of

successful cases
av. time (sec.)

for successful cases
no. of

successful cases
av. time (sec.)

for successful cases
10 20 100 0.0031 100 0.41
15 30 100 0.0041 100 1.94
20 40 100 0.0076 99 9.56
25 50 100 0.0127 82 40.82
30 60 100 0.0166 50 64.87

n r “ 3n
no. of

successful cases
av. time (sec.)

for successful cases
no. of

successful cases
av. time (sec.)

for successful cases
10 30 100 0.0036 100 0.40
15 45 100 0.0080 100 2.80
20 60 100 0.0131 100 12.27
25 75 100 0.0222 92 48.91
30 90 100 0.0315 70 90.74

Table 5.3. Performance of Algorithm 6 for Example 5.4.2 with n “ 2 and n “ 3.

n r av. success rate (%) av. time (sec.) n r av. success rate (%) av. time (sec.)
2 3 0 0.262 3 8 0 0.376
2 4 100 0.016 3 9 83 0.272
2 5 0 0.288 3 10 0 0.438
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gives the following CP factor B whose the smallest entry is around 2.8573.

A “ BBT , where B «

¨

˚

˚

˚

˚

˝

3.5771 4.4766 2.8573
2.8574 3.0682 6.6650
8.3822 7.0001 6.5374
5.7515 2.8574 7.9219
2.8574 6.7741 3.3085

˛

‹

‹

‹

‹

‚

.

Example 5.4.2. Consider matrices of the type,
ˆ

nIn En

En nIn

˙

P CP2n,

where En P Rnˆn denotes the all-ones matrix.
These matrices do not have full rank and are therefore on the boundary. Contrary to Groetzner’s

failure to return a CP factor for these instances, from Table 5.3, we see that our method succeeds
with n “ 2 and n “ 3 under a loose stopping condition that min pBXkqij ě ´10´14. For each
pair n and r, we used 100 starting points and a maximum of 5000 iterations per starting point. The
value of r obviously affects the success rate for n “ 2 and n “ 3.
Example 5.4.3. Consider the following matrix on the boundary taken from [23].

A “

¨

˚

˚

˚

˚

˝

8 5 1 1 5
5 8 5 1 1
1 5 8 5 1
1 1 5 8 5
5 1 1 5 8

˛

‹

‹

‹

‹

‚

P bd CP5.

Since A is full rank, then cp`pAq “ 8; i.e., there is no strictly positive CP factor for A. Hence,
for A, the global minimum of (OptP), t “ 0 is clear. Neither Groetzner’s method nor our method
can decompose this matrix. However, Algorithm 6 returns a decomposition whose the smallest entry
is ´10´5 that is close to zero. This result demonstrates that for (OptP), the difference between a
local minimum and the global minimum is less than 10´5 in this case.

As in [28, Example 7.3], we will investigate slight perturbations of this matrix. We test the
convex combinations of A and the following C P int CP5.

C “ MMT , where M “

¨

˚

˚

˚

˚

˝

1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

˛

‹

‹

‹

‹

‚

.

Table 5.4 shows the performance of Algorithm 6 in factorizing Aλ :“ λA ` p1´ λqC for different
values λ P r0, 1s, using r “ 12 ą cp5 “ 11. For each Aλ, we used 100 starting points and a
maximum of 5000 iterations per starting point. The second column shows the total computation
time for all 100 starting points.

In contrast with [28, Table 1] showing that Groetzner’s method decreases as it approaches the
boundary, the success rate of our method is always 100%. Moreover, the total running time of all
100 starting points is much less for each λ.
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Table 5.4. Performance of Algorithm 6 for slight perturbations Aλ with different values of λ P r0, 1s.

λ time (sec.) success rate (%)
0 0.64 100

0.1 0.77 100
0.2 0.75 100
0.3 0.74 100
0.4 0.76 100
0.5 0.87 100
0.6 1.11 100
0.7 1.58 100

λ time (sec.) success rate (%)
0.8 2.37 100
0.9 4.18 100
0.95 8.02 100
0.97 12.99 100
0.976 16.06 100
0.977 16.62 100
0.9774 17.08 100
0.9775 17.38 100

Table 5.5. Performance of Algorithm 6 for randomly generated matrices A of high order.

n r av. success rate (%) av. no. of iterations av. time (sec.)
50 51 100 51 0.06
50 151 100 63 0.27
100 151 100 70 0.42
100 301 100 79 1.41
150 201 100 84 0.89
200 301 100 99 2.31

1000 1500 100 390 641

5.5 Randomly Generated Examples of High Order

Finally, we examine the case of randomly generated matrices of high order to investigate how Al-
gorithm 6 is affected by the order. The instances were generated in the same way as [28, Section
7.7]: We computed C by setting Cij :“ |Bij | for all i, j, where B is a random n ˆ k matrix based
on the Matlab command randn, and we took A “ CCT to be factorized. Here, k “ 2n. We tested
100 starting points for n ď 50 and 10 starting points for n ą 50. In each case, we set a maximum
of 5000 iterations per starting point. The numbers in columns 3–5 of Table 5.5 represent averages
of 100 randomly generated instances.

Comparing [28, Table 3] and Table 5.5, we find that, for all randomly generated instances, the
success rate of algorithm 6 reaches 100% and it is significantly faster than Groetzner’s even though
the specifications of our computer are inferior to those of Groetzner’s, that is equipped with 88 Intel
Xenon ES-2699 cores (2.2 GHz each) and a total of 0.792 TB Ram. Due to our inferior computer,
unfortunately, we cannot finish the same experiments with Groetzner’s method within a reasonable
time, thus making direct comparisons impossible.
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Chapter 6

Conclusion and Further Remarks

Now, let us come to a conclusion, then briefly mention the advantages and disadvantages of our
method and the new directions that can be explored.

This thesis was devoted to the CP factorization B of a given completely positive matrix. We
proposed a new numerical method, which stems from the idea that the CP factorization problem can
be reformulated as a feasibility problem. Its solution can be regarded as an optimization problem
with orthogonality constraints and a maximum function as the objective. To be able to apply a
curvilinear search, we made a smooth approximation to the maximum function, called LogSumExp.
We found that this method is much faster than most of the other CP factorization algorithms. The
reason why our method is so fast is that only the inversion of an n ˆ n matrix dominates the
computation at each iteration, not other subproblems like SOCP. Compared with the existing CP
factorization methods mentioned in Section 1.4, speed is our biggest advantage.

We know that LogSumExp can approximate the maximum function infinitely and globally. Let
LSEµ1 denote the LogSumExp function parameterized by positive µ1. Because of global conver-
gence, the curvilinear search for LSEµ1 yields a local minimizer of LSEµ1 , say X˚

1 . If we continue
to optimize with a higher degree approximation LSEµ2pµ2 ă µ1q from the point X˚

1 , the curvilin-
ear search also yields a local minimizer, say X˚

2 . Intuitively, they converge to a local minimizer of
the maximum function itself. Unfortunately, we have not been able to prove this assertion yet.

The limitation is that there is no guarantee that Algorithm 4 (hence 5,6) will successfully find
a CP factorization for any A P CPn. Let us assume our method guarantees a local minimum of
(OptP). Recall that A P CPn if and only if the global minimum of (OptP), say t, is such that t ď 0.
Since checking membership is NP-hard, we cannot expect to compute t in general, or estimate t
relying on a local minimum. For example, it may be that the local minimum is greater than zero, but
the global minimum t is equal to zero, which means A P CPn. Here, we can refer back to Example
5.4.3, where the algorithm failed to terminate. However, in most cases, we can succeed by finding
a local maximum of (OptP) greater than zero.

Finally, let us focus on Stiefel manifold optimization. In fact, it is included in a larger research
topic — Riemannian manifold optimization, which is a kind of optimization on matrix manifolds.
Intuitively, a manifold is locally like Euclidean space Rn near each point. This roughly explains
why we can use a gradient method on the Stiefel manifold, just like in unconstrained optimization
on Rn. Therefore, to a certain extent, the mature methods developed for nonsmooth optimization on
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Rn (such as the subgradient method and ADMM) can be applied to manifold optimization. Actually,
many studies have been reported, cf. [24, 6, 34]. Thus, we can apply those nonsmooth techniques
to the Stiefel manifold to solve (OptP) directly without a smooth approximation. This will also be a
future work.
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