
Riemannian Optimization Algorithms for Applications
and Their Theoretical Properties

Graduate School of Science and Technology

Degree Programs in Systems and Information Engineering

University of Tsukuba

March 2024

LAI ZHIJIAN



Riemannian Optimization Algorithms for Applications
and Their Theoretical Properties

Graduate School of Science and Technology

Degree Programs in Systems and Information Engineering

University of Tsukuba

March 2024

LAI ZHIJIAN



iii

I would like to dedicate this thesis to my loving parents.



iv



v

Acknowledgements

First and foremost, I wish to extend my deepest gratitude to my family, with a special mention to my

parents and brother. Their unwavering support for my academic aspirations, despite the significant time I

spent away from home, has been my driving force. Your understanding and unwavering support have

been an endless source of motivation.

I want to express my heartfelt appreciation to Prof. Akiko Yoshise for her unwavering guidance and

mentorship throughout my five-year journey at the University of Tsukuba. Her support and direction

have played a pivotal role in shaping my academic path. My sincere thanks go to Prof. Ying Miao for

his invaluable insights and advice regarding my future career. Furthermore, I would like to thank Prof.

Hiroyuki Sato of Kyoto University, who provided expert insights into the Riemannian optimization. I

would also like to thank Prof. Takahito Kuno and Prof. Masahiro Hachimori for their careful feedback

and constructive suggestions during the preparation of my thesis and defense.

To all my friends, colleagues, and mentors who have contributed to my academic growth and supported

me throughout this journey, I offer my sincere appreciation. This thesis is dedicated to all those mentioned

above and to everyone who has played a vital role in my quest for knowledge and personal development.

LAI ZHIJIAN

March, 2024



vi



vii

Abstract

Riemannian Optimization (RO) is a vibrant and important research area in the field of optimization

theory, which focuses on optimizing real-valued functions over Riemannian manifolds. The manifolds are

characterized as smooth curved spaces that generalize Euclidean spaces. The aim of this dissertation is to

discuss recent advances and applications of Riemannian optimization.

Despite the relatively short history of RO, both its theoretical research and practical applications

have experienced rapid growth over the past 20 years. The main trend in RO’s theoretical research is to

extend various classical and well-established optimization algorithms (e.g., gradient descent, Newton

method, etc.) from Euclidean spaces to Riemannian manifolds. In contrast to the familiar Euclidean

spaces, Riemannian manifolds are more generalized spaces equipped with all the necessary geometric

tools for the optimization algorithms. In practice, Riemannian manifolds are often represented as the

feasible region of an optimization problem, while being a subset of a Euclidean space. By utilizing the

Riemannian geometry of that feasible region itself, Riemannian algorithms tend to be more efficient than

Euclidean algorithms.

Existing researches of RO have focused on optimization problems with a smooth objective function

over a single manifold. However, as the range of applications increases, this type of optimization problem

sometimes does not satisfy diverse demands well, which leads to algorithm development efforts for

the variants of Riemannian optimization. This dissertation investigates two variants of RO, each of

which addresses different challenges in practical applications. The first variant, Nonsmooth Riemannian

Optimization (NRO), is concerned with optimization problems characterized by a nonsmooth objective

function. The second variant, Constrained Riemannian Optimization (CRO), addresses optimization

problems on non-single manifold, i.e., problems involve additional constraints that cannot form a manifold.

Both NRO and CRO have proven to be more applicable and closely related to real-world applications,

thus extending the scope and effectiveness of RO.

For NRO problems, we will propose a generalized framework of Riemannian smoothing method to

solve these problems, ensuring efficient convergence to the limiting stationary point. Our framework is not

only user-friendly but also synergizes seamlessly with existing solvers, like “Manopt”, thereby facilitating

fast and straightforward code implementation. Numerical experiments demonstrate the efficiency of the

method. In particular, we apply our method to the CP factorization problem, which is an open problem in

the theory of conic optimization. Numerical experiments confirm that our method is particularly superior

for large-scale CP factorization problems.

For CRO problem, we will propose the Riemannian interior point method, which is an extension

of the classical primal-dual interior point method to Riemannian manifold. We prove that our method

holds locally superlinear and quadratically convergence, and that global convergence can be achieved by

combining it with classical linear search. Numerical experiments confirm the stability and efficiency of
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our proposal. To our knowledge, this is the first study to apply the primal-dual interior point method to

the constrained optimization problem on Riemannian manifolds. One significant contribution is that we

establish many essential foundational concepts for the general interior point method in the Riemannian

context, such as the KKT vector field and its covariant derivative. In addition, we build the first algorithm

framework for the Riemannian version of the interior point method. These contributions will be useful in

the future, especially in the development of more advanced interior point methods.

In conclusion, Riemannian optimization is a vigorous and rapidly growing field that has seen significant

advances in both theory and practical applications in recent years. The exploration of variants such as

NRO and CRO has expanded the potential and applicability of this optimization framework, opening up

exciting opportunities for future development and real-world problem solutions.

LAI ZHIJIAN

March, 2024
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XT Transpose of the matrix X

X∗ Conjugate transpose of the matrix X

X ≽ 0 X is a real symmetric positive semidefinite matrix

X ≻ 0 X is a real symmetric positive definite matrix

X ≥ 0 X has all entries nonnegative

X > 0 X has all entries positive

∥X∥F Frobenius norm of the matrix X , ∥X∥F :=
√∑

i,j |Xij |2

∥X∥1 ℓ1 norm applied to the matrix X , ∥X∥1 :=
∑

i,j |Xij |
∥X∥2 Spectral norm of the matrix X , namely, the largest singular value of X

rank(X) Rank of the matrix X

trace(X) Trace of the square matrix X (sum of the diagonal entries)

det(X) Determinant of the square matrix X

diag(X) Column vector extracted from the daigonal of the square matrix X

span(X) Subspace spanned by the columns of the matrix X

cp(X) cp-rank of the real symmetric matrix X

cp+(X) cp-plus-rank of the real symmetric matrix X

cpn A special number defined in Theorem 13

Constant
e Euler’s number

I, In Identity matrix of size n (or of size indicated by context)

1,1n All-ones column vector of size n (or of size indicated by context)

E All-ones matrix with proper size by context

{ei}ni=1 Standard basis of the n-dimensional real space Rn, namely, the columns of In
0, 0m, 0m×n Number 0 or the zero vector or zero matrix (or of size indicated by context)

ê A special vector field as defined in (5.26)

Linear Algebra
E , E ′ Finite-dimensional vector spaces

⟨·, ·⟩E An inner product defined on E
∥v∥E Induced norm on E , ∥v∥E :=

√
⟨v, v⟩E for v ∈ E

v̂ Vector representation of some element v ∈ E w.r.t. some basic of E
A,B,P General linear operators between vector spaces

(In the following, A : E → E ′ is a linear operator)

A(v),Av Call of A on vector v ∈ E
A∗ Adjoint operator of A, note that A∗ : E ′ → E is also linear

∥A∥ Operator norm of A,

∥A∥ := sup{∥Av∥E ′ | v ∈ E , ∥v∥E = 1} = sup{∥Av∥E ′ | v ∈ E , ∥v∥E ≤ 1}
Â Matrix representation of A w.r.t. some bases of E and E ′

kerA Kernel space or null space of A, kerA := {v ∈ E : Av = 0}

Calculus
f ◦ g, fg Function composition, (fg)(x) = (f ◦ g)(x) = f(g(x))
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Hf (x) Hessian matrix Hf (x) ∈ Rn×n of the function f : Rn → R at x ∈ Rn

JF (x) Jacobian matrix JF (x) ∈ Rm×n of the function F : Rn → Rm at x ∈ Rn

max(·),min(·) Functions to obtain the maximum or minimum value of the arguments

exp(·) Classical exponential function, or matrix exponential of square matrix

log(·) Classical logarithm function

C1 Continuously differentiable function

C2 Twice continuously differentiable function

Cs s times continuously differentiable function

C∞ Infinitely differentiable, namely, smooth function

Br(x) Open ball with center x ∈ Rn and radius r > 0, Br(x) := {y ∈ Rn : ∥x−y∥2 < r}
C1(Br(x)) Set of all C1 real-valued functions defined on Br(x)

(In the following, f : Rn → R is lower semi-continuous)

f̃ Smoothing function of f , see Definition 36

lse Log-sum-exp function, a smoothing function of max(·), see Example 20

µk ↓ 0 Positive sequence {µk} converging to 0 from the right

∆n−1 Unit simplex, ∆n−1 := {x ∈ Rn :
∑n

i=1 xi = 1, xi ≥ 0}
∂̂f(x) Regular (or Fréchet) subdifferential of f at x

∂f(x) Limiting subdifferential of f at x

∂◦f(x) Clarke subdifferential of f at x

∂̂Rf(x) Riemannian regular (or Fréchet) subdifferential of f at x

∂Rf(x) Riemannian limiting subdifferential of f at x

Gf̃ (x) Subdifferential of f associated with f̃ at x

Gf̃ ,R(x) Riemannian subdifferential of f associated with f̃ at x

Riemannian Geometry
M,N Smooth, finite-dimensional (usually Riemannian) manifolds

N Only in Chapter 5-7, it denotes special product manifold, N := M×Rl×Rm×Rm,

see (2.38)

Spn−1 Sphere manifold, Spn−1 := {x ∈ Rn : ∥x∥2 = 1}
St(n, k) Stiefel manifold, St(n, k) := {X ∈ Rn×k : XTX = Ik}
O(r) Orthogonal group, O(r) := {X ∈ Rr×r : XTX = In}
Ob(n, k) Oblique manifold, Ob(n, k) := {X ∈ Rn×k : each column of X has unit l2 norm}
Fr(m,n, r) Fixed-rank manifold, Fr(m,n, r) := {X ∈ Rm×n : rank(X) = k}
dimM Dimension of the manifold M
U ,V Some open subsets, neighborhood on manifold, or domain of a chart

F(M) Set of all smooth real-valued functions defined on M
Fx(M) Set of all smooth real-valued functions defined on a neighborhood around p ∈ M
TxM Tangent space at point p ∈ M
ξ, η, ζ Tangent vectors

0x Zero element of TxM
⟨·, ·⟩x Inner product defined on TxM
∥ξ∥x Induced norm on TxM
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{Ei}ni=1 Orthonormal basis of TxM, or orthonormal local frame around x

Projx(·) Orthogonal projection onto TxM
Id, IdTxM Identity map defined on TxM (or on the domain indicated by context)

D Differential operator

TM Tangent bundle of M, TM := {(x, v) : x ∈ M, v ∈ TxM}
TM⊕ TM Whitney sum of tangent bundles, TM⊕ TM := {(x, η, ξ) : x ∈ M, η, ξ ∈ TxM}
F,U, V,W Vector fields

X(M) Set of all smooth vector fields on M
R Retractions on a manifold

R̄ Retractions on the special product manifold N
egrad f(x) Classical (Euclidean) gradient

grad f(x) Riemannian gradient

∇ Connection on a manifold

[U, V ] Lie bracket of vector fields U and V

∇V (x) Covariant derivative of the vector field V at point x

eHess f(x) Classical (Euclidean) Hessian

Hess f(x) Riemannian Hessian

I Some real interval, I ∈ R
F(I) Set of all smooth real-valued functions defined on I

γ(t), c(t) Curves on a manifold, e.g., γ : M
X(c) Set of all smooth vector fields along the curve c

ċ(t) Velocity of a curve at time t

c̈(t) Acceleration of a curve at time t
D
dt Induced covariant derivative (induced by ∇)

Exp Exponential map on a manifold
¯Exp Exponential map on the special product manifold N
d(x, y) Distance between points x and y on a manifold

Pγ , Pt1→t0
γ Parallel transport along a curve γ on a manifold

T Vector transport on a manifold

T̄ Vector transport on the special product manifold N

Miscellaneous
uk = O(vk) Big-O notation, there exists M > 0 such that uk ≤Mvk for all sufficiently large k

uk = o(vk) Little-o notation, the sequence of ratios {uk/vk} approaches zero

x ∼ y Equivalence relation evaluated for two objects x and y

[x] Equivalence class of x for the equivalence relation ∼
E Equality index set, E := {1, 2, . . . , l}
I Inequality index set, I := {1, 2, . . . ,m}
A(x) Active set at point x, A(x) := {i : gi(x) = 0}, see (CRO)

w w = (x, y, z, s) ∈ N , see (2.38)

L(x, y, z) Lagrangian of (CRO), L(x, y, z) := f(x) +
∑l

j=1 yjhj(x) +
∑m

i=1 zigi(x)

gradx L(x, y, z) Riemannian gradient of Lagrangian with respect to the manifold variable x
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Hessx L(x, y, z) Riemannian Hessian of Lagrangian with respect to the manifold variable x

C(x, y, z) critical cone, see (5.10)

Hx A special linear operator defined in (5.19), which depends on x

Gx A special linear operator defined in (5.19), which depends on x

Ψ A special linear operator defined in (5.34), which depends on w

Aw A special linear operator defined in (5.33), which depends on w

T A special linear operator defined in (5.32), which depends on w

Acronyms and abbreviations
ACQ Abadie’s Constraint Qualification

ADMM Alternating Directions Method of Multipliers method

AP Additional Properties

BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm

CEO Constrained Euclidean Optimization

CG Conjugate Gradient method

CP Completely Positive matrix

CQs Constraint Qualifications

CR Conjugate Residual method

CRO Constrained Riemannian Optimization

EIPM Euclidean Interior Point Method

EO Euclidean Optimization

FSV Finding the Sparsest Vector

GCQ Guignard’s Constraint Qualification

IPM Interior Point Methods

KKT Karush-Kuhn-Tucker conditions

LICQ Linear Independence Constraint Qualification

MADS Mesh-Adapted Direct Search algorithm

ManPG Manifold Proximal Gradient method

MFCQ Mangasarian-Fromovitz Constraint Qualification

NLRM Nonnegative Low-Rank Matrix approximation

NMF Nonnegative Matrix Factorization

NRO Nonsmooth Riemannian Optimization

RALM Riemannian Augmented Lagrangian Method

REPM Riemannian Exact Penalty Method

RIPM Riemannian Interior Point Method

RMSE Root Mean Square Error

RO Riemannian Optimization

RSM Riemannian Smoothing Method

RSQP Riemannian Sequential Quadratic Programming method

SD Steepest Descent method

SOCP Second-Order Cone Problem

SONC Second-Order Necessary Conditions
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SOSC Second-Order Sufficient Conditions

SQP Sequential Quadratic Programming

TR Trust Regions method

UEO Unconstrained Euclidean Optimization

URO Unconstrained Riemannian Optimization
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Chapter 1

Overview of Several Types of Riemannian
Optimizations

Part Section

Part 1. Riemannian Optimizations (RO) 1.1 Optimization from Euclidean Spaces to Rieman-
nian Manifolds

Part 2. Two variants of RO 1.2 Nonsmooth Riemannian Optimization
1.3 Constrained Riemannian Optimization

Part 3. Outline 1.4 Summary and Thesis Structure

1.1 Optimization from Euclidean Spaces to Riemannian Manifolds

1.1.1 Euclidean Optimization

Mathematical optimization is an important field in applied mathematics that involves selecting the best

element from a set of available alternatives. The aim of this process is to efficiently find the solution

that minimizes or maximizes a given objective function (also known as a cost function), subject to a set

of constraints. Mathematical optimizations are often formally represented as follows: given a function

f : Rn → R, the general form of a (Euclidean) optimization problem is

min f(x)

s.t. x ∈ S.
(EO)

Here, x = [x1, x2, . . . , xn]
T is an n-dimensional vector in the Euclidean space Rn, and the feasible region

S ⊂ Rn is the feasible set of all possible solutions. Typically, we default to thinking of feasible region S

as a subset of Euclidean space Rn. This covers almost all the problem patterns. Matrix spaces or general

linear spaces are also equivalent to the above formulation. Thus, the traditional and classical optimization

theory actually consider an optimization problem underlying the Euclidean space. To distinguish it from

the Riemannian optimization of the later context, we specifically call it Euclidean Optimization (EO).
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Problem 1 (Unconstrained Euclidean Optimization (UEO)). In unconstrained optimization, the set S is

the entire space Rn. The problem can be written as:

min f(x)

s.t. x ∈ Rn.
(UEO)

The Unconstrained Euclidean Optimization (UEO) do not have constraints on variable, providing

more freedom in finding optimal solutions. The line search method, as shown in Algorithm 1, is a common

framework to solve this problem. The objective function f : Rn → R is assumed to be smooth. The line

search method seeks to find a sequence {xk} that converges to a minimizer of the function f .

Algorithm 1: General Line Search Method for (UEO)
Input: An objective function f defined on Rn, an initial point x0 ∈ Rn.

Output: Sequence {xk} ⊂ Rn.

Set k → 0;

while stopping criterion not satisfied do
1. Compute a search direction dk ∈ Rn;

2. Compute a step size tk > 0;

3. Compute the next point as xk+1 := xk + tkdk;

4. k → k + 1;

end

How the descent direction dk is chosen determines the different optimization algorithms:

• steepest gradient descent method: dk = −∇f(xk) where ∇f(xk) is the gradient of f at xk.

• Newton method: dk = −
[
∇2f(xk)

]−1∇f(xk) where ∇2f(xk) is the Hessian of f at xk.

• quasi-Newton method: dk = −B−1
k ∇f(xk) where Bk is an approximation to the Hessian.

The success of linear search frameworks depends to a large extent on the selection strategy for the

direction and step size. Depending on these choices and the characteristics of the objective function, the

convergence properties of the linear search framework are different.

Problem 2 (Constrained Euclidean Optimization (CEO)). In constrained optimization, the set S is a

proper subset of Rn defined by equality and inequality constraints. The problem is usually expressed as:

min f(x)

s.t. gi(x) = 0, i = 1, 2, . . . ,m,

hj(x) ≤ 0, j = 1, 2, . . . , l,

x ∈ Rn,

(CEO)

where gi : Rn → R are equality constraints and hj : Rn → R are inequality constraints.

Compared to the unconstrained case, the Constrained Euclidean Optimization (CEO) introduces

specific constraints or bounds on the variables x, which leads to a more challenging optimization problem.

Such problems include linear programming, quadratic programming, convex optimization, and general

nonlinear nonconvex optimization. The solution x must satisfy all constraints to be considered valid, or

feasible. The line search framework of Algorithm 1 is unable to solve this problem since the new iterate
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xk+1 := xk + tkdk may not satisfy the constraints (even if xk satisfies). Algorithms for constrained

optimization often involve techniques that handle constraints explicitly, such as augmented Lagrangian

methods, barrier methods, penalty methods, Sequential Quadratic Programming (SQP) method and

Interior Point Methods (IPM). Each method provides a ingenious way of balancing the objective function

minimization with the need to adhere to the constraints, ultimately guiding the algorithm towards feasible

and optimal solutions.

Next, let we consider a new thought:

“Methodologically, the essential difference between constrained and unconstrained problems

is not determined by the problem itself, but by the algorithm we adopt to solve the problem.”

In problem (UEO), formalistically, x is still subject to the real Euclidean space constraint Rn, i.e., it must

be an n-dimensional vector of real numbers rather than a vector of complex numbers. But the iterative

formula xk+1 := xk+ tkdk in the line search framework of Algorithm 1 never breaks this, thus Algorithm

1 is free, and feasibility (with respective to x ∈ Rn) is guaranteed for any direction dk or step size tk so

that we have neglected to discuss feasibility at all. Finally, minimization of the value of objective function

is the only thing needed to consider.

On the other hand, in dealing with constrained optimization, if we can guarantee that each iteration

point of the algorithm employed satisfies the constraints, then this is no different from (UEO). In particular,

let us consider the general form as (EO) where feasible region is denoted by S. Note that in (CEO),

S = {x ∈ Rn : gi(x) = 0, i = 1, 2, . . . ,m and hj(x) ≤ 0, j = 1, 2, . . . , l}. Assume that there is an

algorithm that generates a sequence {xk} ⊂ S by using some updating formula:

xk+1 := UPDATE(xk, dk, tk).

Here, UPDATE is a map such that its output xk+1 ∈ S for any current point xk ∈ S, any direction

dk and step size tk > 0. In this case, as in unconstrained optimization, only the minimization of the

value of objective function needs to be considered, for which we must choose the appropriate direction

and step size. In this way, the formalistic constrained problem also becomes unconstrained one. In fact,

Riemannian optimization, the central subject of this thesis, realizes the above desires when the feasible

region S have a manifold structure.

1.1.2 Riemannian Optimization

Riemannian optimization is a specialized field of optimization focusing on minimizing a function defined

over Riemannian manifolds. It extends traditional optimization algorithms by taking the geometry

structure of the manifold into account. By definition, a manifold M is a set that locally resembles

a Euclidean space within a neighborhood of each point, but globally may exhibit different geometric

properties, usually non-Euclidean (e.g., sphere, hyperboloid). See Table 1.1 for a list of some manifolds

M. A typical Riemannian optimization is given as follows.

Problem 3 (Unconstrained Riemannian Optimization (URO)). Given a function f : M → R, we consider

min f(x)

s.t. x ∈ M.
(URO)
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f

R

M

x1

x2

x3

x∗

Fig. 1.1 Iteration of optimizing a real-valued function f defined on sphere manifold.

It is well known that Euclidean spaces are the most trivial Riemannian manifolds, and thus (URO) is

a generalized form of the problem (UEO). Naturally, the line search framework also applies to (URO),

see Fig. 1.1 and Algorithm 2, where several notations come from Riemannian geometry, such as tangent

spaces Txk
M and retraction (maps) Rxk

: Txk
M → M. Due to the lack of linearity, update formulas

on manifolds cannot generally be defined by addition. Therefore, we introduce the concept of retraction.

Riemannian geometry, as detailed in Chapter 2, provides the fundamental concepts and tools necessary to

develop and analyze optimization algorithms on Riemannian manifolds.

Algorithm 2: General Line Search Method for (URO)
Input: An objective function f defined on M, an initial point x0 ∈ M and a retraction R on M.

Output: Sequence {xk} ⊂ M.

Set k → 0;

while stopping criterion not satisfied do
1. Compute a search direction dk ∈ Txk

M;

2. Compute a step size tk > 0;

3. Compute the next point as xk+1 := Rxk
(tkdk);

4. k → k + 1;

end

Note that the line search method is an iterative framework based on local information of objective

function at current point (e.g., the first-order derivative — gradient, or second-order derivative — Hessian),

and in particular it utilizes this local information to choose the appropriate direction toward next better

point. On the other hand, for every point x on the manifold, there is a neighborhood that is homeomorphic

to an open subset of the Euclidean space, and so this neighborhood of x can be considered to have a

differential structure, thus we can exploit the local information of the objective function defined on the

manifold. This exactly fulfills the request for line search method.

The unconstrained Riemannian optimization has grown considerably in the last 20 years. In particular,

well-known methods in the Euclidean setting, such as steepest descent, conjugate gradient, (quasi-)Newton

and trust region, have been extended to the Riemannian setting [5, 101, 34, 165]. Riemannian optimization

has many advantages in comparison to Euclidean optimization, such as the ability to transform constrained
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problems into unconstrained ones (see Table 1.1), the use of the geometric structure of the feasible region,

and a convergence theory similar to that of Euclidean optimization.

1.1.3 History of Riemannian Optimization

The concept of Riemannian optimization can be traced back to the work of Luenberger in 1970s. [130, 131]

introduced the idea of performing line searches along geodesics (i.e., a generalized concept of straight

lines on manifolds) when geodesics are computationally feasible. [79] formally discussed minimizing

differentiable functions over differential manifolds, introducing the steepest descent, Newton method,

and quasi-Newton methods, all along geodesics, specifically on submanifolds of Rn. [94] explored the

optimization problem for dynamical systems on Riemannian manifolds. [72] developed the Newton and

conjugate gradient algorithms on the Grassmann and Stiefel manifolds. Importantly, the work of [94, 72]

strongly contributed to numerical practice of Riemannian optimization. In general, an approximation of

geodesic is sufficient to ensure the desired convergence properties and is less computationally expensive

than geodesic. In 2002, [6] defined the concept of retraction (i.e., Rxk
in Algorithm 2) to replace the

role of geodesic in line search. This had greatly facilitated the numerical performance of Riemannian

optimization in practical applications.

Since 2008, Riemannian optimization has been greatly developed, become practicable and convenient,

and gradually applied to various engineering fields. [5] summarized many retraction-based algorithms

on Riemannian manifolds and is the first modern monograph about Riemannian optimization. The

authors suggested that parallel transport in classical Riemannian geometry can be approximated by vector

transport without affecting the convergence properties. [2, 11] proposed the trust-region methods on Rie-

mannian manifolds. [153] extended the classical Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

on Riemannian manifolds, along with convergence results. [157] provided an alternative approach to

BFGS on Riemannian manifolds, which focused on infinite-dimensional manifolds. [105] proposed a

Riemannian BFGS method without differentiated retraction. [201] proposed an optimization algorithm

on Stiefel manifold based on the Cayley transform. [107] discussed a Broyden class of quasi-Newton

methods for Riemannian optimization. [168, 163, 220, 166] investigated the Riemannian conjugate

gradient method. [29, 215, 169] investigated the stochastic algorithm on Riemannian manifolds. [36]

discussed the global convergence rate of Riemannian optimization. [75, 14] explored the multi-objective

optimization algorithms on Riemannian manifolds. [51, 111] discussed the Riemannian proximal gradient

methods. Since Riemannian optimization relies on the chosen metric, [85, 84] proposed Riemannian

preconditioned techniques to accelerate algorithms. They enable the manifolds to be endowed with a

preconditioning metric.

It can be seen that the Riemannian optimization theory has become a very active research field in

recent years, which has had a significant impact on the design and research of modern optimization

algorithms.

1.1.4 Applications of Riemannian Optimization

Riemannian geometry is a generalization of Euclidean geometry. It includes very rich nonlinear spaces

such as hyperbolic spaces [44, 196, 195], the special Euclidean and orthogonal groups [176, 80], positive

definite matrices [21, 189], Grassmann manifolds of subspaces [72, 12, 34], and Stiefel manifolds of
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orthogonal matrices [72, 5], among others. Table 1.1 provides a glance of the some (not all) available

manifolds in the “Manopt” toolbox.

Riemannian optimization is widely used in various fields such as eigenvalue decomposition [38, 5];

singular value decomposition [167, 162]; low-rank matrix completion [35, 198, 138, 43, 83]; low-

rank tensor completion [123, 118, 186]; joint diagonalization [206, 3, 190, 171]; joint singular value

decomposition [168]; nonlinear or inverse eigenvalue problems [217, 212, 211]; p-harmonic flow [87];

quantum technologies [129]; learning taxonomy embeddings [144, 145]; neural networks [112, 113,

82, 46, 143, 152, 154]; shape analysis [185, 108]; density estimation [98, 93]; optimal transport [55,

8, 177, 139, 92]; cryo-electron microscopy (cryo-EM) [63]; control theory [170, 173, 172]; max-cut

problem [140, 101]; Bose–Einstein condensates [203]; phase retrieval problem [109, 110, 65]; multi-

antenna channel communications [218, 86]; compressed modes (CMs) problem [151]; dictionary learning

[54, 187]; Gaussian mixture models [97]; elliptical distributions in statistics [184, 216].

For a survey of Riemannian optimization, see [101]. Below are brief summaries of some latest

monographs and software libraries of Riemannian Optimization for the reader’s convenience.

Monographs of Riemannian Optimization
• An Introduction to Optimization on Smooth Manifolds [34]

• Riemannian Optimization and Its Applications [165]

• Optimization Algorithms on Matrix Manifolds [5]

• Convex Functions and Optimization Methods on Riemannian Manifolds [194]

• Multivariate Data Analysis on Matrix Manifolds [192]

• Population-Based Optimization on Riemannian Manifolds [78]

Libraries of General-purpose Riemannian Optimization Toolboxes These libraries are used to

implement Riemannian optimization algorithms as general solvers:

• Manopt [37] in Matlab (the most comprehensive toolbox)

https://www.manopt.org/

• Pymanopt [191] in Python

https://pymanopt.org/

• ROPTLIB [106] in C++

https://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html

• ManifoldOptim [133] in R (a R wrapper of ROPTLIB)

https://cran.r-project.org/web/packages/ManifoldOptim/index.html

• Manopt.jl [16] in Julia

https://manoptjl.org/

Libraries of Riemannian Packages for Various Goals These libraries are used to implement various

specific tasks based on Riemannian optimization:

• Geoopt [120] is a Python library bringing Riemannian optimization tools to PyTorch.

https://geoopt.readthedocs.io/en/latest/index.html

• McTorch [135] is also a Python library bringing Riemannian optimization tools to PyTorch.

https://github.com/mctorch/mctorch

https://www.manopt.org/
https://pymanopt.org/
https://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html
https://cran.r-project.org/web/packages/ManifoldOptim/index.html
https://manoptjl.org/
https://geoopt.readthedocs.io/en/latest/index.html
https://github.com/mctorch/mctorch
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Table 1.1 Collection of some available manifolds in Manopt.

Name of Manifold Mathematical Formulation

(Complex) Euclidean Space Rm×n,Cm×n

Symmetric Matrices
{
X ∈ Rn×n : X = XT

}
Skew-Symmetric Matrices

{
X ∈ Rn×n : X +XT = 0

}
Centered Matrices {X ∈ Rm×n : X1n = 0m}

Sphere {X ∈ Rm×n : ∥X∥F = 1}

Symmetric Sphere
{
X ∈ Rn×n : ∥X∥F = 1, X = XT

}
Complex Sphere {X ∈ Cm×n : ∥X∥F = 1}

Oblique Manifold
{
X ∈ Rm×n : ∥X:,1∥F = · · · = ∥X:,n∥F = 1

}
Complex Oblique Manifold

{
X ∈ Cm×n : ∥X:,1∥F = · · · = ∥X:,n∥F = 1

}
Complex Circle {z ∈ Cn : |z1| = · · · = |zn| = 1}

Phase of Real DFT
{
z ∈ Cn : |zk| = 1, z1+ mod (k,n) = z̄1+ mod (n−k,n),∀k

}
Stiefel Manifold

{
X ∈ Rn×p : XTX = I

}
Complex Stiefel Manifold {X ∈ Cn×p : X∗X = I}

Generalized Stiefel Manifold
{
X ∈ Rn×p : XTBX = I

}
for some B ≻ 0

Grassmann Manifold
{
span(X) : X ∈ Rn×p, XTX = I

}
Complex Grassmann Manifold {span(X) : X ∈ Cn×p, X∗X = I}

Generalized Grassmann Manifold
{
span(X) : X ∈ Rn×p, XTBX = I

}
for some B ≻ 0

Rotation Group
{
R ∈ Rn×n : RTR = I, det(R) = 1

}
Special Euclidean Group

{
(R, t) ∈ Rn×n × Rn : RTR = I, det(R) = 1

}
Unitary Matrices {U ∈ Cn×n : U∗U = In}

Hyperbolic manifold
{
x ∈ Rn+1 : x20 = x21 + · · ·+ x2n + 1

}
with Minkowski metric

Fixed-Rank Manifold {X ∈ Rm×n : rank(X) = k}

Fixed-Rank Tensor, Tucker Tensors of fixed multilinear rank in Tucker format

Strictly Positive Matrices {X ∈ Rm×n : Xij > 0,∀i, j}

Symmetric Positive Definite Matrices
{
X ∈ Rn×n : X = XT , X ≻ 0

}
-
{
X ∈ Rn×n : X = XT ≽ 0, rank(X) = k

}
-
{
X ∈ Rn×n : X = XT ≽ 0, rank(X) = k, diag(X) = 1

}
-
{
X ∈ Rn×n : X = XT ≽ 0, rank(X) = k, trace(X) = 1

}
Multinomial manifold {X ∈ Rm×n : Xij > 0,∀i, j and X1n = 1m}

- {X ∈ Rn×n : Xij > 0,∀i, j and X1n = 1n, X
T1n = 1n

}
- {X ∈ Rn×n : Xij > 0,∀i, j and X1n = 1n, X = XT

}
Positive Definite Simplex {(X1, 2, . . . , xk) ∈ Rn×n : Xi ≻ 0,∀i and X1 + · · ·+ xk = In}

Complex Positive Definite Simplex {(X1, 2, . . . , xk) ∈ Cn×n : Xi ≻ 0,∀i and X1 + · · ·+ xk = In}

Sparse Matrices of Fixed Sparsity Pattern {X ∈ Rm×n : Xij = 0 ⇔ Aij = 0}

Constant Manifold (singleton) {A}
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• TensorFlow RiemOpt [180] is a library for Riemannian optimization in TensorFlow.

https://github.com/master/tensorflow-riemopt

• Rieoptax [197] is a library for Riemannian Optimization in JAX.

https://github.com/SaitejaUtpala/rieoptax

• CDOpt [204] is a Python toolbox for optimization on Riemannian manifolds with support for deep

learning.

https://cdopt.github.io/md_files/intro.html

• QGOpt [129] is an extension of TensorFlow optimizers on Riemannian manifolds that often arise in

quantum mechanics.

https://qgopt.readthedocs.io/en/latest/#

• Geomstats [137] is a Python package for computations and statistics on manifolds.

https://geomstats.github.io/

1.2 Nonsmooth Riemannian Optimization

1.2.1 Introduction to Nonsmooth Riemannian Optimization

Nonsmooth Riemannian Optimization (NRO) involves minimizing a nonsmooth objective function

defined on the Riemannian manifold. The optimization techniques in previous section mainly deal with

smooth objective functions, and therefore new methods need to be developed to effectively deal with the

nonsmooth case.

Problem 4 (Nonsmooth Riemannian Optimization (NRO)). Given a nonsmooth function f : M → R, we

consider
min f(x)

s.t. x ∈ M
(NRO)

There have been some derivative-free optimization techniques specifically for manifolds. The direct

search method is a function minimization algorithm that uses only evaluations of the function f(x) itself.

[66] extended three popular direct search methods, namely, the Nelder-Mead simplex algorithm, the Mesh-

Adapted Direct Search (MADS) algorithm, and frame-based methods, to Riemannian manifolds. In [47],

Powell’s derivative-free optimization method is extended to Oblique manifolds to recover quasi-correlated

sources by minimizing the contrast function. [30] proposed to adapt the particle swarm optimization

algorithm on Grassmann manifolds to find the best low multilinear rank approximation for a given tensor.

One type of problems (NRO) we are interested in has a locally Lipschitz objective function, and thus

almost everywhere differentiable. A larger number of algorithms have been developed with this locally

Lipschitz assumption. [91] presented an ε-subgradient algorithm on Riemannian manifolds. [90] proposed

the nonsmooth trust region algorithms on manifolds. [100, 42] generalized a gradient sampling algorithm

to the Riemannian setting. [99] generalized the Wolfe conditions for nonsmooth functions on manifolds

and extended the nonsmooth BFGS algorithm. [13, 75] investigated the iteration complexity of many

Riemannian subgradient algorithms. [124] presented a splitting method for orthogonality constrained

problems. [122] proposed the Manifold Alternating Directions Method of Multipliers (MADMM), an

extension of the classical ADMM scheme for manifold-constrained nonsmooth optimization problems.

https://github.com/master/tensorflow-riemopt
https://github.com/SaitejaUtpala/rieoptax
https://cdopt.github.io/md_files/intro.html
https://qgopt.readthedocs.io/en/latest/#
https://geomstats.github.io/
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[51] proposed a Manifold Proximal Gradient (ManPG) method. [200] proposed a accelerated version of

the proximal alternating maximization method.

1.2.2 Applications of Nonsmooth Riemannian Optimization

[4] collected many important applications of (NRO). (NRO) may be required for any application that

already is modeled using (smooth) Riemannian optimization. For example, we may add some nonsmooth

regularization terms to the objective function, or add additional non-manifold constraints as exact penalty

terms to the objective function as well (see (1.2) in next section).

We next provide two concrete application problems below, which will appear in the numerical

experiments in the latter Chapter 3 to test the efficiency of our proposal — Riemannian Smoothing Method

(RSM).

Finding the Sparsest Vector (FSV)

This problem is to find the sparsest vector in an n-dimensional linear subspace W ⊂ Rm; it has

applications in robust subspace recovery, dictionary learning, and many other problems in machine

learning and signal processing [155, 156]. Let Q ∈ Rm×n denote a matrix whose columns form an

orthonormal basis of W : this problem can be formulated as

min
x∈Spn−1

∥Qx∥0,

where Spn−1 := {x ∈ Rn : ∥x∥2 = 1} is the sphere manifold, and ∥z∥0 counts the number of nonzero

components of vector z. Because this discontinuous objective function is unwieldy, in the literature, one

instead focuses on solving the ℓ1 norm relaxation given below:

min
x∈Spn−1

∥Qx∥1, (FSV)

where ∥z∥1 :=
∑

i |zi| is the ℓ1 norm of the vector z.

Robust Low-Rank Matrix Completion

Low-rank matrix completion [198, 138] consists of recovering a rank r matrix M of size m × n from

only a fraction of its entries with r ≪ min{m,n}. The situation in robust low-rank matrix completion

[43] is one where only a few observed entries, called outliers, are perturbed, i.e., M =M0 + S, where

M0 is the unperturbed original data matrix of rank r and S is a sparse matrix. This is a case of adding

non-Gaussian noise for which the traditional ℓ2 minimization model,

min
X∈Fr(m,n,r)

∥PΩ(X −M)∥22

is not well suited to recovery of M0. Here, Fr(m,n, r) := {X ∈ Rm×n : rank(X) = r} is the fixed rank

manifold, Ω denotes the set of indices of observed entries, and PΩ : Rm×n → Rm×n is the orthogonal

projector onto Ω, defined as Z 7→ PΩ(Z) with PΩ(Z)ij = Zij if (i, j) ∈ Ω and 0 otherwise. In [43], the
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Fig. 1.2 Illustration of nonnegative constrains on sphere manifold.

authors try to solve

min
X∈Fr(m,n,r)

∥PΩ(X −M)∥1 , (RMC)

because the sparsity-inducing property of the ℓ1 norm leads one to expect exact recovery when the noise

consists of just a few outliers.

1.3 Constrained Riemannian Optimization

1.3.1 Introduction to Constrained Riemannian Optimization

In most cases, the term “Riemannian optimization” refers to (URO) — Unconstrained Riemannian

Optimization, which has become more and more developed and sophisticated over the last two decades.

However, some limitations of this model have emerged in practical applications.

One of which is that (URO) requires the entire feasible region to form exactly one manifold. Un-

fortunately, in many practical cases, only a fraction of the constraints can form a manifold, leaving us

with additional constraints that must be addressed. For example, see Fig. 1.2. Furthermore, even if we

manage to create a new manifold with these additional constraints (meaning not among the Table 1.1,

so there is no off-the-shelf software package), finding the necessary geometric tools (e.g., tangent space,

retraction, vector transport) is a challenging task, as it requires a strong knowledge of the differential

geometry, which can discourage most users.

To address these challenges, we consider replacing the (URO) with a model called the Constrained

Riemannian Optimization (CRO), which extends the (URO) by adding equality and inequality constrained

conditions defined on the manifold itself. Just as it is natural for us to consider constraints underlying

Euclidean spaces, we can also recognize those constraints on manifolds. After all, Euclidean space is a

trivial manifold.
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Problem 5 (Constrained Riemannian Optimization (CRO)). Given a function f : M → R, we consider

min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , l,

x ∈ M,

(CRO)

where gi : M → R and hj : M → R are functions over manifold M.

Research on the constrained Riemannian optimization is still in its infancy. The earliest studies go

back to the Riemannian optimality conditions of (CRO). [209] extended the Karush Kuhn Tucker (KKT)

conditions and the second-order necessary and sufficient conditions to (CRO). [17] considered more

Constraint Qualifications (CQs) on manifolds. [207] proposed sequential optimality conditions, also

called approximate KKT conditions, in the Riemannian case.

In 2020, [128] were the first to develop practical algorithms for (CRO). They proposed the Riemannian

version of augmented Lagrangian method and exact penalty method. Riemannian Augmented Lagrangian

Method (RALM) [128] relies on the augmented Lagrangian function:

Lρ(x, λ, γ) := f(x) +
ρ

2

∑
j

(
hj(x) +

γj
ρ

)2

+
∑
i

max

{
0,
λi
ρ

+ gi(x)

}2
 , (1.1)

where x ∈ M, ρ > 0 is a penalty parameter and γ ∈ Rl, λ ∈ Rm, λ ≥ 0 are Lagrangian multipliers.

RALM alternates between updating x and updating (λ, γ, ρ). To update x, any algorithm for (URO) may

be adopted to minimize (1.1) with (λ, γ) fixed, namely, compute new iterate xk+1 as an approximate

solution to minx∈M Lρk (x, λk, γk). At this new xk+1, λk+1, γk+1 and ρk+1 will be updated; then the

process is repeated. Soon after, [207] improved RALM in order to obtain an optimal solution without

satisfying CQs. Riemannian Exact Penalty Method (REPM) [128] tries to solve following subproblem at

each iteration:

min
x∈M

f(x) + ρ

∑
i

max {0, gi(x)}+
∑
j

|hj(x)|

 (1.2)

However, the above objective function is nonsmooth, then they use smoothing techniques to convert it

to a smooth objective function, and again, any algorithm for (URO) can be adopted. They essentially

use the Riemannian smoothing method as proposed in Chapter 3 of this thesis. [174, 148] proposed the

Riemannian Sequential Quadratic Programming (RSQP) method. RSQP attempts to solve following

quadratic programming on tangent space at each iteration xk:

min∆xk∈Txk
M

1
2 ⟨Bk [∆xk] ,∆xk⟩+ ⟨grad f(xk),∆xk⟩

s.t. gi (xk) + ⟨grad gi (xk) ,∆xk⟩ ≤ 0, i = 1, 2, . . . ,m,

hj (xk) + ⟨gradhj (xk) ,∆xk⟩ = 0, j = 1, 2, . . . , l.

(1.3)

The mathematical notations above can be referred to in the next chapter on Riemannian geometry. Here,

Bk : Txk
M → Txk

M is a modified Hessian of the Lagrangian function and is a symmetric positive

definite linear operator. [148] first convert (1.3) into Euclidean form and then solve. [103] proposed a
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heuristic algorithm for the submanifold with nonnegative constraints by imitating the techniques from

Riemannian optimization.

We should emphasize that (CRO) retains the advantages of (URO) and successfully solves the

previously mentioned issues, i.e., (CRO) only requires some of the constraints to be manifolds, not all.

Moreover, the algorithm design for (CRO) can still use the existing manifold toolbox. For example, the

RALM and REPM algorithms introduced previously are based on Manopt’s various solvers (actually they

are wrappers of Manopt) and do not require any new geometric tools to be developed on M.

1.3.2 Applications of Constrained Riemannian Optimization

Constrained Riemannian optimization feature naturally in applications such as orthogonal nonnegative

matrix factorization [125, 210]; subproblem of k-indicators model for data clustering [49, 116]; minimum

balanced cut for graph bisection [128]; nonnegative principal component analysis [141]; k-means via low-

rank SDP [45]. (CRO) may be required for any application that already is modeled using unconstrained

Riemannian optimization. Because it is common to add some new constraints to an existing (URO) model,

such as non-negative constraints.

We next provide two concrete application problems below, which will appear in the numerical

experiments in the latter Chapter 6 to test the efficiency of our proposal — Riemannian Interior Point

Methods (RIPM).

Nonnegative Low-Rank Matrix (NLRM) Approximation

Recently, [182] proposed the NLRM approximation method, which is different from the classical Non-

negative Matrix Factorization (NMF) method, i.e., minB,C≥0 ∥A − BC∥2F for B ∈ Rm×r, C ∈ Rr×n.

Mathematically, NLRM aims to solve

min
X∈Fr(m,n,r)

∥A−X∥2F s.t. X ≥ 0. (NLRM)

Clearly, NLRM can obtain a better nonnegative low-rank matrix approximation than that of NMF.

Projection onto Nonnegative Stiefel Manifold

Given C ∈ Rn×k, we compute its projection onto the nonnegative part of the Stiefel manifold. The

Stiefel manifold, denoted as St(n, k), is the set of n× k matrices X with orthonormal columns. That is,

XTX = Ik where Ik is the k× k identity matrix. Consider the distance measured by the Frobenius norm,

we have ∥C −X∥2F = trace((C −X)T (C −X)). To minimize this distance, we expand:

∥C −X∥2F = trace(CTC)− 2 trace(XTC) + trace(XTX).

Since X lies on the Stiefel manifold, trace(XTX) = trace(Ik) = k. The term trace(CTC) is constant

with respect to X . Therefore, our problem can be equivalently formulated as

min
X∈St(n,k)

−2 trace(XTC) s.t. X ≥ 0, (Model_St)
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Unconstrained Euclidean Optimization
(UEO)

Constrained Euclidean Optimization
(CEO)

Add constraints

Unconstrained Riemannian Optimization
(URO)

Generalize
If the entire feasible region

forms a manifold

Constrained Riemannian Optimization
(CRO)

Generalize
If only a portion of  feasible

region forms a manifold

Add constraints

Nonsmooth Riemannian Optimization
(NRO)

For nonsmooth cost funciton

We propose
Riemannian Smoothing Method (RSM)

in Chapters 3-4.

We propose
Riemannian Interior Point Methods (RIPM)

in Chapters 5-7.

Fig. 1.3 Relationship of several types of Euclidean optimization and Riemannian optimization introduced
in this chapter.

which has a linear objective function. In [116], it is shown that (Model_St) can be reformulated into

min
X∈Ob(n,k)

−2 trace(XTC) s.t. X ≥ 0, and ∥XV ∥F = 1, (Model_Ob)

where the positive integer p and matrix V ∈ Rk×p can be arbitrary as long as ∥V ∥F = 1 and V V T is

entrywise positive. In particular, the feasible region of (Model_St) and (Model_Ob) are identical.

1.4 Summary and Thesis Structure

Fig. 1.3 displays the relationship between all the various types of Euclidean optimization (UEO, CEO)

and Riemannian optimization (URO, NRO, CRO) mentioned in the previous three sections. There is a

close relationship between them. As shown in Fig. 1.3, the main contribution of this thesis is to propose
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Chapter 2
Review of Riemannian Geometry

Chapter 3
Riemannian Smoothing Method

(RSM)

Chapter 4
Application of RSM:

Completely Positive Factorization Problem

Chapter 6
Global Convergent Algorithm of RIPM

Chapter 8
Conclusions and Future Research

Chapter 7
Several Theoretical Results

for Quasi-Newton RIPM

Chapter 5
Riemannian Interior Point Methods

(RIPM)

Fig. 1.4 The rest of the thesis begins with a review of Riemannian geometry providing the various tools
for optimization, followed by two proposed algorithms that are independent of each other: the RSM and
the RIPM. It ends with conclusions and future work.
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novel algorithms for two of these types of Riemannian optimization. Fig. 1.4 summarizes the structure

and reading order of the rest of this thesis. The content of this thesis is divided into three main Parts,

whose corresponding chapters and outlines are shown below:

Part I: Preliminary
• Chapter 1 (this chapter) provides an overview of several different types of Riemannian optimization

problems and gives the structure of this thesis.

• Chapter 2 introduces tools and useful conclusions in Riemannian geometry that we will use later.

Readers familiar with Riemannian geometry can skip this chapter.

Part II: Proposal I - Riemannian Smoothing Method (RSM)
• Chapter 3 presents the general framework of the Riemannian smoothing method for nonsmooth Rie-

mannian optimization.

• Chapter 4 deals with the application of Riemannian smoothing method to the problem of completely

positive matrix factorization, an open problem in conic optimization theory.

Part III: Proposal II - Riemannian Interior Point Methods (RIPM)
• Chapter 5 presents the Riemannian interior point method for constrained Riemannian optimization.

We will discuss the details of all theoretical generalizations and a prototype algorithm and its local

convergence.

• Chapter 6 gives a globally convergent Riemannian interior point algorithm and proves its global

convergence. In addition, numerical experiments verify its effectiveness.

• Chapter 7 explores the Riemannian interior point method using the quasi-Newton method.

• Chapter 8 gives conclusions and future work of this thesis.
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Chapter 2

Review of Riemannian Geometry

Part Section

Part 1. Basic tools

2.1 Linear Algebra
2.2 Smooth Manifold
2.3 Tangent Vectors
2.4 Derivatives of Maps
2.5 Embedded Submanifold
2.6 Vector Fields
2.7 Retractions
2.8 Riemannian Manifolds
2.9 Connections, Covariant Derivatives and Hessians
2.10 Induced Covariant Derivative and Geodesics
2.11 Exponential Map
2.12 Metric Space

Part 2. Advanced tools

2.13 Parallel Transport
2.14 Vector Transports
2.15 Totally Retractive Neighborhood
2.16 Lipschitz Continuity with Respect to a Vector Transport

Part 3. Auxiliary results

2.17 Local Errors of Retractions and Vector Transports
2.18 Fundamental Theorem of Calculus in Riemannian Case
2.19 Some Lemmas on Newton method
2.20 Geometry Tools of Product Manifold N
2.21 Note and References

This chapter introduces the basic tools of Riemannian geometry, as well as useful results that are

indispensable to our subsequent chapters. For those readers already familiar with Riemannian geometry,

please continue to the next chapter. Table 2.1 in next page illustrates a quick comparison of the various

concepts/tools of Riemannian manifolds and familiar Euclidean space (typical, Rn). The reader may check

this table from time to time while reading this chapter. Keep in mind that manifolds are generalizations of

Euclidean space.
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2.1 Linear Algebra

Let E and E ′ be two finite-dimensional normed vector spaces, equipped with norms induced by inner

products ⟨·, ·⟩E and ⟨·, ·⟩E ′ , respectively. Let A : E → E ′ be a linear operator. The adjoint of A, denoted

as A∗, is another linear operator defined from E ′ to E , and it is characterized by the following property

that for all vectors v ∈ E and u ∈ E ′:

⟨A(v), u⟩E ′ = ⟨v,A∗(u)⟩E .

The operator norm of A, denoted as ∥A∥, is the supremum of the norm of A(v) for all (at most) unit

vectors v ∈ E , where the norm of A(v) is taken in the vector space E ′:

∥A∥ := sup {∥A(v)∥E ′ | v ∈ E , ∥v∥E = 1} = sup {∥A(v)∥E ′ | v ∈ E , ∥v∥E ≤ 1} . (2.1)

For writing convenience, when the operator A acts on a vector v, and its result may be denoted as Av,

omitting the parentheses. Moreover, a linear operator A : E → E is called self-adjoint or symmetric if

A = A∗. In most cases throughout this thesis, the symbol E and E ′ typically denote some tangent spaces

(a kind of vector space, see Section 2.3 later). Specifically, our analysis of operators on tangent spaces

often draws on our understanding of linear algebra.

Finally, let us focus on orthogonal projector, which is very useful in exploring the geometry tools

of submanifold of Euclidean space later on. Let E be a finite-dimensional vector space equipped with

inner product ⟨·, ·⟩. If F is a subspace of E , then the orthogonal complement of F (with respect to ⟨·, ·⟩),
defined by

F⊥ := {v ∈ E : ⟨v, u⟩ = 0 for all u ∈ F}

is also a subspace of E [9, 6.46 (a)]. Moreover, F and F⊥ become a direct sum decomposition of E , i.e.,

each v ∈ E can be uniquely written in the form v = u + w with u ∈ F and w ∈ F⊥ [9, 6.47]. In this

case, we define the orthogonal projection of E onto F (with respect to ⟨·, ·⟩) as the linear operator

ProjF : E → F ⊂ E : v 7→ ProjF (v) := u.

Indeed, ProjF is self-adjoint, i.e., ∀u, v ∈ E , ⟨u,ProjF (v)⟩ = ⟨ProjF (u), v⟩ . Refer to [9, 7.32 (a)] or

[34, Proposition 3.55] for proofs.

2.2 Smooth Manifold

We begin with a set M equipped with a topological structure. To minimize an objective function f that

is defined on M, understanding how its derivatives behave becomes crucial. This understanding serves

as the foundation for developing various optimization techniques, such as the steepest descent method

and Newton method. When we extend our consideration beyond the Euclidean space (topological space

M might not be a subset of the Euclidean space) to include broader spaces, defining the derivative of

f directly becomes challenging due to the inherent abstraction of M. This leads us to the definition of

“manifolds” — a concept that bridges the gap between abstract spaces and differentiable structures. In this



22 Chapter 2. Review of Riemannian Geometry

section, we will briefly introduce various manifolds step by step. For a more comprehensive insight into

manifolds, see [127].

2.2.1 Topological Manifold

By enhancing the structure of a given topological space M, our goal is to establish a notion of differentia-

bility of functions defined on M. We initiate this process by considering topological manifolds and then

proceed to differentiable manifolds in next subsection.

Definition 1 (Topological Manifold). A topological space M is called an n-dimensional topological

manifold if it is a second-countable Hausdorff space; and, for any point p in M, there exists an open set

U in M containing p and a homeomorphism φ : U → V from U to an open set V in Rn. We denote the

dimension of M as dimM = n.

In Definition 1, the pair (U , φ) is called a chart around p. Consequently, p can be represented using an

n-tuple of real numbers φ(p) ∈ Rn through the function φ. If xi : U → R is used to map a point p ∈ U
to the i-th component of φ(p), the chart (U , φ) can be alternatively denoted as (U ;x1, x2, . . . , xn), with

the notation φ ≡ (x1, x2, . . . , xn).

According to Definition 1, for an n-dimensional topological manifold M, there exists a set of indices

denoted as Λ, along with a collection of charts {(Uλ, φλ)}λ∈Λ such that M =
⋃

λ∈Λ Uλ. This collection

of charts, {(Uλ, φλ)}λ∈Λ, is called an atlas of M.

2.2.2 Differentiable Manifold

For any point p in M and a chart (U , φ) around p, we have that U is homeomorphic to an open set φ(U)
contained in Rn. Then, one could attempt to establish the differentiability of f : M → R at p in U by

considering the differentiability of

f ◦ φ−1 : φ(U) ⊂ Rn → R

at φ(p). However, it is worth recognizing that more than one chart around p might be available, and the

concept of differentiability for f at p should remain consistent irrespective of the chosen chart around p.

This leads to the following definition.

Definition 2 (Cr (Differentiable) Manifold). Let r be a natural number or ∞. A topological space M is

a Cr (differentiable) manifold if it satisfies the following conditions: M is a topological manifold with an

atlas {(Uλ, φλ)}λ∈Λ; and, for any α, β ∈ Λ where Uα ∩ Uβ ̸= ∅, the coordinate transformation

φβ ◦ φ−1
α : φα (Uα ∩ Uβ) ⊂ Rn → φβ (Uα ∩ Uβ) ⊂ Rn (2.2)

is of class Cr in the usual Euclidean sense. This atlas is then referred to as a Cr atlas.

In fact, if f ◦ φ−1
β belongs to the class Cs for a certain integer s ≤ r at φβ(p), then f◦ φ−1

α =

(f ◦ φ−1
β ) ◦

(
φβ ◦ φ−1

α

)
is also of class Cs at φα(p), in accordance with the results established in the

Euclidean space. Thus, the following definition is well-defined.
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Definition 3 (Smoothness of f : M → R). Let M be a Cr manifold and s be an integer with s ≤ r. A

function f : M → R is said to be of class Cs on M if, for every point p ∈ M, there exists a chart (U , φ)
and f ◦ φ−1 is of class Cs at the point φ(p).

Remark 1. Note that differentiability refers to whether a function is s times (continuously) differentiable at

a point or over a set. Differentiability itself is not a s-th-order derivative. For example, the differentiability

of f at p (i.e., the differentiability of f ◦ φ−1 at φ(p)) does not depend on the chart choice, but its

(first-order) derivative
∂
(
f ◦ φ−1

)
∂xi

(φ(p)), i = 1, . . . , n (2.3)

depend on the chart choice.

The Definition 2 arises from the discussion about the necessity for the differentiability of the function

f : M → R to be consistently defined, irrespective of the selected chart. Actually, the smoothness of

coordinate transformation φβ ◦φ−1
α in (2.2) is also important to define the differentiability of F : M → N

between any two manifolds M and N , as we will see later on (see Definition 5 later).

Example 1. Equipped with the atlas A := {(Rn, id)} consisting of a single chart, the Euclidean space

Rn is an n-dimensional C∞ manifold.

2.2.3 Smooth Structure

Let us explore the concept of atlases in more detail. A Cr manifold M can admit several Cr atlases.

Suppose that M has two atlases: A = {(Uα, φα)}α∈A and B = {(Vβ, ψβ)}β∈B . If for any α ∈ A and

β ∈ B where Uα∩Vβ ̸= ∅, both ψβ ◦φ−1
α and φα ◦ψ−1

β are of class Cr, we say that atlas B is equivalent

to atlas A. It is obvious that in this case A ∪B is another valid Cr atlas for M. On the other hand, if

f : M → R is of Cs class for some s ≤ r (see Definition 3) with respect to atlas A, it also is of Cs with

respect to atlas B. Hence, there is no need to specify one of them, and we consider the largest atlas that

contains all of them.

Definition 4 (Maximal Atlas, Smooth Structure). Consider a Cr manifold M equipped with an atlas

A. The union of all atlases that are equivalent to A is termed as the maximal atlas or differential/smooth

structure of M generated by A. We assume the presence of a maximal atlas unless we endow a manifold

with a specific atlas.

Remark 2. In general, manifold M may admit two distinct atlases that are not equivalent, so that their

corresponding maximal atlases are also distinct. These atlases then lead to different smooth structures on

M. See example in [34, Exercise 8.14], where a function can qualify as smooth under one atlas but fail to

be smooth under another atlas.

2.2.4 Differentiability

In a similar manner as Definition 3, we can define the differentiability for a general map between the

manifolds M and N .
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Definition 5 (Smoothness of F : M → N ). Consider M and N as m-dimensional and n-dimensional

Cr manifolds, respectively. Let s be an integer with s ≤ r. A function F : M → N is said to belong to

class Cs on M if for any point p ∈ M, there exist Cr charts (U , φ) and (V, ψ) for M and N containing

points p and f(p), respectively, such that f(U) ⊂ V , and the composition

f̃ = ψ ◦ f ◦ φ−1 : φ(U) ⊂ Rm → ψ(V) ⊂ Rn

is of class Cs at the point φ(p) in the usual Euclidean sense.

As a special case of the above definition, we focus on curves on a manifold. Curves serve as essential

tools for defining the concept of tangent vectors.

Definition 6 (Curve on Manifold). Given an interval I ⊂ R and a Cr manifold M, a map γ : I → M is

called a Cs curve, if it is of class Cs in the sense of Definition 5.

In the following, we adopt r = s = ∞, indicating that we primarily consider C∞ manifolds, i.e.,

smooth manifolds and C∞ (or smooth) functions and curves, unless we specify otherwise explicitly.

2.3 Tangent Vectors

At each point on a smooth manifold, we introduce a vector space known as a tangent space. This concept

draws an analogy to the idea of a tangent plane at each point on a smooth surface.

Let us start by looking at a smooth curve γ : I → Rn in Euclidean space, where I is an open interval

of R containing 0. The curve goes through a point p ∈ Rn such that γ(0) = p. We can describe the curve

as γ(t) =: (x1(t), x2(t), . . . , xn(t))
T =

∑n
i=1 xi(t)ei, where ei is the i-th standard basis vector in Rn

and xi(0) = pi. Since γ(t)− γ(0) ∈ Rn for this curve, we can define the derivative of curve γ at 0 as

γ′(0) :=
d

dt
γ(t)

∣∣∣∣
t=0

= lim
t→0

γ(t)− γ(0)

t
=

n∑
i=1

dxi
dt

(0)ei, (2.4)

which is regarded as a tangent vector of the curve γ at t = 0. In physics, it is the velocity vector of a

particle moving along the curve γ at time t = 0.

Next, let us consider a smooth curve γ : I → M on an n-dimensional manifold M. We want

to extend the concept of a tangent vector to a curve on the manifold. For the points on manifold,

however, the notion of linear structure, like γ(t) − γ(0), is generally not well-defined. A natural idea

would be this: given a chart (U , φ) around γ(0) =: p ∈ M, one could represent the curve γ near p

by φ(γ(t)) =: (x1(t), x2(t), . . . , xn(t))
T =: x(t) ∈ Rn and compute (φ ◦ γ)′(0) = x′(0) as in the

Euclidean case (2.4). We then obtain

d(φ(γ(t)))

dt

∣∣∣∣
t=0

=


dx1
dt (0)

...
dxn
dt (0)

 ∈ Rn. (2.5)

However, the tangent vector in (2.5) is dependent on a specific chart. We need to define tangent

vectors in a way that is independent of the choice of chart. Therefore, we formally define the tangent
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vector as a differential operator of a real-valued function on the manfiold. Let Fp(M) denote the set of all

smooth real-valued functions defined on a neighborhood of p ∈ M.

Definition 7 (Tangent Vectors). Given an n-dimensional manifold M, a map ξ : Fp(M) → R is called

as a tangent vector at a point p on M, if there exists a smooth curve γ : I → M such that γ(0) = p and

the following holds:

ξf =
d

dt
f(γ(t))

∣∣∣∣
t=0

for any f ∈ Fp(M). (2.6)

Such a curve γ is said to realize the tangent vector ξ, we also write ξ ≡ γ̇(0).

We explain Definition 7 in more details. Let f be a smooth real-valued function defined on a

neighborhood of p ∈ M and γ : I → M be a smooth curve such that γ(0) = p. We examine the

composition f ◦ γ : I → R. Importantly, the derivative of f ◦ γ at t = 0 is a usual derivative that is

irrelevant to the chart. However, we can expand the formulation of derivative utilizing a specific chart φ

as follows:

d

dt
f(γ(t))

∣∣∣∣
t=0

=
d

dt
(f ◦ φ−1)(φ(γ(t)))

∣∣∣∣
t=0

=
n∑

i=1

{
dxi
dt

(0)
∂
(
f ◦ φ−1

)
∂xi

(φ(p))

}
. (2.7)

Note that dxi
dt (0) above is what we discussed in (2.5) and

∂(f◦φ−1)
∂xi

(φ(p)) is also discussed in (2.3). Both

of them rely on the charts φ. Let ∂
∂xi

∣∣∣
p
f :=

∂(f◦φ−1)
∂xi

(φ(p)). The we have

d

dt
f(γ(t))

∣∣∣∣
t=0

=

n∑
i=1

dxi
dt

(0)
∂

∂xi

∣∣∣∣
p

f, (2.8)

where we can interpret ∂
∂xi

∣∣∣
p

as a map from Fp(M) to R. In conclusion, using different charts yields

different expansions as (2.8). However, the result of the summation in right hand of (2.8) is guaranteed to

be the same since the left hand of (2.8) is irrelevant to the charts. As the function f is chosen arbitrarily,

the quantity d
dtf(γ(t))

∣∣
t=0

captures the nature of a tangent vector along γ.

Remark 3. Given any smooth curve γ on M with γ(0) = p, naturally, it yields a tangent vector, because

we could simply define it according to (2.6). So it is often straightforward to write γ̇(0) to represent the

tangent vectors.

Proposition 1 (Tangent Space). It can be shown that the set of all tangent vectors at point p can form

an n-dimensional real vector space, referred to as the tangent space of M at p, denoted by TpM. To be

specific, TpM admits a linear structure defined by (aγ̇1(0) + bγ̇2(0)) f := a (γ̇1(0)f) + b (γ̇2(0)f) for

any γ̇1(0), γ̇2(0) ∈ TpM and a, b ∈ R. See [5, Page 34-35] for details.

Given a tangent vector ξ to p ∈ M, there are infinitely many curves γ that can realize ξ. They can be

characterized as follows [5, Proposition 3.5.2]:

γ̇1(0) = γ̇2(0), if and only if,
d (φ (γ1(t)))

dt

∣∣∣∣
t=0

=
d (φ (γ2(t)))

dt

∣∣∣∣
t=0

for some chart φ around p. Indeed, Boumal [34] defines tangent vectors as the the equivalence classes

of curves using above property. That is, for any c1, c2 ∈ Cp := {c : c : I → M is smooth curves and
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c(0) = p}, we define c1 ∼ c2 if (φ ◦ c1)′ (0) = (φ ◦ c2)′ (0). Also, it can be shown that this equivalence

relation is independent of the chart φ. Then, Boumal [34] defines tangent space as TpM := Cp/ ∼=

{[c] : c ∈ Cp}.

Example 2 (Canonical Identification). Let us consider the case where M = Rn and recall the definitions

of γ′(0) in (2.4). Utilizing Definition 7 and the chain rule in Euclidean case, we deduce that

ξf = γ̇(0)f =
d

dt
f(γ(t))

∣∣∣∣
t=0

= Df(p)
[
γ′(0)

]
.

Notably, the map x 7→ ξ, where x = γ′(0) and ξ = γ̇(0) for some curve γ, stands as an isomorphism

(a linear bijection) between Rn and Tγ(0)Rn, and this relationship holds regardless of the chosen γ.

It is useful to identify γ′(0) ∈ Rn with γ̇(0) ∈ Tγ(0)Rn. Consequently, we establish the canonical

identification:

TxRn ∼= Rn, for all x ∈ Rn. (2.9)

We shall employ this identification when it becomes necessary. This result can be further extended to the

general vector space, i.e.,

TxE ∼= E , for all x ∈ Rn. (2.10)

Remark 4. Except for trivial cases such as Euclidean space, the tangent spaces of different points are

usually different from each other. When M is a subset of Euclidean space, the tangent space is just a

subspace.

2.4 Derivatives of Maps

In our previous sections, we have discussed the concept of differentiability as it applies to maps between

manifolds. Building upon this understanding, in this section we shall introduce the formal definition of

derivatives (see Remark 1 for difference between “differentiability” and “derivatives”). The derivatives

can have a direct application in optimization algorithms on manifold.

Definition 8 (Derivatives, Differential). Consider two smooth manifolds M and N . The derivative or

differential of a smooth map F : M → N at a point p ∈ M is defined by

DF (p) : TpM → TF (p)N , DF (p)[γ̇(0)] := γ̇F (0). (2.11)

where γ is a curve on M with γ(0) = p, and γF := F ◦ γ is the corresponding image curve on N .

It can be shown that DF (p) is linear. Let FF (p)(N ) denote the set of all smooth real-valued functions

defined on a neighborhood of F (p) ∈ N . Note that for any g ∈ FF (p)(N ), g ◦ F ∈ Fp(M). Let us take

our attention to the behavior of the right-hand side of (2.11), γ̇F (0), when it acts on g ∈ FF (p)(N ). Then

we have

γ̇F (0)(g) =
d(g ◦ (F ◦ γ))

dt

∣∣∣∣
t=0

=
d((g ◦ F ) ◦ γ)

dt

∣∣∣∣
t=0

= γ̇(0)(g ◦ F ).

This series of equalities show that the right-hand side of (2.11) is invariant with respect to the choice

of curve γ provided they realize the same tangent vector. Without using the curve explicitly to realize
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a tangent vector, we can also define the derivative as follows: for any ξ ∈ TpM, DF (p)[ξ] is a tangent

vector in TF (p)N such that for all g ∈ FF (p)(N ),

(DF (p)[ξ])(g) = ξ(g ◦ F ). (2.12)

In fact, Definition 8 is consistent with the usual derivatives. If F : E → E ′ is a smooth function

between two vector spaces, with identification TpE ∼= E and TF (p)E ′ ∼= E ′ from (2.10), then the differential

DF (p) reduces to its classical directional derivative given by

DF (p) : E → E ′, DF (p) [ξ] = lim
t→0

F (p+ tξ)− F (p)

t
. (2.13)

On the other hand, consider a smooth function f : M → R. By identifying Tf(p)R ∼= R, we have

Df(p) : TpM → R, Df(p)[γ̇(0)] = (f ◦ γ)′(0). (2.14)

We conclude this section with the following useful properties of derivatives, which are the natural extension

of the classical results.

1. (Linearity of Smooth Maps) Consider smooth maps F1, F2 : M → E , where E is a linear space,

and real numbers a1, a2. For map F : x 7→ a1F1(x) + a2F2(x), we have

DF (x) = a1DF1(x) + a2DF2(x).

2. (Chain Rule for Differentials [165, Proposition 3.2]) Let F : M → M′ and G : M′ → M′′ be

smooth maps between manifolds. Then, the chain rule is applicable to the differential of their

composition:

D(G ◦ F )(x)[v] = DG(F (x))[DF (x)[v]].

2.5 Embedded Submanifold

This section introduces the concept of a submanifold, which is a manifold in its own right, and at the same

time a subset of another manifold (usually a subset of some vector spaces such as Rn and Rm×n).

Definition 9 ((Regular) Submanifold). Let M be an m-dimensional manifold and N be a subset of

M. The subset N ⊂ M is called an n-dimensional (regular) submanifold of M if, for all p ∈
N , there exists a chart (U ;x1, x2, . . . , xm) of N containing p such that the intersection N ∩ U =

{q ∈ U : xn+1(q) = xn+2(q) = · · · = xm(q) = 0}.

According to [193, Proposition 9.4], a regular submanifold N of M is indeed a manifold. In general,

it is difficult to check whether a subset of a manifold is a regular submanifold through definition above. It

will be convenient if we can show that some specific subset of a manifold is a submanifold without using

local chart (U ;x1, x2, . . . , xm). The following Theorem 1 and Theorem 2 state two useful and convenient

conclusions. We first introduce a map called embedding as follows.

Definition 10 (Embedding). Let M and N be smooth manifolds. A smooth map F : M → N is called

an embedding if
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(i) it is an immersion, namely, DF (p) : TpM → TF (p)N is injective (i.e., rank of DF (p) equals to

dimM) for all p ∈ M;

(ii) the image F (M) with the subspace topology (induced by N ) is homeomorphic to M under F .

By the next theorem, a regular submanifold is also called an embedded submanifold because it must

be the image of some embedding map; actually, they are one and the same thing. See [193, Theorem

11.13 & 11.14] for proofs. In this thesis, we refer to them simply as “submanifolds”.

Theorem 1 (Embedded Submanifold = Regular Submanifold). Let M and N be smooth manifolds. If

F : N → M is an embedding, then its image F (N ) is a regular submanifold of M. If N is a regular

submanifold of M, then the inclusion map ι : N → M, ι(p) = p, is an embedding. (Note that the image

of ι is N .)

The next theorem introduces an important class of submanifolds that cover most of the manifolds we

will encounter in applications. In fact, most manifolds in Table 3.1 can be proved to be manifolds by the

next theorem. See [193, Theorem 9.9] for proof.

Theorem 2 (Regular Level Set Theorem). Let F : M → N be a smooth map between manifolds, with

dimM = m and dimN = n (m ≥ n). If a level set M := F−1({q}) with q ∈ N is nonempty, and

DF (p) : TpM → TF (p)N is surjective (i.e., rank of DF (p) equals to n) for all p ∈ M, then M is an

(m− n)-dimensional submanifold of M.

Let M be a submanifold of a manifold M (by definition, M ⊂ M). Then tangent space TxM
at a point x on M can be expressed as a subspace of TxM. Indeed, the inclusion map ι : M → M
satisfies Dι(x)[ξ] ∈ TxM for ξ ∈ TxM. For any smooth function f̄ ∈ Fx(M) and its restriction

f := f̄
∣∣
M ∈ Fx(M), by (2.12), we have

(Dι(x)[ξ])f̄ = ξ(f̄ ◦ ι) = ξf.

Thus, we can identify ξ with Dι(x)[ξ] and, thereby, TxM with a subspace of TxM. In fact, by [34,

Corollary 8.76], we have

TxM = kerDF (x) ⊂ TxM. (2.15)

Specifically, we can identify TxM with a subspace of TxRn ≃ Rn if M is a submanifold of Rn, and

TXM with a subspace of TXRm×n ≃ Rm×n if M is a submanifold of Rm×n.

Example 3 (Stiefel Manifold). For integers k ≤ n, the set St(n, k) := {X ∈ Rn×k : XTX = Ik} is

called (compact) Stiefel manifold, where the columns of X are orthonormal in Rn with respect to the

standard inner product ⟨x, y⟩ = xT y. Notice that St(n, k) = F−1 ({Ik}) with

F : Rn×k → S(k) : X 7→ F (X) := XTX

where S(k) is the linear space of symmetric matrices of size k. From (2.13), we can compute

DF (X) : Rn×k → S(k) : ξ 7→ DF (X)[ξ] = XT ξ + ξTX.

To demonstrate DF (X) is surjective for any fixed X ∈ St(n, k), we find that for any A ∈ S(k), there

exists ξ := 1
2XA ∈ Rn×k such that DF (X)[ξ] = A. Thus, by Theorem 2, St(n, k) is a submanifold of
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Rn×k and dimSt(n, k) = dimRn×k − dimS(k) = nk − k(k+1)
2 . Indeed, by (2.15), the tangent space

TX St(n, k) = kerDF (X) is given by

TX St(n, k) =
{
ξ ∈ Rn×k : XT ξ + ξTX = 0

}
=
{
XΩ+X⊥B : Ω ∈ Skew(k), B ∈ R(n−k)×k

}
,

where Skew(k) := {Ω ∈ Rk×k : ΩT = −Ω} is the linear space of skew-symmetric matrices of size k;

X⊥ ∈ Rn×(n−k) is an arbitrary matrix such that [X,X⊥] ∈ Rn×n is orthogonal. The second line above

allows an explicit form by parametrization. Refer to [34, Section 7.3] and [5, Example 3.5.2] for detailed

instructions. In particular, we consider two special cases of Stiefel manifold below.

• If k = 1, then Spn−1 := St(n, 1) = {x ∈ Rn : ∥x∥2 = 1} is called (unit) sphere manifold. We have

dimSpn−1 = n− 1 and

Tx Sp
n−1 =

{
ξ ∈ Rn : xT ξ = 0

}
.

• If k = n, then O(n) := St(n, n) =
{
X ∈ Rn×n : XTX = In

}
is called orthogonal group. It is a

group equipped with matrix multiplication as its group operation. Being both a manifold and a group, it

is called a Lie group. We have dimO(n) = n(n−1)
2 and

TXO(n) =
{
XΩ ∈ Rn×n : Ω ∈ Skew(n)

}
= X Skew(n).

2.6 Vector Fields

The concept of tangent bundle forms the basis for defining vector fields, and other fundamental concepts

(e.g., retractions) in the study of Riemannian optimization.

Definition 11 (Tangent Bundle). The tangent bundle TM of an n-dimensional manifold M is the set

defined as

TM = {(x, v) : x ∈ M and v ∈ TxM} ,

i.e., the disjoint union of all the tangent spaces.

Remark 5. When the context is clear, we may simplify the notation, using v ∈ TM to represent the pair

(x, v) ∈ TM.

A natural projection map π : TM → M, π(x, v) := x extracts the base point associated with a given

tangent vector. It can be shown that the tangent bundle TM is itself a manifold, possessing a dimension

of 2n, in such a way that the projection map π : TM → M is smooth, where the smoothness is defined

through Definition 5. See [127, Proposition 3.18] for details. Now, the manifold structure imposed on

TM enables the definition of smooth vector fields on manifolds.

Definition 12 (Vector Field). A vector field on the manifold M is a map, denoted as

V : M → TM,
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such that π ◦ V = IdM, where IdM is the identity map on M. This means that V (x) is an element of the

tangent space TxM for all x ∈ M. If such map V is smooth, then V is called a smooth vector field. The

set of all smooth vector fields on M is denoted by X(M).

Example 4. Consider Rn with canonical identification TxRn ∼= Rn for all x ∈ Rn. Then V ∈ X(Rn) is

exactly a smooth function V : Rn → Rn.

Remark 6. A scalar field is described as a function that assigns a scalar value to every point in a specific

space, such as Euclidean space or a manifold. In the context of Riemannian optimization, it precisely

corresponds to the objective function of our problem minx∈M f(x). We often conflate terminologies for

“real-valued function” and “scalar field”.

Smooth vector fields play an important role in the Riemannian optimization. We summarize the

following characterization of smooth vector fields. Let F(M) denote the set of all smooth real-valued

function defined on the manifold M.

Definition 13 (Action of Vector Field on Scalar Field). Let V be a vector field on the manifold M. The

action of V on a smooth scalar field f ∈ F(M) is defined as

(V f)(x) := Df(x)[V (x)], (2.16)

where the right-hand above is given by (2.14).

An important result is that a vector field V on M is smooth if and only if V f : M → R is smooth for

all f ∈ F(M). See [127, Proposition 8.14]. This allows us to regard V ∈ X(M) as a map

V : F(M) → F(M).

Definition 14 (Multiplication of Scalar Field and Vector Field). For any f ∈ F(M) and V ∈ X(M), the

vector field fV on M, defined as

(fV )(x) := f(x)V (x). (2.17)

By [34, Exercise 3.46 & 8.48], fV is also smooth. This allows us to regard f ∈ F(M) as a map

f : X(M) → X(M), performing a pointwise scaling. Be cautious not to conflate the notations of V f in

(2.16) and fV in (2.17).

Remark 7. It can be shown that for any V,W ∈ X(M) and f, g ∈ F(M), the vector field fV + gW is

also smooth. Thus, X(M) forms a module over F(M). When f, g is taken to be constant, X(M) is also

a real vector space.

2.7 Retractions

A retraction is a key operation that provides a way to move around the manifold, and it plays a central role

in Riemannian optimization algorithms.
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Definition 15 (Retraction - I). A retraction on a manifold M is a smooth map

R: TM → M : (x, ξ) 7→ Rx(ξ)

such that for each (x, ξ) ∈ TM, the curve γ(t) := Rx(tξ) satisfies γ̇(0) = ξ.

Frequently, Rx : TxM → M denotes the restriction of R to TxM. Let (x, ξ) ∈ TM, i.e., x ∈ M
and ξ ∈ TxM. If the curve γ(t) = Rx(tξ) realize the tangent vector ξ, it is implicitly required that

γ(0) = Rx (0x) = x. This means that the retraction Rx maps the zero element 0x of the tangent

space TxM to the point x itself. On the other hand, using chain rule and the canonical identification

T0xTxM ∼= TxM, we have γ̇(0) = DRx(0x) [ξ] = ξ. Note that ξ is arbitrary. Thus, an equivalent

definition of retraction is given as follows.

Definition 16 (Retraction - II). A retraction on a manifold M is a smooth map R: TM → M with the

following properties, where Rx denotes the restriction of R to TxM:

1. Rx (0x) = x.

2. DRx (0x) = IdTxM.

The second condition implies that the differential of Rx at 0x is the identity map IdTxM on TxM. It

means that Rx behaves like the identity map on the tangent space TxM near the origin 0x.

Example 5. When M = Rn, Rx(ξ) = x+ ξ is a trivial retraction.

Example 6 (Retraction on Sphere). The simplest retraction on sphere manifold Spn−1 is

Rx(ξ) =
x+ ξ

∥x+ ξ∥
.

It is straightforward to check that this retraction satisfies the properties in Definition 16.

Example 7 (Retractions on Stiefel Manifold). There are many often-used retractions on Stiefel manifold

St(n, k). Let X ∈ St(n, k) and ξ ∈ TX St(n, k) (Recall Example 3).

• Q-factor retraction:

RX(ξ) = Q,

where QR = X + ξ is a thin/reduced QR decomposition with Q ∈ St(n, k) and R ∈ Rk×k upper

triangular with nonnegative diagonal. Since

(X + ξ)T (X + ξ) = Ik + ξT ξ ≻ 0 (2.18)

for all ξ ∈ TX St(n, k), then X + ξ has full rank k, implying that the thin/reduced QR decomposition

is uniquely determined [96, Theorem 2.1.14]. To see this retraction satisfies the properties in Definition

16, refer to [5, Example 8.1.5].

• Polar retraction:

RX(ξ) = (X + ξ)
(
(X + ξ)T (X + ξ)

)−1/2
= (X + ξ)

(
Ik + ξT ξ

)−1/2
(2.19)

= U, (2.20)
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where M−1/2 denotes the inverse of square root of M ; and US = X + ξ is a polar decomposition

with U ∈ St(n, k) and positive semidefinite matrix S ∈ S(k). Again by (2.18), X + ξ has full rank

k, implying that the matrix U (called polar factor) of polar decomposition is uniquely determined [96,

Theorem 7.3.1, (b)-(c)]. It is straightforward to check that this retraction (2.19) satisfies the properties

in Definition 16.

• Cayley transform retraction [201, 219, 115]:

RX(ξ) =

(
I − 1

2
Wξ

)−1(
I +

1

2
Wξ

)
X

where Skew(n) ∋Wξ := PXξX
T −XξTPX and PX := I − 1

2XX
T . It can be shown that the curve

t 7→ γ(t) = RX(tξ) is contained in St(n, k) and satisfies γ(0) = X and γ̇(0) = WξX = ξ as in

Definition 15, see [201, Lemma 3].

2.8 Riemannian Manifolds

In order to define geometric structures on manifolds, such as the lengths of curves and the distances

between points, we now introduce the notion of Riemannian metrics.

Since tangent spaces are vector spaces, we can endow them with the inner products. Given a tangent

space TxM at a point x on a manifold M, an inner product ⟨·, ·⟩x : TxM× TxM → R is a function that

satisfies:

1. (Non-negativity) ⟨v, v⟩x ≥ 0 for all v ∈ TxM.

2. (Definiteness) ⟨v, v⟩x = 0 if and only if v = 0x.

3. (Symmetry) ⟨u, v⟩x = ⟨v, u⟩x for all u, v ∈ TxM.

4. (Linearity) ⟨au+ bv, w⟩x = a⟨u,w⟩x + b⟨v, w⟩x for all u, v, w ∈ TxM and a, b ∈ R.

With this inner product, we can induce a norm as ∥ξ∥x :=
√
⟨ξ, ξ⟩x on TxM. For convenience, we may

omit the subscript x when it is clear from the context.

2.8.1 Riemannian Metric

Definition 17 (Riemannian Metric). A Riemannian metric on the manifold M is a choice of inner product

⟨·, ·⟩x for each point x on M such that x 7→ ⟨·, ·⟩x varies smoothly across the manifold in the following

sense: for all V,W ∈ X(M), the map

x 7→ ⟨V (x),W (x)⟩x (2.21)

is a smooth function from M to R. (See Fig. 2.1) When the manifold M is equipped with a Riemannian

metric, M is called a Riemannian manifold.

Example 8. Consider M = Rn with canonical identification TxRn ∼= Rn, the standard Euclidean product

⟨v, w⟩x := vTw (the same at all points) is a Riemannian metric.

It is well-known that for any smooth manifold M, there exists a Riemannian metric on M; and thus,

any smooth manifold can become a Riemannian manifold. For more detail, see [127, Proposition 13.3].
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M

x
⟨ξ, η⟩xη

ξTxM
R

Fig. 2.1 An illustration of Riemannian metric on sphere manifold.

Recall that the second-countability is the topological property that we request for defining the manifold

(review Definition 1). This property ensures the manifold has a countable base for its topology. This

is a crucial requirement for various mathematical constructions and proofs, including the existence of

partitions of unity, which are used for the construction of Riemannian metrics.

2.8.2 Local Frame

Next, we will introduce the local frame, which is a technical tool and very useful in many proofs.

Definition 18 (Local Frame). A local frame around a point x on an n-dimensional manifold M is a

collection of n smooth vector fields, {E1, E2, . . . , En}, defined on a neighborhood U of x such that for

every point y ∈ U , the tangent vectors {E1(y), E2(y), . . . , En(y)} form a basis for TyM.

It can be shown that there exists a local frame around any x ∈ M. Moreover, consider M as a

Riemannian manifold. Use the Gram-Schmidt procedure on an existing local frame, an orthonormal local

frame exists [127, Corollary 13.8]. Specifically, an orthonormal local frame {E1, E2, . . . , En} is defined

on a neighborhood U around x such that

∀y ∈ U , ⟨Ei(y), Ej(y)⟩y =

1 if i = j,

0 otherwise.

2.8.3 Riemannian Gradient

We next define the Riemannian gradient of a scalar field f as a vector field, denoted by grad f .

Definition 19 (Riemannian Gradient). The Riemannian gradient of f at x, grad f(x), is the unique

tangent vector in TxM characterized by the following identities:

Df(x)[ξ] = ⟨ξ, grad f(x)⟩, (2.22)

where Df(x) : TxM → R represents the differential of the scalar field f at the point x.



34 Chapter 2. Review of Riemannian Geometry

f

Rx

grad f(x)x

Fig. 2.2 Illustration of the Riemannian gradient on sphere manifold.

Note that the existence and uniqueness of grad f(x) comes from the Riesz representation theorem

(see, e.g., [9, 6.42]). We can show that the direction (i.e., tangent vector) of grad f(x) is the steepest

ascent direction of f at x in the sense of

grad f(x)

∥ grad f(x)∥
= argmax

ξ∈TxM:∥ξ∥=1
Df(x)[ξ]. (2.23)

Recall the Cauchy–Schwarz inequality on general vector space: |⟨u, v⟩| ≤ ∥u∥∥v∥ and equality holds

if and only if v = λu for some constant λ. Then from the definition of (2.22), the objective of (2.23)

is maximal when ξ∗ = λ grad f(x) for some positive number λ. Taking norm in both sides leads

1 = ∥ξ∗∥ = λ∥ grad f(x)∥, and hence ξ∗ = grad f(x)/∥ grad ∥. Simimarirly, − grad f(x) is the

steepest descent direction of f at x. For example, see Fig. 2.2.

Remarkably, for any f ∈ F(M), the gradient vector field (Fig. 2.3 illustrates a simple example on

2-dim sphere Sp2.)

x 7→ grad f(x)

is a smooth vector field on M, see [34, Proposition 8.58]. Consequently, the following scalar field on M:

x 7→ ∥grad f(x)∥2x = ⟨grad f(x), grad f(x)⟩x (2.24)

is also smooth, owing to the smoothness of the Riemannian metric as previously stated in (2.21). The

smoothness of this type of function is particularly useful in analyzing convergence in later chapters.

2.8.4 Riemannian submanifold

In Section 2.5, we discussed the embedded submanifold, which is a manifold itself and also is a subset

of some Euclidean space E (often called ambient space). Note that although the ambient space can be a

general manifold (as in Section 2.5), henceforth it suffices for us to focus only on the Euclidean space

E such as Rn and Rm×n. We next introduce the most important class of Riemannian manifolds, called

Riemannian submanifold of a Euclidean space E . Let E equipped with an inner product ⟨·, ·⟩, and just like

in Example 8, we call it the Euclidean metric.
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Fig. 2.3 Riemannian gradient field of f(x) = −x1 + 2x2 + x3 on 2-dim sphere Sp2.

Definition 20 (Riemannian Submanifold). Let M be an embedded submanifold of E . Equipped with the

Riemannian metric obtained by restriction of the metric of E , we call M a Riemannian submanifold of E .

As we discussed in Section 2.5, we know from (2.15) that TxM is a subspace of TxE ∼= E . Hence,

we can let TxM inherit the same inner product form ambient space E . In this case, we can conjecture that

the geometric tools of the Riemannian submanifold are directly related to their counterparts in Euclidean

space. Indeed, from [34, Proposition 3.61], we have the following nice conclusion.

Proposition 2 (Gradient of Riemannian Submanifold). Let M be a Riemannian submanifold of E endowed

with the metric ⟨·, ·⟩ and let f : M → R be a smooth function. Let Projx denote the orthogonal projection

form E onto subspace TxM with respect to ⟨·, ·⟩. Then Riemannian gradient of f is given by

grad f(x) = Projx(grad f̃(x)),

where f̃ is any smooth extension of f to a neighborhood of M in E .

Remark 8. In most cases of applications, the smooth function f is also well-defined on the whole E . Then,

the smooth extension of f̃ is f itself. See [34, Example 3.62] for a concrete example on sphere manifold.

In fact, we used the above proposition to compute and plot the gradients of f(x) = −x1 + 2x2 + x3 on

2-dim sphere Sp2 = {x ∈ R3 : ∥x∥2 = 1} in Fig. 2.3.

2.9 Connections, Covariant Derivatives and Hessians

2.9.1 Riemannian Connections

In the context of Euclidean space, a vector field V ∈ X(Rn) is essentially a function from Rn to Rn.

Then we can differentiate vector fields using the classical directional derivative, i.e., for any x ∈ Rn and
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u ∈ Rn ∼= TxRn,

DV (x)[u] = lim
t→0

V (x+ tu)− V (x)

t
, (2.25)

However, when working on the general manifolds, we need a more sophisticated notion of derivative of

vector fields. This is where the concept of an (affine) connection, denoted by ∇, comes in.

Definition 21 ((Affine) Connection). An (affine) connection on M is defined as an operator

∇ : X(M)× X(M) → X(M), (U, V ) 7→ ∇UV,

where given any vector fields U, V,W ∈ X(M), and scalar fields f, g ∈ F(M) along with a, b ∈ R,

operator ∇ satisfies the following properties:

1. (F(M)-linearity) ∇(fU+gW )V = f∇UV + g∇WV ;

2. (R-linearity) ∇U (aV + bW ) = a∇UV + b∇UW ;

3. (Leibniz rule) ∇U (fV ) = (Uf)V + f∇UV .

Any manifold has infinitely many connections [5, Proposition 5.2.1]. However, once we add a

Riemannian structure to M, a certain kind of connection (called Riemannian connection) satisfies the

additional properties that make it the most appropriate connection. But before that, we need to introduce

some new operations involving vector fields. In the following, let M be a Riemannian manifold with its

Riemannian metric ⟨·, ·⟩.

Inner Product of Vector Fields: Given U, V ∈ X(M), let ⟨U, V ⟩ ∈ F(M) be defined as: for all

x ∈ M,

⟨U, V ⟩(x) := ⟨U(x), V (x)⟩x. (2.26)

This operation defines an inner product between two vector fields, which results in a scalar field. Using

this notation and recall (2.16) and (2.22), we can see that for any f ∈ F(M),

V f = ⟨V, grad f⟩.

Lie Bracket of Vector Fields: Given U, V ∈ X(M), the Lie bracket is defined as (recall (2.16)):

[U, V ] : F(M) → F(M), f 7→ [U, V ]f := U(V f)− V (Uf).

This operation quantifies the extent to which the vector fields U and V do not commute. Remarkably,

there exists a unique smooth vector field W on M such that [U, V ]f =Wf holds for all f ∈ F(M) (see

[34, Proposition 8.61]). We identify [U, V ] with that vector field W . Consequently, Lie bracket can be

seem as a map

[·, ·] : X(M)× X(M) → X(M).

Now we are ready to define the Riemannian connection. Its existence and uniqueness is stated in the

fundamental theorem of Riemannian geometry. See [126, Theorem 5.10], [34, Theorem 8.63].

Theorem 3 (Fundamental Theorem of Riemannian Geometry). Given a Riemannian manifold M, there

exists a unique connection ∇ that satisfies two additional properties for all vector fields U, V,W ∈ X(M):
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4. (Symmetry) [U, V ] = ∇UV −∇V U ;

5. (Compatibility with Metric) U⟨V,W ⟩ = ⟨∇UV,W ⟩+ ⟨V,∇UW ⟩.
This specific connection is called the Levi-Civita or Riemannian connection.

Example 9. Consider Rn with the Euclidean metric. Let U, V be smooth vector fields from Rn to Rn.

Then the Riemannian connection of Rn is

(∇UV ) (x) = lim
t→0

V (x+ tU(x))− V (x)

t
. (2.27)

This ∇ is called the canonical Euclidean connection.

2.9.2 Covariant Derivatives

Of particular note that, for any (affine) connection ∇ and vector fields U, V ∈ X(M), the vector field

∇UV at a point x only depends on the value of U at that point (see [34, Proposition 8.64]). More precisely,

if we fix arbitrary V ∈ X(M) and x ∈ M, then for any U1, U2 ∈ X(M) with U1(x) = U2(x), we

have (∇U1V ) (x) = (∇U2V ) (x). Obviously, the connection given in (2.27) justifies this property in the

Euclidean space. Based on such property, given V ∈ X(M) and u ∈ TxM, we can write

∇uV := (∇UV ) (x) ∈ TxM

for arbitrary U ∈ X(M) with U(x) = u. This gives rise to the following very important concept.

Definition 22 (Covariant Derivative of Vector Field). Let M be a manifold with a connection ∇ and

V ∈ X(M). The covariant derivative of vector field V at a point x ∈ M is the linear operator

∇V (x) : TxM → TxM, ∇V (x)[u] := ∇uV. (2.28)

Then x 7→ ∇V (x) is a map that assigns to each point x a linear operator from and to the tangent space of

that point.

Example 10. For Rn with canonical Euclidean connection (2.27), the covariant derivative of vector field

V ∈ X(Rn) at x ∈ Rn is ∇V (x)[u] = DV (x)[u] given in (2.25). On the other hand, it is well-known that

DV (x)[u] = JV (x)u for all u ∈ Rn where JV (x) ∈ Rn×n is the Jacobian of V at x. Thus, the Jacobian

JV (x) identifies the linear operator ∇V (x).

2.9.3 Riemannian Hessian

In particular, the Riemannian Hessian of a smooth scalar field f is obtained when V = grad f in (2.28).

Definition 23 (Riemannian Hessian). Let M be a Riemannian manifold with its Riemannian connection

∇. For a smooth function f : M → R, the Riemannian Hessian of f at a point x ∈ M is the linear

operator

Hess f(x) : TxM → TxM, Hess f(x)[u] := ∇u grad f.

Equivalently, Hess f maps X(M) to X(M) as Hess f [U ] := ∇U grad f .
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Note that the Riemannian Hessian is self-adjoint with respect to the Riemannian metric. Specifically,

for any point x ∈ M and any tangent vectors u, v ∈ TxM, the following equality holds:

⟨Hess f(x)[u], v⟩x = ⟨u,Hess f(x)[v]⟩x.

Remark 9. Unless otherwise stated, we always equip Riemannian manifolds with Riemannian connections.

Note that symbol ∇ denotes the connection rather than the usual Euclidean gradient. Instead, we use

egrad f(x) to express the Euclidean gradient if necessary.

As in Proposition 2, for the smooth function f defined on a Riemannian submanifold of a Euclidean

space E , we can obtain the Riemannian Hessian by using the operations in Euclidean sense and then

orthogonally project the result to the tangent spaces. From [34, Corollary 5.16], we have the following

conclusion. See [34, Example 5.17] for a concrete example.

Proposition 3 (Hessian of Riemannian Submanifold). Let M be a Riemannian submanifold of E endowed

with the metric ⟨·, ·⟩ and let f : M → R be a smooth function. Let Ḡ be a smooth extension of grad f ,

that is, Ḡ is any smooth vector field defined on a neighborhood of M in E such that Ḡ(x) = grad f(x)

for all x ∈ M. Then,

Hess f(x)[u] = Projx(DḠ(x)[u]).

Remark 10. It is important to note that the above proposition does not mean: compute the Euclidean

Hessian and then orthogonally project it to tangent space. Instead, after computing the Riemannian

gradient according to the Proposition 2, we will use classical operations to obtain the differential of the

Riemannian gradient field x 7→ grad f(x), and finally project it orthogonally. In most applications, the

map x 7→ grad f(x) is also well-defined over the whole E . Thus, the smooth extension Ḡ is grad f itself.

2.10 Induced Covariant Derivative and Geodesics

“A body remains at rest, or in motion at a constant speed in a straight line, unless acted upon

by a force.” - Newton’s First Law of Motion [142]

In physics, a straight line can be thought of as a trajectory with zero acceleration. A geodesic intuitively

coincides with a “straight line” on the manifold M. For example, a great circle on sphere – the circular

intersection of sphere with a plane passing through the sphere’s center point. This section presents a

rigorous definition of a geodesic, which requires the notion of induced covariant derivatives. Using the

induced covariant derivative, we can defined the acceleration of a curve on a manifold, then a geodesic is

a curve with zero acceleration.

Suppose that c : I → M is a smooth curve on the manifold M, where I is an open interval. A map

Z : I → TM (2.29)

is called a vector field along the curve c if, for any t in I , its image Z(t) lies in the tangent space Tc(t)M
at c(t) ∈ M. Furthermore, Z is called a smooth vector field along c if it is a smooth map. The collection

of all smooth vector fields along the curve c is denoted by X(c). There are two important types of smooth

vector fields along c as follows.
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(1) For any U ∈ X(M), the composition U ◦ c ∈ X(c).

(2) For every t in I , the velocity of c at t is defined as

ċ(t) := ċt(0), (2.30)

where ct is the shifted curve given as τ 7→ ct(τ) := c(t+ τ). The domain of ct (the open interval

containing 0) can shrink sufficiently such that it is well-defined. The right hand of (2.30) is a tangent

vector at the point ct(0) = c(t) (see Remark 3). The velocity vector field of c is defined as

t 7→ ċ(t). (2.31)

Then we have ċ ∈ X(c).

Let F(I) denote the set of all smooth real-valued functions defined on the interval I . Then g ∈ F(I)

implies g′ ∈ F(I). Note that the set X(c) forms a module over F(I) under pointwise vector addition and

pointwise multiplication, i.e., for any Y, Z ∈ X(c) and f, g ∈ F(I), we have fY + gZ ∈ X(c). As we

did in (2.26), given any Y,Z ∈ X(c), we define ⟨Y, Z⟩ ∈ F(I) by

⟨Y,Z⟩(t) := ⟨Y (t), Z(t)⟩c(t) for all t ∈ I. (2.32)

Based on the above notations, we are ready to present the following theorem. See [34, Theorem 8.67]

or [126, Theorem 4.24] for proofs.

Theorem 4 (Induced Covariant Derivative). Let M be a manifold equipped with an (affine) connection

∇. For each smooth curve c : I → M, there exists a unique operator,

D

dt
: X(c) → X(c),

called the induced covariant derivative (induced by ∇), satisfying the following conditions. For all smooth

vector fields Y, Z ∈ X(c), U ∈ X(M), g ∈ F(I), and a, b ∈ R:

1. (R-linearity) D
dt(aY + bZ) = aD

dtY + bDdtZ.

2. (Leibniz rule) D
dt(gZ) = g′Z + g D

dtZ.

3. (Chain rule)
(
D
dt(U ◦ c)

)
(t) = ∇ċ(t)U, for all t ∈ I .

If moreover M is a Riemannian manifold and ∇ is compatible with its metric ⟨·, ·⟩ (e.g., if ∇ is the

Riemannian connection), then the induced covariant derivative D
dt also satisfies:

4. (Product rule) d
dt⟨Y,Z⟩ =

〈
D
dtY,Z

〉
+
〈
Y, DdtZ

〉
. (see (2.32))

By the above theorem, any connection ∇ on M uniquely determines an induced covariant derivative
D
dt . This induced covariant derivative can be defined without any Riemannian metric, as demonstrated by

its first three properties. Formally, the connection ∇ assigns a unique operator D
dt : X(c) → X(c) to each

smooth curve c on M.

Definition 24 (Acceleration). Let c : I → M be a smooth curve. Utilizing the operator D
dt , the acceleration

of curve c is defined as

c̈(t) :=
D

dt
ċ,

where ċ is the velocity vector field of c, see (2.31).
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Definition 25 (Geodesic). A smooth curve c : I → M is called a geodesic (with respect to ∇) if its

acceleration vanishes at every point; that is, c̈(t) = 0 for all t in I .

Example 11. When M = Rn, for any x, v ∈ Rn, the curve γ(t) = x+ tv is a geodesic.

2.11 Exponential Map

This section introduces the exponential map. Exponential map is a kind of (theoretically perfect) retraction

R such that the curve it derives, i.e., t 7→ γ(t) := Rx(tξ), is precisely the geodesic. However, the

exponential map is computationally expensive for many manifolds. Therefore, we often use exponential

map for theoretical analysis and other retractions in practical algorithms. Let us define the exponential

map starting with the maximal geodesic.

We say that a geodesic γ : I → M is maximal if it cannot be extended to a geodesic on a larger

interval (its domain), namely, there is no another geodesic γ̃ : Ĩ → M such that the interval Ĩ properly

containing I and γ̃|I = γ. The next important result comes from [126, Theorem 4.27, Corollary 4.28].

Theorem 5 (Existence and Uniqueness of Maximal Geodesic). Let M be a manifold with a connection

∇. For each pair of (x, v) ∈ TM, there exists a unique maximal geodesic γ : I → M defined on some

open interval I containing 0 such that

γ(0) = x and γ̇(0) = v.

This unique maximal geodesic γ is determined by the initial point x and initial velocity v ∈ TxM,

and is therefore denoted by γv. For simplicity, we do not specify the base point x (see Remark 5). Thus,

the assignment

v 7→ γv

defines a map from TM to the set of geodesics on M. In particular, when v = 0x, then γv(t) ≡ x for all

t ∈ R. By [126, Lemma 5.18], for all v ∈ TM, and λ, t ∈ R, we have γλv(t) = γv(λt) whenever either

side is defined. Now we are ready to define the exponential map.

Definition 26 (Exponential Map). Consider the subset of the tangent bundle:

O = {(x, v) ∈ TM : γv is defined on an interval containing [0, 1]} ,

and we define the exponential map,

Exp: O → M, Exp(x, v) ≡ Expx(v) := γv(1).

The restriction Expx is defined on Ox := O ∩ TxM.

Example 12. When M = Rn, Expx(v) = x+ v.

Example 13 (Exponential Map on Sphere). Recall Example 3. Let x ∈ Spn−1 and ξ ∈ Tx Sp
n−1. The

exponential map on sphere Spn−1 is given by

Expx(ξ) = cos(∥ξ∥2)x+
sin(∥ξ∥2)

∥ξ∥2
ξ.
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Example 14 (Exponential Map on Stiefel Manifold [72, Corollary 2.2]). Recall Example 3. Let X ∈
St(n, k) and ξ ∈ TX St(n, k). The exponential map on Stiefel manifold is given by

ExpX(ξ) = [X,Q] exp

([
XT ξ −RT

R 0k×k

])[
Ik

0k×k

]
,

where QR = (In −XXT )ξ is the thin/reduced QR decomposition of (In −XXT )ξ with Q ∈ St(n, k)

and R ∈ Rk×k, and exp(Z) =
∑∞

k=0
1
k!Z

k is matrix exponential of square matrix Z.

The next proposition collects some important properties of exponential map. The first three properties

are given in [126, Proposition 5.19] and show that an exponential map is a retraction on its domain. Here,

to get a more general notion of retraction, we can relax its domain of definition to a subset of tangent

bundle TM (In Definition 15, we ask R to be defined on whole TM). And the last two are given in [64,

Lemma 3.5].

Proposition 4 (Properties of Exponential Map). Let M be a Riemannian manifold, and let Exp be its

exponential map.

(1) Exp: O → M is a smooth map on its domain O, which is open subset in TM.

(2) For all x ∈ M, Expx (0x) = x; and under the canonical identification T0x(TxM) ∼= TxM, we

have DExpx (0x) = IdTxM .

(3) For all (x, v) ∈ TM, the maximal geodesic γv given in Theorem 5 satisfies γv(t) = Expx(tv) for

all t such that either side is defined.

(4) For all (x, v) ∈ O and any w ∈ TxM, under the canonical identification Tv (TxM) ∼= TxM, we

have ⟨DExpx(v)[v],DExpx(v)[w]⟩ = ⟨v, w⟩.
(5) For all (x, v) ∈ O, and λ ∈ [0, 1], we have ∥DExpx(λv)[v]∥ = ∥v∥ .

Using exponential map only on a subset O looks restrictive. In the next section we will show that if

M is complete then O actually equals the whole TM.

2.12 Metric Space

This section begins with an introduction to the Riemannian distance, which allows us to transform

Riemannian manifolds into metric spaces. For details on metric space, see [150, 188]. Importantly,

the topology induced by Riemannian distance is identical to the original topology. The concept of

completeness for metric space is also closely related to geodesics and exponential map.

2.12.1 Riemannian Distance

A curve segment on a manifold M is a continuous map c : [a, b] → M, and it is smooth if and only if

it can be extended to a smooth curve c̃ : I → M on some open interval I containing [a, b]. The term

“extend” means that c(t) = c̃(t) for t ∈ [a, b]. In this case, we let ċ(a) and ċ(b) denote ˙̃c(a) and ˙̃c(b),

respectively. Hence, a smooth curve segment has a well-defined velocity ċ(t) ∈ Tc(t)M for all t ∈ [a, b].

Furthermore, we say that curve segment c is regular if it is smooth with non-vanishing velocity, i.e.,

ċ(t) ̸= 0 for all t ∈ [a, b]. Lastly, we describe a curve segment c : [a, b] → M as piecewise regular if it
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can be partitioned in a manner, specifically a = t0 < t1 < . . . < tk−1 < tk = b, such that its restrictions

c|[ti−1,ti]
are regular for i = 1, 2, . . . , k. A curve segment c : [a, b] → M connects x to y if c(a) = x and

c(b) = y. A manifold M is connected if each pair of points on M is connected by a curve segment.

Remark 11. Throughout this thesis, in cases where a manifold is not connected, our attention is directed

to each of its connected components.

Let M be a connected Riemannian manifold. Given a piecewise regular curve segment c : [a, b] → M,

we define the length of c as the integral of its speed (the norm of velocity is called speed):

L(c) =

∫ b

a
∥ċ(t)∥c(t) dt.

If c is regular, the integrand above is continuous on [a, b] (review (2.21)) and thus integral is well defined

[160, Theorem 6.8, Page 125]. If there are “kinks” in the curve, we consider the integrals of separate

smooth curve segments and compute the final result by summing over these segments.

The notion of length of a curve leads to a natural distance on M, called the Riemannian distance:

d(x, y) := inf{L(c) | c is a piecewise regular curve segment on M connecting x to y} (2.33)

By [126, Proposition 2.50], if M is connected then any two points of M can be joined by a piecewise

regular curve segment, and thus (2.33) is well-defined for each x, y ∈ M. It can be shown that d is a

legitimate distance function M×M → R satisfying non-negativity, symmetry, and the triangle inequality

(see proof of [126, Theorem 2.55]).

Example 15. When M = Rn, the Riemannian distance is the standard Euclidean distance d(x, y) =

∥x− y∥2.

Equipped with such Riemannian distance, M becomes a metric space and then generate a natural

topology, called metric topology. Specifically, we define the open ball of radius r > 0 centered at a point

x ∈ M as:

Br(x) = {y ∈ M : d(x, y) < r}.

A subset U of M is defined to be open if for each point x ∈ U , there exists some r > 0 such that

Br(x) ⊂ U . We hope to see this topological structure is the same as the original topological structure

(given as a priori in Definition 1), and indeed it is. The following important result comes from [126,

Theorem 2.55].

Theorem 6 (Riemannian Manifolds as Metric Spaces). Let M be a connected Riemannian manifold.

With the distance function given by (2.33), M is a metric space whose metric topology coincides with its

original topology (given as a priori in Definition 1).

2.12.2 Completeness

Recall that a sequence {xn} in a metric space M is Cauchy if for every ε > 0 there exists an integer k

such that d(xm, xn) < ε holds for all m,n > k. The theorem below is a fundamental classical result. For

a proof, refer to [64, Theorem 2.8, Page 146] or [126, Theorem 6.19].
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Theorem 7 (Hopf-Rinow Theorem). Let M be a connected Riemannian manifold. Then the following

four statements are equivalent:

(i) (Heine-Borel property) the closed and bounded subsets of M are compact;

(ii) M is (metrically) complete as a metric space equipped with a Riemannian distance, i.e., every

Cauchy sequence converges on the manifold.

(iii) M is geodesically complete, i.e., every geodesic on the manifold can be extended to a geodesic

defined on the whole R.

(iv) The domain of the exponential map O is the whole tangent bundle TM. That is, for every x ∈ M,

the exponential map Expx is defined on the entire tangent space TxM.

In addition, any of the statements above implies that

(v) each pair of x, y ∈ M can be joined by a (not necessarily unique) minimal geodesic segment

c : [0, 1] → M, i.e., c(0) = x, c(1) = y and d(x, y) = L(c).

By Hopf-Rinow Theorem, we conclude that the bounded subset in a complete manifold M lies in a

compact subset of M.

Remark 12. Throughout the thesis, we assume that M is a connected, complete Riemannian manifold.

In case of (v) above, if a unique geodesic segment joining p to q exists, we denote it by γpq. We will often

omit the subscript if it is clear.

As a result of the following conclusions, complete manifolds are quite common, e.g., Stiefel manifold.

Lemma 1 ([34, Example 10.10]). Compact Riemannian manifold is complete.

2.13 Parallel Transport

Tangent vectors at different points on a manifold M belong to different tangent spaces, and therefore

cannot be directly added together or compared. In differential geometry, there are a few ways to compare

vectors in different tangent spaces, and parallel transport is one of the most fundamental methods. Parallel

transport provides a way to move a tangent vector from one point to another along a curve in a way that

the vector remains “parallel” to itself. This section intrudes the parallel transport.

Consider a manifold M equipped with a connection ∇, thus with the induced covariant derivative D
dt .

Let c : I → M be a smooth curve. Recall that X(c) denotes the set of all smooth vector fields along the

curve c, see (2.29). We say that a vector field Z ∈ X(c) is parallel if D
dtZ = 0. The next important result

comes from [126, Theorem 4.32].

Proposition 5 (Existence and Uniqueness of Parallel Vector Field). For any smooth curve c : I →
M, t0 ∈ I and ξ ∈ Tc(t0)M, there exists a unique parallel vector field Z ∈ X(c) such that Z(t0) = ξ.

Definition 27 (Parallel Transport). Given a smooth curve γ on M, parallel transport of the tangent space

at γ(t0) to the tangent space at γ(t1) along γ,

Pt1→t0
γ : Tγ(t0)M → Tγ(t1)M

is defined by Pt1→t0
γ (ξ) = Z(t1), where Z is the unique parallel vector field such that Z(t0) = ξ.



44 Chapter 2. Review of Riemannian Geometry

Note that the parallel transport from x to y depends on the curve γ connecting x and y. The parallel

transport Pt1→t0
γ is linear; Pt2→t1

γ ◦ Pt1→t0
γ = Pt2→t0

γ ; Pt→t
γ is the identity. In particular, the inverse of

Pt1→t0
γ is Pt0→t1

γ .

Example 16. When M = Rn, the parallel transport of a vector v from a point x to another point y along

any curve is the identity map. This is because the tangent spaces of Euclidean spaces do not change. They

remain the same, see (2.9).

2.14 Vector Transports

In last section, we have introduce a tool called parallel transport in order to move a tangent vector from

one tangent space to another. However, parallel transport may be computationally expensive or even

intractable for certain types of manifolds. For example, on the Stiefel manifold, no explicit formula for

parallel transport is known, making it difficult to apply in practical algorithm. Now, in this section let

us move on to the concept of a vector transport T on a manifold M. It is a more general concept that

includes parallel transport as a special case.

Roughly speaking, a vector transport takes in a pair of tangent vectors in the same tangent space and

returns another tangent vector in the other tangent space. Define the Whitney sum of tangent bundles:

TM⊕ TM := {(x, η, ξ) : x ∈ M, η, ξ ∈ TxM} ,

which can be endowed with a smooth structure. Now we define the vector transport as follows.

Definition 28 (Vector Transports). A smooth map

T: TM⊕ TM → TM : (x, η, ξ) 7→ Tη(ξ),

is called a vector transport on M if there exists a associated retraction R on M such that T satisfies the

following properties for all x ∈ M:

1. (Associated retraction) Tη (ξ) ∈ TRx(η)M for all η, ξ ∈ TxM.

2. (Consistency) T0x (ξ) = ξ for all ξ ∈ TxM.

3. (Linearity) Tη (aξ + bζ) = aTη (ξ) + bTη (ζ) for all a, b ∈ R and η, ξ, ζ ∈ TxM.

The first and third conditions establish that fixing any x ∈ M and η ∈ TxM, the map

Tη : TxM → TRx(η)M, ξ 7→ Tη(ξ),

is a linear operator. According to the second condition, T0x = IdTxM. It makes sense because if we try

to move a tangent vector to its original tangent space, we should do nothing. Additionally, T is isometric

if the following equation holds, for all x ∈ M and all ξ, ζ, η ∈ TxM:

⟨Tηξ,Tηζ⟩ = ⟨ξ, ζ⟩.

In other words, the adjoint and the inverse coincide, i.e., T∗
η = T−1

η for any x ∈ M and η ∈ TxM.
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Remark 13. Isometry plays an irreplaceable role in the proofs about quasi-Newton RIPM in Chapter 7.

For the submanifolds M of a linear space E , which are mostly what we consider in practice, there are

many ways to construct an isometric vector transport, see [104, Section 2.3].

There are two important classes of vector transport as follows. Let R be a retraction on M.

Example 17 (Differentiated Retraction [5, Eqaution (8.6)]). The differentiated retraction,

Tη(ξ) := DRx(η)[ξ], x ∈ M, η, ξ ∈ TxM,

is a valid vector transport.

Example 18 (Parallel Transport [5, Eqaution (8.2)]). For any x ∈ M, η ∈ TxM,

Tη (ξ) := P1→0
γ (ξ)

is a valid vector transport, where Pγ denotes the parallel transport along the curve t 7→ γ(t) := Rx (tη).

We often omit the superscript 1→0 if it is clear from the context. In particular, parallel transport is

isometric.

2.15 Totally Retractive Neighborhood

In this section, we discuss two neighborhoods: retractive neighborhood and totally retractive neighborhood.

These concepts were first proposed in [104] and formally stated in [220]. We begin by stating the classical

inverse function theorem on manifolds (see [127, Theorem 4.5]).

Theorem 8 (Inverse Function Theorem on Manifolds). Let F : M → N be a smooth map between two

manifolds. If x ∈ M is a point such that DF (x) is invertible, then there exist neighborhoods U ⊂ M of

x and V ⊂ N of F (x) such that F |U : U → V is a diffeomorphism.

Consider the retraction Rx : TxM → M, by property DRx (0x) = IdTxM and the inverse function

theorem above, there exists a neighborhood V of 0x in the tangent space TxM such that the restriction

Rx|V : V ⊂ TxM → Rx(V) ⊂ M

is a diffeomorphism; thus, R−1
x (y) is well defined for all y ∈ M sufficiently close to x. In this case, we

call Rx(V) a retractive neighborhood of x. The well-known concept of the normal neighborhood of x

(see [64, Page 70]) is defined similarly, but with consideration solely for R = Exp.

The following existence theorem gives the definition of a totally retractive neighborhood [220,

Theorem 2]. Its proof can be arrived at along the lines of [64, Theorem 3.7, Page 72], which is the same

statement as Theorem 9 but restricted to R = Exp.

Theorem 9 (Existence of Totally Retractive Neighborhood). Let R be a retraction on M. For any x̄ ∈ M
there exist a neighborhood W of x̄ and a constant δ > 0 such that for every x ∈ W , the restriction

Rx|Bδ(0x)
: Bδ (0x) ⊂ TxM → Rx(Bδ (0x)) ⊂ M
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Fig. 2.4 An illustration of totally retractive neighborhood x̄ ∈ M. See Theorem 9 and Remark 14.

is a diffeomorphism and W ⊂ Rx (Bδ (0x)). Here Bδ (0x) is the open ball in TxM centered at 0x with

radius δ. In this case, we call W a totally retractive neighborhood of x̄. See Fig. 2.4.

Remark 14. The existence of a totally retractive neighborhood shows that there is a neighborhood W of

x̄ such that R−1
x (y) is well defined for any x, y ∈ W . See Fig. 2.4. In what follows, we will suppose that

an appropriate neighborhood has been chosen by default for the well-definedness of R−1
x (y).

2.16 Lipschitz Continuity with Respect to a Vector Transport

Several Riemannian versions of Lipschitz continuity have been defined, e.g., [34, Section 10.4]. They can

all be viewed as Riemannian extension of the usual definition, i.e., they can all reduce to the usual definition

of Lipschitz continuity when M is Rn. However, there are many differences in their formulations. Here,

we consider the Lipschitz continuity with respect to a vector transport and its associated retraction. In

what follows, let M be a Riemannian manifold endowed with a vector transport T and an associated

retraction R.

2.16.1 Lipschitz Continuity of Gradients and Vector Fields

First, let us consider the Lipschitz-continuous gradient of a scale field f .

Definition 29 ([102, Definition 5.2.1]). A function f : M → R is Lipschitz continuously differentiable

with respect to T in U ⊂ M if it is differentiable and there exists a number κ > 0 such that, for all

x, y ∈ U ,

∥grad f(y)− Tη grad f(x)∥ ≤ κ∥η∥,

where η = R−1
x y.

Lemma 2 ([102, Lemma 5.2.1]). If a function f : M → R is C2, then, for any x̄ ∈ M and for any vector

transport T, there exists a neighborhood U of x̄ such that f is Lipschitz continuously differentiable with

respect to T in U .
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We get the following similar results when the gradient vector field is replaced by a general vector field.

The proof of Lemma 3 is similar to that of [102, Lemma 5.2.1].

Definition 30. A vector field F on M is Lipschitz continuous with respect to T in U ⊂ M if there exists

a number κ > 0 such that, for all x, y ∈ U ,

∥F (y)− TηF (x)∥ ≤ κ∥η∥,

where η = R−1
x y.

Lemma 3. If F is a C1 vector field, then, for any x̄ ∈ M and any vector transport T, there exists a

neighborhood U of x̄ such that F is Lipschitz continuous with respect to T in U .

2.16.2 Lipschitz Continuity of Hessians and Covariant Derivatives

Going one degree higher, let us now discuss the definition of Lipschitz-continuous Hessian of a scale

field f . Recall that the Hessian of f associates to each x a linear operator Hess f(x) from and to TxM.

Moreover, the inverse of Tη is needed in the following definitions, so we can assume that vector transport

T is isometric, e.g., parallel transport in Example 18 and Remark 13.

Definition 31 ([104, Assumption 3]). A function f : M → R is twice Lipschitz continuously differentiable

with respect to T in U ⊂ M if it is twice differentiable and there exists a number κ > 0 such that, for all

x, y ∈ U , ∥∥Hess f(y)− Tη Hess f(x)T
−1
η

∥∥ ≤ κd(x, y),

where η = R−1
x y.

Lemma 4 ([104, Lemma 4]). If f : M → R is C3, then for any x̄ ∈ M and any isometric vector

transport T, there exists a neighborhood U of x̄, such that f is twice Lipschitz continuously differentiable

with respect to T in U .

If the operator, Hess f(x), above is replaced by a general covariant derivative ∇F (x), we can get the

next results in a similar way. Lemma 5 can be proven in a similar way as [104, Lemma 4].

Definition 32. Given a vector field F on M. The map x 7→ ∇F (x) is Lipschitz continuous with respect

to T in U ⊂ M if there exists a number κ > 0 such that, for all x, y ∈ U ,

∥∥∇F (y)− Tη∇F (x)T−1
η

∥∥ ≤ κd(x, y),

where η = R−1
x y.

Lemma 5. If F is a C2 vector field on M, then for any x̄ ∈ M and any isometric vector transport T,

there exists a neighborhood U of x̄ such that the map x 7→ ∇F (x) is Lipschitz continuous with respect to

T in U .
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2.17 Local Errors of Retractions and Vector Transports

Notice that in the previous section on the definitions of Lipschitz continuity, we used ∥η∥ with η = R−1
x y

or d(x, y) to denote the upper bound on the right-hand side. The next lemma shows that the two are not

essentially different. When M = Rn, both reduce to ∥x− y∥.

Lemma 6 (Local Errors of Retractions). Let M be a Riemannian manifold endowed with a retraction R

and let x̄ ∈ M. Then,

(i) for any ε > 0 there is an δε > 0 such that for all x in a sufficiently small neighborhood of x̄ and all

ξ, η ∈ TxM with ∥ξ∥, ∥η∥ ≤ δε,

(1− ε)∥ξ − η∥ ≤ d(Rx(η),Rx(ξ)) ≤ (1 + ε)∥ξ − η∥;

(ii) there exist a0, a1 > 0, and δa0,a1 > 0 such that for all x in a sufficiently small neighborhood of x̄

and all ξ, η ∈ TxM with ∥ξ∥, ∥η∥ ≤ δa0,a1 ,

a0∥ξ − η∥ ≤ d(Rx(η),Rx(ξ)) ≤ a1∥ξ − η∥;

(iii) there exist a0, a1 > 0, and δa0,a1 > 0 such that for all x in a sufficiently small neighborhood of x̄

and all ξ ∈ TxM with ∥ξ∥ ≤ δa0,a1 ,

a0∥ξ∥ ≤ d(x,Rx(ξ)) ≤ a1∥ξ∥;

(iv) there exist a0, a1 > 0 such that for all x in a sufficiently small neighborhood of x̄,

a0∥ξ∥ ≤ d(x, x̄) ≤ a1∥ξ∥,

where ξ = R−1
x̄ (x).

Proof. (i) and (ii) come directly from [157, Lemma 6] and [104, Lemma 2]. Note that if we select any

ε > 0 and let a0 := 1− ε, a1 := 1 + ε, then (i) implies (ii). (iii) follows from (ii) when we take η = 0.

Next, we show (iv). Taking x = x̄ in (iii), we have a0∥ξ∥ ≤ d(x̄,Rx̄(ξ)) ≤ a1∥ξ∥ for all ξ ∈ Tx̄M
with ∥ξ∥ ≤ δa0,a1 . Since Rx̄ is a local diffeomorphism at 0x̄ ∈ Tx̄M, for all x in a sufficiently small

neighborhood of x̄, ξ = R−1
x̄ (x) is well defined and ∥ξ∥ ≤ δa0,a1 . Therefore, by substituting Rx̄ (ξ) = x,

we have a0∥ξ∥ ≤ d(x, x̄) ≤ a1∥ξ∥.

Lemma 7 ([81, Lemma 14.5]). Let F be a C1 vector field on a Riemannian manifold M and let

x∗ ∈ M be a nonsingular zero of F , i.e., F (x∗) = 0 and ∇F (x∗) be nonsingular. Then, there exists a

neighborhood U of x∗ with constants a2, a3 > 0 such that, for all x ∈ U ,

a2d(x, x
∗) ≤ ∥F (x)∥ ≤ a3d(x, x

∗).

The following corollary combines Lemma 7 with (iv) of Lemma 6.
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Corollary 1. Let F be a C1 vector field on a Riemannian manifold M and let x∗ ∈ M be a nonsingular

zero of F. Then, there exists a neighborhood U of x∗ with constants a4, a5 > 0 such that, for all x ∈ U ,

a4∥ξ∥ ≤ ∥F (x)∥ ≤ a5∥ξ∥,

where ξ = R−1
x∗ (x).

The next lemma compares any two vector transports. In particular, we often compare a certain vector

transport with the parallel transport.

Lemma 8 ([104, Lemma 6]). Let M be a Riemannian manifold endowed with two vector transports T1

and T2, and let x̄ ∈ M. Then, there exist a constant a6 and a neighborhood U of x̄ such that, for all

x, y ∈ U and all ξ ∈ TyM,

∥T−1
1η
ξ − T−1

2η
ξ∥ ≤ a6∥ξ∥∥η∥,

where η = R−1
x (y).

2.18 Fundamental Theorem of Calculus in Riemannian Case

Let F : Rn → Rn be C1 in an open convex set D ⊂ Rn containing x. We know that the fundamental

theorem of calculus, e.g., [59, Lemma 4.1.9], is stated as: for any x+ η =: y ∈ D, we have

F (y)− F (x) =

∫ 1

0
JF (x+ tη)ηdt, (2.34)

where JF (z) ∈ Rn×n denotes the Jacobian matrix of F at z ∈ Rn. In this section, we consider the

fundamental theorem of calculus in the Riemannian case.

Lemma 9 ([104, Lemma 8]). Let F be a C1 vector field on M endowed with a retraction R and let

x̄ ∈ M. Then, there exist a neighborhood U of x̄ and a constant c1 ≥ 0 such that, for all x, y ∈ U ,∥∥∥∥P0→1
γ F (y)− F (x)−

∫ 1

0
P0→t
γ ∇F (γ(t))Pt→0

γ ηdt

∥∥∥∥ ≤ c1∥η∥2, (2.35)

where η = R−1
x (y) and Pγ is a parallel transport along the curve t 7→ γ(t) := Rx (tη).

Note that if M = Rn, then (2.35) holds with c1 = 0 and reduces to (2.34), because for M = Rn,

parallel transport P is identity map; γ(t) = x+ tη, and linear operator ∇F (z) identifies matrix JF (z). In

fact, c1 = 0 also holds for general M if we choose parallel transport along the geodesic γ(t) = Expx(tη).

This result is also shown in next lemma.

Lemma 10 ([77, Equation (2.4)]). Let F be a C1 vector field on M and x̄ ∈ M. Then, there exists a

neighborhood U of x̄ such that, for all x, y ∈ U ,

P0→1
γ F (y)− F (x) =

∫ 1

0
P0→t
γ ∇F (γ(t))Pt→0

γ ηdt,

where η = Exp−1
x (y) and Pγ is a parallel transport along the geodesic t 7→ γ(t) := Expx (tη).
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2.19 Some Lemmas on Newton method

In the Euclidean setting, there are two important estimations (inequalities) for convergence analysis of the

Newton and quasi-Newton methods for solving nonlinear equations (see [59, Lemma 4.1.12 & 4.1.15]).

Here, let F : Rn −→ Rn be C1 in an open convex set D ⊂ Rn containing x, and let Jacobian map

x 7→ JF (x) be Lipschitz continuous on D with constant γ. Then, for any x+ p =: y ∈ D, we have

∥F (y)− F (x)− JF (x)p∥ ≤ γ

2
∥p∥2. (2.36)

Moreover, for any v, u ∈ D, we have

∥F (v)− F (u)− JF (x)(v − u)∥ ≤ γmax {∥v − x∥ , ∥u− x∥} ∥v − u∥. (2.37)

In this section, we consider these estimations in the Riemannian case.

The next lemma corresponds the first estimation (2.36) in the Riemannian case. This result is used for

convergence analysis of the Riemannian Newton method.

Lemma 11. Let F be a C2 vector field and x̄ ∈ M. Then, there exist a neighborhood U of x̄ and a

constant c2 > 0 such that, for all x ∈ U ,

∥∥P0→1
γ F (x)− F (x̄)−∇F (x̄)η

∥∥ ≤ c2d
2(x̄, x),

where η = R−1
x̄ x and Pγ is a parallel transport along the curve t 7→ γ(t) := Rx̄(tη).

Proof. It follows from∥∥P0→1
γ F (x)− F (x̄)−∇F (x̄)η

∥∥
≤
∥∥∥∥P0→1

γ F (x)− F (x̄)−
∫ 1

0
P0→t
γ ∇F (γ(t))Pt→0

γ ηdt

∥∥∥∥+ ∥∥∥∥∫ 1

0
P0→t
γ ∇F (γ(t))Pt→0

γ ηdt−∇F (x̄)η
∥∥∥∥

≤c1∥η∥2 +
∥∥∥∫ 1

0

[
P0→t
γ ∇F (γ(t))Pt→0

γ −∇F (x̄)
]
ηdt
∥∥∥. (by Lemma 9)

Let θ be the last term of above, i.e., θ :=
∥∥∥ ∫ 1

0

[
P0→t
γ ∇F (γ(t))Pt→0

γ −∇F (x̄)
]
ηdt
∥∥∥. Note that

θ ≤
∫ 1

0

∥∥P0→t
γ ∇F (γ(t))Pt→0

γ −∇F (x̄)
∥∥ ∥η∥dt

≤
∫ 1

0
c0d(x̄,Rx̄(tη)) ∥η∥ dt (by Lemma 5 and Lipschitz continuity at x̄)

≤
∫ 1

0
c0a1t∥η∥ ∥η∥ dt =

1

2
c0a1∥η∥2. (by (iv) of Lemma 6)

Again, by (iv) of Lemma 6, we have

∥∥P0→1
γ F (x)− F (x̄)−∇F (x̄)η

∥∥ ≤ (c1 +
1

2
c0a1)∥η∥2 ≤ (c1 +

1

2
c0a1)/a

2
0d

2(x̄, x).

Letting c2 := (c1 +
1
2c0a1)/a

2
0 completes the proof.
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The next lemma corresponds the second estimation (2.37) in the Riemannian case. This result is used

in the convergence analysis of the Riemannian quasi-Newton method, where the transport of tangent

vectors in different tangent spaces is required, so we use general vector transport T instead of parallel

transport P to formulate the lemma. This point is different from Lemma 11.

Lemma 12. Let F be a C2 vector field and x̄ ∈ M. Then, there exist a neighborhood U of x̄ and a

constant c3 > 0 such that, for all x, y ∈ U:

(i) if ξ = R−1
x (y) , ζ = R−1

x̄ (x) , then∥∥∥T−1
ξ F (y)− F (x)− Tζ∇F (x̄) T−1

ζ ξ
∥∥∥ ≤ c3∥ξ∥max{d(x, x̄), d(y, x̄)};

(ii) if η = R−1
x (x̄), η′ = R−1

x̄ (x), then∥∥∥T−1
η F (x̄)− F (x)− Tη′∇F (x̄)T−1

η′ η
∥∥∥ ≤ c3∥η∥d(x, x̄).

Proof. (i) can be proven in the same way as [104, Lemma 12], where F is specified as the Riemannian

gradient and ∇F as the Riemannian Hessian. (ii) is a special case of (i): set y = x̄, ξ = η, and ζ = η′.

Finally, we end this section with the following well-known lemmas for Newton methods for solving

nonlinear equations. They are natural extensions on Riemannian setting.

Lemma 13 (Banach’s Lemma [149, Lemma 2.3.2], [117, Theorem 4, Page 155]). Let A, B be linear

operators on some tangent space TxM (indeed, any finite-dimensional vector space). If A is nonsingular

and ∥A−1∥∥B − A∥ < 1, then B is nonsingular and

∥B−1∥ ≤ ∥A−1∥
1− ∥A−1∥∥B − A∥

.

Here, norms above are operator norms (2.1).

Lemma 14 ([74, Lemma 3.2]). Given a vector field F on M. If the map p 7→ ∇F (p) is continuous at p∗

and ∇F (p∗) is nonsingular, then there exist a neighborhood U of p∗ and a constant Ξ > 0 such that, for

all p ∈ U ,∇F (p) is nonsingular and
∥∥∇F (p)−1

∥∥ ⩽ Ξ.

2.20 Geometry Tools of Product Manifold N

The (Cartesian) product of two (or, more than two) manifolds, M1 × M2, itself forms a manifold

(see [34, Proposition 3.20, Exercise 8.31]). If one is familiar with the geometry tools on M1 and M2

individually, then manipulating their product manifold becomes straightforward. Boumal [34] collected

the all geometry tools about product manifolds: see [34, Table 7.2] for a summary. In this section, we will

consider a special product manifold N consisting by a general manifold M and three Euclidean spaces.

N is a very important product manifold for analyzing the Riemannian interior point method in Chapter 5,

Chapter 6 and Chapter 7.

Let M be a Riemannian manifold with metric ⟨·, ·⟩ and l and m be positive integers. Let Euclidean

spaces Rl and Rm equipped with the canonical geometry tools, see Example 2, 8, 10, 11, 15, 5, 12, 16.
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Considering the product manifold defined by

N := M× Rl × Rm × Rm, (2.38)

and taking a point denoted by w := (x, y, z, s) ∈ N , its associated tangent space is the product of tangent

spaces (see [34, Proposition 3.20]):

TwN ∼= TxM× Rl × Rm × Rm. (2.39)

In above, we used the canonical identification of Euclidean spaces in (2.9). The tangent bundle of N is

TN = TM× TRl × TRm × TRm (see [34, Equation (3.31)]).

For any w ∈ N and ξ = (ξx, ξy, ξz, ξs) , ζ = (ζx, ζy, ζz, ζs) ∈ TwN , then product metric

⟨ξ, ζ⟩w := ⟨ξx, ζx⟩x + ξTy ζy + ξTz ζz + ξTs ζs, (2.40)

defines a Riemannian metric on N (see [34, Example 3.57]). Then, the induced norm ∥ξ∥w :=
√

⟨ξ, ξ⟩w
on TwN satisfies

∥ξ∥2w = ∥ξx∥2x + ∥ξy∥22 + ∥ξz∥22 + ∥ξs∥22, (2.41)

where ∥ · ∥2 denotes the l2 norm. With metric (2.40), the Riemannian distance on N is given as, for any

w1, w2 ∈ N ,

d(w1, w2) =

√
d2(x1, x2) + ∥y1 − y2∥22 + ∥z1 − z2∥22 + ∥s1 − s2∥22, (2.42)

where d in right side denotes Riemannian distance on M (see [34, Exercise 10.14]). We conflate the

notations of distance d for N and M since they are clear from context.

For any w ∈ N and ξ = (ξx, ξy, ξz, ξs) ∈ TwN , the map

R̄w(ξ) := (Rx(ξx), y + ξy, z + ξz, s+ ξs) (2.43)

defines a retraction on N (see [34, Exercise 3.50]). Moreover, R̄ is the exponential map on N if R is the

exponential map on M (see [34, Exercise 10.32]). For any w ∈ N and ξ, ζ ∈ TwN , the map

T̄ζξ = T̄(ζx,ζy ,ζz ,ζs)(ξx, ξy, ξz, ξs) := (Tζx(ξx), ξy, ξz, ξs) (2.44)

is a vector transport on N with an associated retraction R̄ in (2.43) if T is a vector transport on M with

an associated R in the right hand of (2.43) ; equivalently, fixing ζ ∈ TwN , it is the linear operator

T̄ζ : TwN → TR̄w(ζ)N , T̄ζ := (Tζx , Id, Id, Id). (2.45)

Here, Id means identity map on Rl or Rm. If it exists, its inverse

T̄−1
ζ = (T−1

ζx
, Id, Id, Id). (2.46)

Note that T̄ is isometric if T is isometric.
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The next lemma establishes a way of defining a connection on product manifolds. It can easily be

extended to the product manifold consisting more than two manifolds.

Lemma 15 (Product Connection [34, Exercise 5.4 & 5.13]). Let M1 and M2 be two Riemannian

manifolds, respectively equipped with Riemannian connections ∇1 and ∇2. Consider the product manifold

M = M1 ×M2. Let (u1, u2) be tangent to M at (x1, x2). Then, the map ∇ : TM× X(M) → TM
defined by

∇(u1,u2) (F1, F2) =
(
∇1

u1
F1(·, x2) + DF1(x1, ·)(x2)[u2],∇2

u2
F2(x1, ·) + DF2(·, x2)(x1)[u1]

)
is a Riemannian connection on M; we call it the product connection. The notation F1(·, x2) represents

the map obtained from F1 : M1 ×M2 → TM1 by fixing the second input to x2. In particular, F1(·, x2)
is a vector field on M1, while F1(x1, ·) is a map from M2 to Tx1M1. The map F2 is understood in the

same way.

Consider Rl and Rm equipped with the canonical Euclidean connection (Example 10); then, in the

way of Lemma 15 the connection of M essentially determines the connection of N , which is Riemannian

provided that connection of M is Riemannian. In this thesis, we conflate the notations of Riemannian

connection ∇ for N and M since they are clear from context.

2.21 Note and References

This chapter presents the basic tools of Riemannian geometry, as well as useful results for subsequent

chapters. For a more complete understanding of Riemannian geometry, see [127, 126]; for Riemannian

optimization, see [5, 34, 165].

We end this chapter with some discussion about quotient manifolds. Riemannian manifolds are

extensions of Euclidean space, and Euclidean space is a special case of Riemannian manifolds. In fact, not

all manifolds are subsets of Euclidean spaces. For example, let us consider the Grassmannian manifold,

denoted as Gr(n, p), which is the set of all p-dimensional linear subspaces in Rn. Note that the element

of Gr(n, p) is not a point in Rn. Actually, we can define Grassmannian manifold form some quotient

structure; thus, such manifolds are called quotient manifolds. They can also become the Riemannian

manifolds with some Riemannian metric. Hence, theoretically, manifolds can be very abstract.

A famous example of an optimization problem over Gr(n, p) is principal component analysis (PCA).

Given k points y1, . . . , yk ∈ Rn, the goal of PCA is to find a linear subspace L ∈ Gr(n, p) which fits

the data y1, . . . , yk as well as possible, in the sense that it solves minL∈Gr(n,p)

∑k
i=1 (L, yi)

2 , where

dist(L, y) is the Euclidean distance between y and the point in L closest to y. This particular objective

function admits an explicit solution involving the SVD of the data matrix M = [y1, . . . , yk]. However,

this is not the case for other objective functions. For these, we may need more general optimization

algorithms to address:

min
L∈Gr(n,p)

f(L)

where objective function f : Gr(n, p) → R. Clearly, Euclidean optimization cannot solve these problems

unless we convert the problem into some equivalent Euclidean problem.
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Chapter 3

Riemannian Smoothing Method (RSM)

Part Section

Part 1. Preparation work

3.1 Review of Smoothing Methods
3.2 Euclidean Generalized Subdifferentials
3.3 Riemannian Generalized Subdifferentials
3.4 Smoothing Functions
3.5 Riemannian Gradient Sub-Consistency

Part 2. Core proposal 3.6 Riemannian Smoothing Method

Part 3. Experiments and notes 3.7 Numerical Experiments
3.8 Note and References

Now let us consider the Nonsmooth Riemannian Optimization (NRO):

min
x∈M

f(x), (NRO)

where M ⊂ Rn and f : Rn → R is a lower semi-continuous function on Rn. Indeed, f may be nonsmooth

or even non-Lipschitzian. For convenience, the term Smooth Riemannian Optimization (SRO) refers to

(NRO) when f(·) is continuously differentiable on Rn. To avoid confusion, we use g instead of f ,

min
x∈M

g(x). (SRO)

Throughout this subsection, we will refer to many of the concepts in [214].

3.1 Review of Smoothing Methods

Smoothing methods [52], which use a parameterized smoothing function to approximate the objective

function, are effective on a class of nonsmooth optimizations in Euclidean space. Recently, Zhang, Chen

and Ma [214] extended a smoothing steepest descent method to the case of Riemannian submanifolds in

Rn. This is not the first time that smoothing methods have been studied on manifolds. Liu and Boumal

[128] extended the augmented Lagrangian method and exact penalty method to the Riemannian case.

The latter leads to a nonsmooth Riemannian optimization problem to which they applied smoothing
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techniques. Cambier and Absil [43] dealt with the problem of robust low-rank matrix completion by

solving a Riemannian optimization problem, wherein they applied a smoothing conjugate gradient method.

In this section, we propose a general Riemannian smoothing method and apply it to the CP factorization

problem.

3.2 Euclidean Generalized Subdifferentials

First, let us review the usual concepts and properties related to generalized subdifferentials on Rn. The

function is termed lower semi-continuous (l.s.c.) if, intuitively, it does not “jump upwards” at any point.

We say that f : Rn → R is lower semi-continuous (l.s.c.) at x ∈ Rn if for every ε > 0, there exists

δ > 0 such that for all y ∈ Bδ(x),

f(x)− ε < f(y). (3.1)

A function is lower semi-continuous if it is lower semi-continuous at every point in Rn. Similarly, we say

that f is upper semi-continuous (u.s.c.) at x if (3.1) is replaced by f(y) < f(x) + ε. It is clear that f is

continuous at x if and only if f is lower semi-continuous and upper semi-continuous at this point.

Definition 33 (Subdifferential). For a lower semi-continuous function f : Rn → R.

• The regular (or Fréchet) subdifferential of f at x ∈ Rn are defined as

∂̂f(x) := {egradh(x) : ∃δ > 0 such that h ∈ C1(Bδ(x)) and

f − h attains a local minimum at x on Rn}.
(3.2)

• The limiting subdifferential of f at x ∈ Rn are defined as

∂f(x) := { lim
ℓ→∞

vℓ : vℓ ∈ ∂̂f(xℓ), (xℓ, f(xℓ)) → (x, f(x))}.

The above definition (3.2) of regular (or Fréchet) subdifferential ∂̂f(x) is not the standard one; the

standard definition follows [158, 8.3 Definition]. But these two definitions are equivalent by [158, 8.5

Proposition]. For locally Lipschitz functions, the Clarke subdifferential at x ∈ Rn, ∂◦f(x), is the convex

hull of the limiting subdifferential. Their relationship is as follows:

∂̂f(x) ⊂ ∂f(x) ⊂ ∂◦f(x).

In particular, if f is convex, ∂f(x) and ∂◦f(x) coincide with the classical subdifferential in convex

analysis [158, 8.12 Proposition].

Example 19. From a result on the pointwise max-function in convex analysis, we have

∂max(x) = conv{ei : i ∈ A(x)},

where “conv” denotes the convex hull, ei’s are the standard bases of Rn and A(x) := {i : xi = max(x)}.
Note that max: Rn → R is a convex function. For proofs, see [10, Theorem 3.23].
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3.3 Riemannian Generalized Subdifferentials

Next, we extend our discussion to include generalized subdifferentials of a nonsmooth function on

submanifolds M.

Definition 34 (Riemannian Subdifferential). Let M be an embedded submanifold of Rn, x ∈ M, and let

f : Rn → R be a lower semi-continuous function.

• The Riemannian regular (or Fréchet) subdifferential of f at x ∈ M are defined as

∂̂Rf(x) := {gradh(x) : ∃δ > 0 such that h ∈ C1(Bδ(x)) and

f − h attains a local minimum at x on M},

• The Riemannian limiting subdifferential of f at x ∈ M are defined as

∂Rf(x) := { lim
ℓ→∞

vℓ : vℓ ∈ ∂̂Rf(x
ℓ), (xℓ, f(xℓ)) → (x, f(x))}.

If M = Rn, the above definitions coincide with the usual regular (or Fréchet) and limiting subdiffer-

entials in Rn.

Proposition 6 ([214, Proposition 1]). Let M be an embedded submanifold of Rn, x ∈ M, and f : Rn →
R be a lower semicontinuous function. Suppose R : TM → M is a retraction defined in Definition 16.

Then

1. ∂̂Rf(x) = ∂̂ (f ◦ Rx) (0x) and ∂Rf(x) = ∂ (f ◦ Rx) (0x);

2. v ∈ ∂̂Rf(x) if and only if v ∈ TxM and the following holds:

f ◦ Rx (ηx) ≥ f ◦ Rx (0x) + ⟨v, ηx⟩+ o (∥ηx∥) , ∀ηx ∈ TxM

Definition 35 (Riemannian Limiting Stationary Point). we call a point x ∈ M a Riemannian limiting

stationary point of (NRO) if

0 ∈ ∂Rf(x). (3.3)

It follows directly that, for all x ∈ M, one has ∂̂Rf(x) ⊂ ∂Rf(x). According to Proposition 6, if x is

a local minimizer of f on M, then 0 ∈ ∂̂Rf(x). In this thesis, we will treat condition (3.3) as a necessary

condition for a local solution of (NRO) to exist.

3.4 Smoothing Functions

The smoothing function is the most important tool of the smoothing method.

Definition 36 (Smoothing Function). A function f̃(·, ·) : Rn × R++ → R is called a smoothing function

of f : Rn → R, if f̃(·, µ) is continuously differentiable in Rn for any µ > 0,

lim
z→x,µ↓0

f̃(z, µ) = f(x)
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and there exist a constant κ > 0 and a function ω : R++ → R++ such that

|f̃(x, µ)− f(x)| ≤ κω(µ) with lim
µ↓0

ω(µ) = 0. (3.4)

Example 20 ([53, Lemma 4.4]). The log-sum-exp function, lse(x, µ) : Rn × R++ → R, given by

lse(x, µ) := µ log

(
n∑

i=1

exp(xi/µ)

)
,

is the smoothing function of max(x) because we can see that:

(i) lse(·, µ) is smooth on Rn for any µ > 0. Its gradient egradx lse(x, µ) is given by σ(·, µ) : Rn →
∆n−1 ⊂ Rn,

egradx lse(x, µ) = σ(x, µ) :=
1∑n

ℓ=1 exp(xℓ/µ)
[ exp(x1/µ), · · · , exp(xn/µ) ]T ,

where ∆n−1 := {x ∈ Rn :
∑n

i=1 xi = 1, xi ≥ 0} is the unit simplex.

(ii) For all x ∈ Rn and µ > 0, we have max(x) < lse(x, µ) ≤ max(x) + µ log(n). Then, the constant

κ = log(n) and ω(µ) = µ. The above inequalities imply that limz→x,µ↓0 lse(z, µ) = max(x).

Table 3.1 List of smoothing functions of the absolute value function f(x) = |x| with parameters κ and
ω(µ) in Definition 36.

Function κ ω(µ)

f̃1(x, µ) =

{
|x| if |x| > µ

2
x2

µ + µ
4 if |x| ≤ µ

2

1
4 µ

f̃2(x, µ) =
√
µ2 + x2 1 µ

f̃3(x, µ) = 2µ log(1 + exp( xµ ))− x 2 log(2) µ

f̃4(x, µ) = x tanh
(

x
µ

)
, where tanh(z) is the hyperbolic tangent function. 1 µ

f̃5(x, µ) = x erf
(

x
µ

)
, where erf(z) := 2√

π

∫ z

0
exp(−t2)dt is the Gauss error function. 2

e
√
π

µ

3.5 Riemannian Gradient Sub-Consistency

Gradient sub-consistency or consistency is crucial to showing that any limit point of the Riemannian

smoothing method is also a limiting stationary point of (NRO).

Definition 37 (Gradient Sub-consistency on Rn). A smoothing function f̃ of f is said to satisfy gradient

sub-consistency on Rn if, for any x ∈ Rn,

Gf̃ (x) ⊂ ∂f(x), (3.5)

where the subdifferential of f associated with f̃ at x ∈ Rn is given by

Gf̃ (x) := {u ∈ Rn : egradx f̃ (zk, µk) → u for some zk → x, µk ↓ 0}.
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Definition 38 (Gradient Sub-consistency on M). Similarly, f̃ is said to satisfy Riemannian gradient

sub-consistency on M if, for any x ∈ M,

Gf̃ ,R(x) ⊂ ∂Rf(x), (3.6)

where the Riemannian subdifferential of f associated with f̃ at x ∈ M is given by

Gf̃ ,R(x) = {v ∈ Rn : grad f̃ (zk, µk) → v for some zk ∈ M, zk → x, µk ↓ 0}.

Moreover, if one substitutes the inclusion with equality “=” in (3.5), then f̃ satisfies gradient consis-

tency on Rn, and similarly in (3.6) for M. Thanks to the following useful proposition, we can induce

gradient sub-consistency on M from that on Rn if f is locally Lipschitz.

Proposition 7 ([214, Theorem 2]). Given an embedded submanifold M of Rn and a vector x ∈ M, let

f be a locally Lipschitz function near x on Rn, with f̃ being a smoothing function of f . If the gradient

subconsistency of f̃ at x on Rn holds, then the Riemannian gradient subconsistency of f̃ at x on M holds.

The next example illustrates Riemannian gradient sub-consistency on M for lse(x, µ) in Example 20,

since any convex function is locally Lipschitz continuous.

Example 21 ([53, Lemma 4.4]). The smoothing function lse(x, µ) of max(x) satisfies gradient consis-

tency on Rn. That is, for any x ∈ Rn,

∂max(x) = Glse(x) = { lim
xk→x,µk↓0

σ(xk, µk)}.

Note that the original assertion of [53, Lemma 4.4] is gradient consistency in the Clarke sense, i.e.,

∂◦max(x) = Glse(x).

3.6 Riemannian Smoothing Method

Motivated by the previous papers [43, 128, 214] on smoothing methods and Riemannian manifolds, we

propose a general Riemannian smoothing method. Algorithm 3 is the basic framework of this general

method.

3.6.1 Basic Riemannian Smoothing Method I

Now let us describe the convergence properties of the basic method. First, let us assume that the function

f̃(x, µk) has a minimizer on M for each value of µk.

Theorem 10. Suppose that each xk is an exact global minimizer of (3.7) in Algorithm 3. Then every limit

point x∗ of the sequence {xk} is a global minimizer of (NRO).

Proof. Let x̄ be a global solution of (NRO), that is,

f(x̄) ≤ f(x) for all x ∈ M.
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Algorithm 3: Basic Riemannian Smoothing Method for (NRO)

Input: Nonsmooth objective function f and one of its smoothing function f̃ , a (smooth)
Riemannian algorithm (called “sub-algorithm” here) for (SRO) and an initial point
x−1 ∈ M.

Output: Sequence {xk} ⊂ M.
Set k → 0, θ ∈ (0, 1) and µ0 > 0;
while stopping criterion not satisfied do

1. Solve
xk := arg min

x∈M
f̃(x, µk) (3.7)

approximately by using the chosen sub-algorithm, starting at xk−1;
2. µk+1 → θµk;
3. k → k + 1;

end

From the Definition 36 of the smoothing function, there exist a constant κ > 0 and a function ω : R++ →
R++ such that, for all x ∈ M,

−κω(µ) ≤ f̃(x, µ)− f(x) ≤ κω(µ) (3.8)

with limµ↓0 ω(µ) = 0. Substituting xk and combining with the global solution x̄, we have that

f̃(xk, µk) ≥ f(xk)− κω(µk) ≥ f(x̄)− κω(µk).

By rearranging this expression, we obtain

−κω(µk) ≤ f̃(xk, µk)− f(x̄). (3.9)

Since xk minimizes f̃(x, µk) on M for each µk, we have that f̃(xk, µk) ≤ f̃(x̄, µk), which leads to

f̃(xk, µk)− f(x̄) ≤ f̃(x̄, µk)− f(x̄) ≤ κω(µk). (3.10)

The second inequality above follows from (3.8). Combining (3.9) and (3.10), we obtain

|f̃(xk, µk)− f(x̄)| ≤ κω(µk). (3.11)

Now, suppose that x∗ is a limit point of {xk}, so that there is an infinite subsequence K such that

limk∈K x
k = x∗. Note that x∗ ∈ M because M is complete. By taking the limit as k → ∞, k ∈ K, on

both sides of (3.11), again by the definition of the smoothing function, we obtain

|f(x∗)− f(x̄)| = lim
k∈K

|f̃(xk, µk)− f(x̄)| ≤ lim
k∈K

κω(µk) = 0.

Thus, it follows that f(x∗) = f(x̄). Since x∗ ∈ M is a point whose objective value is equal to that of the

global solution x̄, we conclude that x∗, too, is a global solution.
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3.6.2 Basic Riemannian Smoothing Method II

This strong result requires us to find a global minimizer of each subproblem, which, however, cannot

always be done. The next result concerns the convergence properties of the sequence f̃(xk, µk) under the

condition that f̃ has the following additional property.

Definition 39 (Additional Property 1 (AP1): Approximate from Above).

0 < µ2 < µ1 =⇒ f̃(x, µ2) < f̃(x, µ1) for all x ∈ Rn. (AP1)

Example 22. The above property holds for lse(x, µ) in Example 20; i.e., we have lse(x, µ2) < lse(x, µ1)

on Rn, provided that 0 < µ2 < µ1. Note that under the equality,

n∑
l=1

exp(xl/µ) = exp{lse(x, µ)/µ},

the i-th component of σ(x, µ) can be rewritten as

σi(x, µ) = exp{(xi − lse(x, µ))/µ}.

For any fixed x ∈ Rn, consider the derivative of a real function µ→ lse(x, ·) : R++ → R. Then we have

egradµ lse(x, µ) = lse /µ−
∑n

i=1 xi exp(xi/µ)

µ exp (lse /µ)
=(lse−

n∑
i=1

xi exp{(xi − lse)/µ})/µ

=(lse−
n∑

i=1

xiσi)/µ ≤ 0,

where “lse, σ” are shorthand for lse(x, µ) and σ(x, µ). For the last inequality above, we observe that

σ ∈ ∆n−1; hence, the term
∑n

i=1 xiσi is a convex combination of all entries of x, which implies that∑n
i=1 xiσi ≤ max(x) < lse . This completes the proofs of our claims.

In [43], the authors considered a special case of Algorithm 3, wherein the smoothing function

f̃(x, µ) =
√
µ2 + x2 of |x| also satisfies (AP1) and a Riemannian conjugate gradient method is used for

(3.7).

Theorem 11. Suppose that f∗ := infx∈M f(x) exists and the smoothing function f̃ has property (AP1).

Let fk := f̃(xk, µk). Then the sequence {fk} generated by Algorithm 3 is strictly decreasing and

bounded below by f∗; hence,

lim
k→∞

|fk − fk−1| = 0.

Proof. For each k ≥ 1, xk is obtained by approximately solving

min
x∈M

f̃(x, µk),

starting at xk−1. Then at least, we have

f̃(xk−1, µk) ≥ f̃(xk, µk) = fk.
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Since µk = θµk−1 < µk−1, property (AP1) ensures

fk−1 = f̃(xk−1, µk−1) > f̃(xk−1, µk).

The claim that sequence {fk} is strictly decreasing follows from these two inequalities.

Suppose that, for all µ > 0 and for all x ∈ Rn,

f̃(x, µ) ≥ f(x). (3.12)

Then for each k,

fk = f̃(xk, µk) ≥ f(xk) ≥ inf
x∈M

f(x) = f∗,

which proves our claims.

Now, we show (3.12) is true if the smoothing function has property (AP1). Fix any x ∈ Rn; (AP1)

implies that f̃(x, ·) is strictly decreasing as µ → 0. Actually, f̃(x, ·) is monotonically increasing on

µ > 0. On the other hand, from the definition of the smoothing function, we have that

lim
µ↓0

f̃(x, µ) = f(x).

Hence, we have infµ>0 f̃(x, µ) = f(x), as claimed.

3.6.3 Enhanced Riemannian Smoothing Method

Note that the above weak result does not ensure that {fk} → f∗. Next, for better convergence (compared

with Theorem 11) and an effortless implementation (compared with Theorem 10), we propose an enhanced

Riemannian smoothing method: Algorithm 4. This is closer to the version in [214], where the authors use

the Riemannian steepest descent method for solving the smoothed problem (3.13).

Algorithm 4: Enhanced Riemannian Smoothing Method for (NRO)

Input: Nonsmooth objective function f and one of its smoothing function f̃ , a (smooth)
Riemannian algorithm (called “sub-algorithm” here) for (SRO) and an initial point
x−1 ∈ M. A nonnegative sequence {δk} → 0.

Output: Sequence {xk} ⊂ M.
Set k → 0, θ ∈ (0, 1) and µ0 > 0 ;
while stopping criterion not satisfied do

1. Solve
xk := arg min

x∈M
f̃(x, µk) (3.13)

approximately by using the chosen sub-algorithm, starting at xk−1, such that

∥ grad f̃(xk, µk)∥ < δk; (3.14)

2. µk+1 → θµk;
3. k → k + 1;

end
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The following result is adapted from [214, Proposition 4.2, Theorem 4.3]. Readers are encouraged to

refer to [214] for a discussion on the stationary point associated with f̃ on M.

Theorem 12. In Algorithm 4, suppose that the chosen sub-algorithm has the following general conver-

gence property for (SRO):

lim inf
ℓ→∞

∥ grad g(xℓ)∥ = 0. (3.15)

Moreover, suppose that, for all µk, the function f̃(·, µk) satisfies the convergence assumptions of the

sub-algorithm needed for g above and f̃ satisfies the Riemannian gradient sub-consistency on M (see

Definition 38). Then

1. For each k, there exists an xk satisfying (3.14); hence, Algorithm 4 is well-defined.

2. Every limit point x∗ of the sequence {xk} generated by Algorithm 4 is a Riemannian limiting

stationary point of (NRO) (see (3.3)).

Proof. Fix any µk. By (3.15), we have lim infℓ→∞ ∥ grad f̃(xℓ, µk)∥ = 0. Hence, there is a convergent

subsequence of ∥ grad f̃(xℓ, µk)∥ whose limit is 0. This means that, for any ε > 0, there exists an integer

ℓε such that ∥ grad f̃(xℓε , µk)∥ < ε. If ε = δk, we get xk = xℓε . Thus, statement (1) holds.

Next, suppose that x∗ is a limit point of {xk} generated by Algorithm 4, so that there is an infinite

subsequence K such that limk∈K x
k = x∗. From (1), we have

lim
k∈K

∥ grad f̃(xk, µk)∥ ≤ lim
k∈K

δk = 0,

and we find that grad f̃(xk, µk) → 0 for k ∈ K, xk ∈ M, xk → x∗, µk ↓ 0. Hence,

0 ∈ Gf̃ ,R(x
∗) ⊂ ∂Rf(x

∗).

Now let us consider the selection strategy of the nonnegative sequence {δk} with δk → 0. In [214],

when µk+1 = θµk shrinks, the authors set

δk+1 := ρδk (3.16)

with an initial value of δ0 and constant ρ ∈ (0, 1). In the spirit of the usual smoothing methods described

in [52], one can set

δk := γµk (3.17)

with a constant γ > 0. The latter is an adaptive rule, because µk determines subproblem (3.13) and its

stopping criterion at the same time. The merits and drawbacks of the two rules require more discussion,

but the latter seems to be more reasonable.

3.7 Numerical Experiments

As described at the end of Section 3.6, the algorithms in [214] and [43] are both special cases of our

algorithm. In this section, we compare them to show whether it performs better when we use other
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sub-algorithms or other smoothing functions. We applied Algorithm 4 to two problems: finding a sparse

vector (FSV) in a subspace and robust low-rank matrix completion, which are problems implemented

in [214] and [43], respectively. Since they both involve approximations to the ℓ1 norm, we applied the

smoothing functions listed in Table 3.1. We used the 6 solvers built into Manopt 7.0, namely,

• steepest descent;

• Barzilai-Borwein (i.e., gradient-descent with BB step size);

• Conjugate gradient;

• trust regions;

• BFGS (a limited-memory version);

• ARC (i.e., adaptive regularization by cubics).

3.7.1 Finding the Sparsest Vector (FSV)

The first experiment examines the problem of finding the sparsest vector in an n-dimensional linear

subspace of Rm in (FSV). Our synthetic problems of the ℓ1 minimization model (FSV) were generated in

the same way as in [214]: i.e., we chose m ∈ {4n, 6n, 8n, 10n} for n = 5 and m ∈ {6n, 8n, 10n, 12n}
for n = 10. We defined a sparse vector en := [1, 2, . . . , 1, 0, . . . , 0]T ∈ Rm, whose first n components

are 1 and the remaining components are 0. Let the subspace W be the span of en and some n − 1

random vectors in Rm. By mgson.m [50], we generated an orthonormal basis of W to form a matrix

Q ∈ Rm×n. With this construction, the minimum value of ∥Qx∥0 should be equal to n. We chose the

initial points by using the M.rand() tool of Manopt 7.0 that returns a random point on the manifold M

and set x0 = abs(M.rand()). The nonnegative initial point seemed to be better in the experiment.

Regarding the the settings of our Algorithm 4, we chose the same smoothing function f̃1(x, µ) in Table

3.1 and the same gradient tolerance strategy (3.16) as in [214]: µ0 = 1, θ = 0.5, δ0 = 0.1, ρ = 0.5. We

compared the numerical performances when using different sub-algorithms. Note that with the choice of

the steepest-descent method, our Algorithm 4 is exactly the same as the one in [214].

For each (n,m), we generated 50 pairs of random instances and random initial points. We claim that

an algorithm successfully terminates if ∥Qxk∥0 = n, where xk is the k-th iteration. Here, when we count

the number of nonzeros of Qxk, we truncated the entries as

(Qxk)i = 0 if |(Qxk)i| < τ,

where τ > 0 is a tolerance related to the precision of the solution, taking values from 10−5 to 10−12.

Tables 3.2 and 3.3 report the number of successful cases out of 50 cases. Boldface highlights the best

result for each row.

As shown in Table 3.2 and 3.3, surprisingly, the conjugate-gradient method, which performed best on

the CP factorization problem in Section 4.6, performed worst on the FSV problem. In fact, it was almost

useless. Moreover, although the steepest-descent method employed in [214] was not bad at obtaining

low-precision solutions with τ ∈ {10−5, 10−6, 10−7, 10−8}, it had difficulty obtaining high-precision

solutions with τ ∈ {10−9, 10−10, 10−11, 10−12}. The remaining four sub-algorithms easily obtained high-

precision solutions, with the Barzilai-Borwein method performing the best in most occasions. Combined

with the results in Section 4.6, this shows that in practice, the choice of sub-algorithm in the Riemannian
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Table 3.2 Number of successes from 50 pairs of random instances and random initial points for the ℓ1
minimization model (FSV) and n = 5.

(n,m) τ
Steepest-

descent

Barzilai-

Borwein

Conjugate-

gradient

Trust-

regions
BFGS ARC

(5, 20) 10−5 21 19 0 22 23 23

10−6 21 19 0 22 23 23

10−7 21 19 0 22 23 23

10−8 16 19 0 22 23 23

(5, 30) 10−5 36 42 0 34 36 35

10−6 36 42 0 34 36 35

10−7 36 42 0 34 36 35

10−8 34 42 0 34 36 35

(5, 40) 10−5 44 47 1 44 47 45

10−6 44 47 0 44 47 45

10−7 44 47 0 44 47 45

10−8 43 47 0 44 47 45

(5, 50) 10−5 47 47 2 45 45 45

10−6 47 47 2 45 45 45

10−7 47 47 0 45 45 45

10−8 46 47 0 45 45 45

(n,m) τ
Steepest-

descent

Barzilai-

Borwein

Conjugate-

gradient

Trust-

regions
BFGS ARC

(5, 20) 10−9 0 19 0 22 23 23

10−10 0 19 0 22 23 23

10−11 0 19 0 22 23 19

10−12 0 18 0 22 22 17

(5, 30) 10−9 8 42 0 34 36 35

10−10 1 42 0 34 36 35

10−11 0 42 0 34 36 33

10−12 0 42 0 34 34 29

(5, 40) 10−9 3 47 0 44 47 45

10−10 2 47 0 44 47 45

10−11 1 47 0 44 47 44

10−12 0 46 0 44 44 36

(5, 50) 10−9 5 47 0 45 45 45

10−10 2 47 0 45 45 45

10−11 0 47 0 45 45 45

10−12 0 47 0 45 45 37
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smoothing method (Algorithm 4) is highly problem-dependent. For the other smoothing functions in

Table 3.1, we obtained similar results as in Table 3.2 and 3.3.

3.7.2 Robust Low-Rank Matrix Completion

The second experiment examines the problem of robust low-rank matrix completion in (RMC). In all of

the experiments, the problems were generated in the same way as in [43]. In particular, after picking the

values of m,n, r, we generated the ground truth U ∈ Rm×r, V ∈ Rn×r with independent and identically

distributed (i.i.d.) Gaussian entries of zero mean and unit variance and M := UV T . We then sampled

k := ρr(m+ n− r) observed entries uniformly at random, where ρ is the oversampling factor. In our

experiments, we set ρ = 5 throughout. We chose the initial points X0 by using the rank-r truncated SVD

decomposition of PΩ(M).

Regarding the setting of our Algorithm 4, we tested all combinations of the five smoothing functions

in Table 3.1 and six sub-algorithms mentioned before (30 cases in total). We set µ0 = 100 and chose

an aggressive value of θ = 0.05 for reducing µ, as in [43]. The stopping criterion of the loop of the

sub-algorithm was set to a maximum of 40 iterations or the gradient tolerance (3.17), whichever was

reached first. We monitored the iterations Xk through the Root Mean Square Error (RMSE), which is

defined as the error on all the entries between Xk and the original low-rank matrix M0, i.e.,

RMSE (Xk,M0) :=

√∑m
i=1

∑n
j=1 (Xk,ij −M0,ij)

2

mn
.

Perfect low-rank matrix completion As in [43], we first tested all the methods on a simple perfect

matrix M (without any outliers) of size 5000× 5000 and rank 10. The results are shown in Fig. 3.1. We

can see that the choice of smoothing function does not have much effect on numerical performance. In

terms of the number of iterations ((a)–(e)), our Algorithm 4 inherits the convergence of its sub-algorithm

at least Q-superlinearly when trust regions or ARC are used. But the single iteration cost of trust regions

and ARC is high; they are not efficient in terms of time. Specifically, the conjugate-gradient method

employed in [43] stagnates at lower precision. Overall, Barzilai-Borwein performed best in terms of time

and accuracy.

Low-rank matrix completion with outliers Given a 500 × 500 matrix for which we observed the

entries uniformly at random with an oversampling ρ of 5, we perturbed 5% of the observed entries

by adding noise to them in order to create outliers. The added item was a random variable defined as

O = S±1 · N (µN , σ
2
N ) where S±1 is a random variable with equal probability of being equal to +1 or

−1, while N (µN , σ
2
N ) is a Gaussian random variable of mean µN and variance σ2N .

Fig. 3.2 reports the results of two 500× 500 instances with outliers generated using µN = σN = 0.1

and µN = σN = 1. Again, we can see that the choice of smoothing function does not have much effect.

In most cases, BFGS and trust regions were better than the other methods in terms of number of iterations,

and BFGS was the fastest. Furthermore, the conjugate-gradient method employed in [43] still stagnated

at solutions with lower precision, approximately 10−6, while steepest descent, BFGS, and trust regions

always obtained solutions with at least 10−8 precision.
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Table 3.3 Number of successes from 50 pairs of random instances and random initial points for the ℓ1
minimization model (FSV) and n = 10.

(n,m) τ
Steepest-

descent

Barzilai-

Borwein

Conjugate-

gradient

Trust-

regions
BFGS ARC

(10, 60) 10−5 24 28 0 28 28 25

10−6 24 28 0 28 28 25

10−7 24 28 0 28 28 25

10−8 23 28 0 28 28 25

(10, 80) 10−5 39 37 1 40 39 40

10−6 39 37 0 40 39 40

10−7 39 37 0 40 39 40

10−8 39 37 0 40 39 40

(10, 100) 10−5 45 48 3 45 43 41

10−6 45 48 0 45 43 41

10−7 45 48 0 45 43 41

10−8 45 48 0 45 43 41

(10, 120) 10−5 44 46 1 44 44 43

10−6 44 46 0 44 44 43

10−7 44 46 0 44 44 43

10−8 44 46 0 44 44 43

(n,m) τ
Steepest-

descent

Barzilai-

Borwein

Conjugate-

gradient

Trust-

regions
BFGS ARC

(10, 60) 10−9 3 28 0 28 28 25

10−10 0 28 0 28 28 25

10−11 0 28 0 28 28 22

10−12 0 28 0 28 27 12

(10, 80) 10−9 5 37 0 40 39 40

10−10 0 37 0 40 39 40

10−11 0 37 0 40 39 39

10−12 0 37 0 40 37 30

(10, 100) 10−9 13 48 0 45 43 41

10−10 2 48 0 45 43 41

10−11 0 48 0 45 43 40

10−12 0 48 0 45 43 37

(10, 120) 10−9 14 46 0 44 44 43

10−10 0 46 0 44 44 43

10−11 0 46 0 44 44 43

10−12 0 46 0 44 43 40
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Fig. 3.1 Perfect low-rank matrix completion of a rank-10 5000× 5000 matrix without any outliers using
different smoothing functions in Table 3.1. (a)–(e) comprise the running iteration comparison; (f)–(j)
comprise the time comparison.

Next, we ran the same experiment on larger 5000 × 5000 matrices, with 5% outliers. Fig. 3.3

illustrates the results of these experiments, with µN = σN = 0.1 and µN = σN = 1. In most cases, trust

regions still outperformed the other methods in terms of number of iterations, while BFGS performed

poorly. Barzilai-Borwein and the conjugate-gradient method were almost as good in terms of time.

3.8 Note and References

We conclude this chapter by discussing the connections with [43] and [214]. Our work is based on

an efficient unification of [43] and [214]. [43] focused on a specific algorithm and did not discuss the

underlying generalities, whereas we studied a general framework for Riemannian smoothing. Recall that

the “smoothing function” is the core tool of the smoothing method. In addition to what are required by its

definition (see Definition 36), it needs to have the following Additional Properties (AP) in order for the

algorithms to converge:

(AP1) Approximate from above, i.e., Definition 39. (Needed in Algorithm 1)

(AP2) Gradient sub-consistency, i.e., Definition 37. (Needed in Algorithm 2)

We find that not all smoothing functions satisfy (AP1) and for some functions it is hard to prove whether

(AP2) holds. For example, all the functions in Table 3.1 are smoothing functions of |x|, but only the first

three meet (AP1); the last two do not. In [52], the authors showed that the first one in Table 3.1, f̃1(x, µ),
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Fig. 3.2 Low-rank matrix completion with outliers for two rank-10 500× 500 matrices by using different
smoothing functions in Table 3.1. (a)–(j) corresponds to one matrix with outliers created by using
µN = σN = 0.1, while (k)–(t) corresponds to the other with outliers created by using µN = σN = 1.
(a)–(e) and (k)–(o) comprise the running iteration comparison; (f)–(j) and (p)–(t) comprise the time
comparison.
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Fig. 3.3 Low-rank matrix completion with outliers for two rank-10 5000 × 5000 matrices by using
different smoothing functions in Table 3.1. (a)–(j) corresponds to one matrix with outliers created by using
µN = σN = 0.1, while (k)–(t) corresponds to the other with outliers created by using µN = σN = 1.
(a)–(e) and (k)–(o) comprise the running iteration comparison; (f)–(j) and (p)–(t) comprise the time
comparison.
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has property (AP2). The others remain to be verified, but doing so will not be a trivial exercise. To a

certain extent, Algorithm 3 as well as Theorem 11 guarantee a fundamental convergence result even if one

has difficulty in showing whether one’s smoothing function satisfies (AP2). Therefore, it makes sense to

consider Algorithms 3 and 4 together for the sake of the completeness of the general framework.

Algorithm 4 expands on the results of [214]. It allows us to use any standard method of (SRO), not

just steepest descent, to solve the smoothed subproblem (3.13). Various standard Riemannian algorithms

for (SRO), such as the Riemannian conjugate gradient method [168] (which often performs better than

Riemannian steepest descent), the Riemannian Newton method [5, Chapter 6], and the Riemannian trust

region method [5, Chapter 7], have extended the concepts and techniques used in Euclidean space to

Riemannian manifolds.

As shown by Theorem 12, no matter what kind of sub-algorithm is implemented for (3.13), it does not

affect the final convergence as long as the chosen sub-algorithm has property (3.15). On the other hand,

we advocate that the sub-algorithm should be viewed as a “Black Box” and the user should not have to

care about the code details of the sub-algorithm at all. We can directly use an existing solver, e.g., Manopt

[37], which includes the standard Riemannian algorithms mentioned above. Hence, we can choose the

most suitable sub-algorithm for the application and quickly implement it with minimal effort.
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Chapter 4

Application of RSM: Completely Positive
Factorization Problem

Part Section

Part 1. Preparation work
4.1 Introduction of CP Factorization Problem
4.2 Related Literature
4.3 CP Rank and CP Plus Rank

Part 2. Core proposal 4.4 Reformulation as a Feasibility Problem
4.5 Riemannian Approach to Feasibility Problem

Part 3. Experiments and notes 4.6 Numerical Experiments
4.7 Note and References

In this chapter, we will examine the problem of finding a Completely Positive (CP) factorization of

a given completely positive matrix and then treat it as a nonsmooth Riemannian optimization problem.

Moreover, we will solve it by using the Riemannian Smoothing Method (RSM) previously introduced

in Chapter 3. The numerical experiments clarified that our method can compete with other efficient CP

factorization methods, in particular on large-scale matrices.

4.1 Introduction of CP Factorization Problem

The space of n × n real symmetric matrices S(n) is endowed with the trace inner product ⟨A,B⟩ :=
trace(AB).

Definition 40 (Completely Positive Matrix, Copositive Matrix). A matrix A ∈ S(n) is called completely

positive if for some r ∈ N there exists an entrywise nonnegative matrix B ∈ Rn×r such that A = BBT ,

and we call B a CP factorization of A. We define CP(n) as the set of n× n completely positive matrices,

equivalently characterized as

CP(n) := {BBT ∈ S(n) : B is a nonnegative matrix } = conv{xxT : x ∈ Rn
+},
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where “conv” denotes the convex hull. We denote the set of n× n copositive matrices by

COP(n) := {A ∈ S(n) : xTAx ≥ 0 for all x ∈ Rn
+}.

It is known that COPn and CP(n) are duals of each other under the trace inner product; moreover,

both CP(n) and COP(n) are proper convex cones [19, Section 2.2]. For any positive integer n, we have

the following inclusion relationship among other important cones in conic optimization:

CP(n) ⊂ (S+(n) ∩N(n)) ⊂ S+(n) ⊂ (S+(n) + N(n)) ⊂ COP(n),

where S+(n) is the cone of n× n symmetric positive semidefinite matrices and N(n) is the cone of n× n

symmetric nonnegative matrices. See the monograph [19] for a comprehensive description of CP(n) and

COP(n).

Conic optimization is a sub-field of convex optimization that studies minimization of linear functions

over proper cones. Here, if the proper cone is CP(n) or its dual cone COPn, we call the conic optimiza-

tion problem a copositive programming problem. Copositive programming is closely related to many

nonconvex, NP-hard quadratic and combinatorial optimizations [68]. For example, consider the so-called

standard quadratic optimization problem, min{xTMx | 1Tx = 1, x ∈ Rn
+}, where M ∈ S(n) is possibly

not positive semidefinite and 1 is the all-ones vector. Let E be the all-ones matrix. Bomze et al. [26]

showed that the following completely positive reformulation, min{⟨M,X⟩ | ⟨E, X⟩ = 1, X ∈ CP(n)},
is equivalent to the standard quadratic optimization problem. Burer [40] reported a more general re-

sult, where any quadratic problem with binary and continuous variables can be rewritten as a linear

program over CP(n). As an application to combinatorial problems, consider the problem of computing

the independence number α(G) of a graph G with n nodes. De Klerk and Pasechnik [57] showed that

α(G) = max{⟨E, X⟩ | ⟨A + I,X⟩ = 1, X ∈ CP(n)}, where A is the adjacency matrix of G. For

surveys on applications of copositive programming, see [23, 27, 41, 67, 68].

The difficulty of the above problems lies entirely in the completely positive conic constraint. Note

that because neither COP(n) nor CP(n) is self-dual, the primal-dual interior point method for conic

optimization does not work as is. Besides this, there are many open problems related to completely positive

cones. One is checking membership in CP(n), which was shown to be NP-hard by [62]. Computing or

estimating the cp-rank, as defined later in (4.2), is also an open problem. We refer the reader to [18, 67]

for a detailed discussion of those unresolved issues. In this chapter, we focus on the following problem.

Problem 6 (CP Factorization Problem). Finding a CP factorization for a given A ∈ CP(n), i.e., the CP

factorization problem:

find B ∈ Rn×r s.t. A = BBT and B ≥ 0, (CPfact)

(CPfact) seems to be closely related to the membership problem A ∈ CP(n). Sometimes, a matrix is

shown to be completely positive through duality, or rather, ⟨A,X⟩ ≥ 0 for all X ∈ COPn, but in this

case, a CP factorization will not necessarily be obtained.
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4.2 Related Literature

Various methods of solving CP factorization problems have been studied. In this section, we briefly

discuss these related works.

Jarre and Schmallowsky [114] stated a criterion for complete positivity, based on the augmented

primal dual method to solve a particular second-order cone problem. Dickinson and Dür [61] dealt with

complete positivity of matrices that possess a specific sparsity pattern and proposed a method for finding

CP factorizations of these special matrices that can be performed in linear time. Nie [146] formulated

the CP factorization problem as an A-truncated K-moment problem, for which the author developed an

algorithm that solves a series of semidefinite optimization problems. Sponsel and Dür [183] considered

the problem of projecting a matrix onto CP(n) and COP(n) by using polyhedral approximations of these

cones. With the help of these projections, they devised a method to compute a CP factorization for any

matrix in the interior of CP(n). Bomze [24] showed how to construct a CP factorization of an n × n

matrix based on a given CP factorization of an (n− 1)× (n− 1) principal submatrix. Dutour Sikirić et

al. [179] developed a simplex-like method for a rational CP factorization that works if the input matrix

allows a rational CP factorization.

In 2020, Groetzner and Dür [89] applied the alternating projection method to the CP factorization

problem by posing it as an equivalent feasibility problem (see (FeasCP)). Shortly afterwards, Chen et al.

[48] reformulated the split feasibility problem as a difference-of-convex optimization problem and solved

(FeasCP) as a specific application. In fact, we will solve this equivalent feasibility problem (FeasCP) by

other means in this thesis. In 2021, Boţ and Nguyen [33] proposed a projected gradient method with

relaxation and inertia parameters for the CP factorization problem, aimed at solving

min
X

{∥A−XXT ∥2F | X ∈ Rn×r
+ ∩ B}, (4.1)

where B := {X ∈ Rn×r : ∥X∥F ≤
√
trace(A)} is the closed ball centered at 0. The authors argued

that its optimal value is zero if and only if A ∈ CP(n).

Inspired by the idea of Groetzner and Dür [89], wherein (CPfact) is shown to be equivalent to

a feasibility problem called (FeasCP), we treat the problem (FeasCP) as a nonsmooth Riemannian

optimization problem and solve it through a general Riemannian smoothing method.

4.3 CP Rank and CP Plus Rank

First, let us recall some basic properties of completely positive matrices. Generally, many CP factorizations

of a given A may exist, and they may vary in their numbers of columns. This gives rise to the following

definitions: the cp-rank of A ∈ S(n), denoted by cp(A), is defined as

cp(A) := min{r ∈ N | A = BBT , B ∈ Rn×r, B ≥ 0}, (4.2)

where cp(A) := ∞ if A /∈ CP(n). Similarly, we can define the cp-plus-rank as

cp+(A) := min{r ∈ N | A = BBT , B ∈ Rn×r, B > 0}. (4.3)
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Immediately, for all A ∈ S(n), we have

rank(A) ≤ cp(A) ≤ cp+(A). (4.4)

Every CP factorization B of A is of the same rank as A, since rank(XXT ) = rank(X) holds for

arbitrary matrix X . The first inequality of (4.4) comes from the fact that for any CP factorization B,

rank(A) = rank(B) ≤ the number of columns of B. The second is trivial by definition. Note that

computing or estimating the cp-rank of any given A ∈ CP(n) is still an open problem [18]. The following

result gives a tight upper bound of the cp-rank for A ∈ CP(n) in terms of the order n.

Theorem 13 ([25, Theorem 4.1]). For all A ∈ CP(n), we have

cp(A) ≤ cp(n) :=

{
n for n ∈ {2, 3, 4}
1
2n(n+ 1)− 4 for n ≥ 5.

The following result is useful for distinguishing completely positive matrices in either the interior or

on the boundary of CP(n).

Theorem 14 ([60, Theorem 3.8]). We have

int(CP(n)) = {A ∈ S(n) : rank(A) = n, cp+(A) <∞}

= {A ∈ S(n) : rank(A) = n,A = BBT , B ∈ Rn×r, B ≥ 0,

B:,j > 0 for at least one column B:,j of B}.

4.4 Reformulation as a Feasibility Problem

Groetzner and Dür [89] reformulated the CP factorization problem as an equivalent feasibility problem

containing an orthogonality constraint.

Given A ∈ CP(n), we can easily get another CP factorization B̂ with r′ columns for every integer

r′ ≥ r, if we also have a CP factorization B with r columns. The simplest way to construct such an n× r′

matrix B̂ is to append k := r′ − r zero columns to B, i.e., B̂ := [B, 0n×k] ≥ 0. Another way is called

column replication, i.e.,

B̂ := [B:,1, . . . , B:,n−1,
1√
m
B:,n, . . . ,

1√
m
B:,n︸ ︷︷ ︸

m:=r′−n+1 columns

], (4.5)

where B:,i denotes the i-th column of B. It is easy to see that B̂B̂T = BBT = A. Recall that definition

of cp(n) is given in Theorem 13. As a result, r ≥ cp(A) if and only if A has a CP factorization B with r

columns Let us consider the orthogonal group of order r:

O(r) :=
{
X ∈ Rr×r : XTX = XXT = Ir

}
.

Note that many authors have proved that BBT = CCT if and only if there exists X ∈ O(r) with BX =

C for any B,C ∈ Rn×r (see, e.g., [41, Lemma 2.1] and [89, Lemma 2.6]). The next proposition puts the

previous results together.
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Proposition 8. Let A ∈ CP(n), r ≥ cp(A), A = B̄B̄T , where B̄ ∈ Rn×r may possibly be not nonnega-

tive. Then there exists an orthogonal matrix X ∈ O(r) such that B̄X ≥ 0 and A = (B̄X)(B̄X)T .

This proposition tells us that one can find an orthogonal matrix X which can turn a “bad” factorization

B̄ into a “good” factorization B̄X . Let r ≥ cp(A) and B̄ ∈ Rn×r be an arbitrary (possibly not

nonnegative) initial factorization A = B̄B̄T . The task of finding a CP factorization of A can then be

formulated as the following feasibility problem.

Problem 7 (Reformulation of Problem 6 as a Feasibility Problem [89] ).

find X s.t. B̄X ≥ 0 and X ∈ O(r). (FeasCP)

Note that finding an initial matrix B̄ is not difficult. Since a completely positive matrix is necessarily

positive semidefinite, one can use Cholesky decomposition or spectral decomposition and then extend it

to r columns by using (4.5).

Remark 15. The condition r ≥ cp(A) is necessary; otherwise, (FeasCP) has no solution even if

A ∈ CP(n). Regardless of the exact value of cp(A) which is often unknown, one can use r = cp(n)

defined in Theorem 13.

4.5 Riemannian Approach to Feasibility Problem

In this section, we will proposal a Riemannian approach to (FeasCP).

For (FeasCP), [89] applied the so-called alternating projections method to (FeasCP). Given an initial

decomposition B̄ of A ∈ CP(n), they defined the polyhedral cone, P := {X ∈ Rr×r : B̄X ≥ 0}, and

rewrote (FeasCP) as

find X s.t. X ∈ P ∩O(r).

Let ProjS(x) := argminz∈S ∥z − x∥ denotes the projection of a point x onto some set S. The alternating

projections method is as follows: choose a starting point X0 ∈ O(r); then compute P0 := ProjP(X0)

and X1 := ProjO(r)(P0), and iterate this process. Computing the projection onto P amounts to solving

a Second-Order Cone Problem (SOCP), while computing the projection onto O(r) amounts to a singular

value decomposition. Note that we need to solve an SOCP alternately at every iteration, which is still

expensive in practice. A modified version without convergence involves calculating an approximation of

ProjP(Xk) by using the Moore-Penrose inverse of B̄; for details, see [89, Algorithm 2].

Our way is to use the optimization form. Here, we denote by max(·) (resp. min(·)) the max-function

(resp. min-function)) that selects the largest (resp. smallest) entry of a vector or matrix. Notice that

−min(·) = max(−(·)). We associate (FeasCP) with the following optimization problem:

max
X∈O(r)

{min (B̄X)}.

For consistency of notation, we turn the maximization problem into a minimization problem:

min
X∈O(r)

{max (−B̄X)}. (OptCP)
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The feasible set, orthogonal group O(r), is known to be compact [96, Lemma 2.1.8]. In accordance with

the extreme value theorem [160, Theorem 4.16], (OptCP) attains the global minimum, say t. Summarizing

these observations together yields the following proposition.

Proposition 9. Set r ≥ cp(A), and let B̄ ∈ Rn×r be an arbitrary initial factorization of A. Then the

following statements are equivalent:

1. A ∈ CP(n).

2. (FeasCP) is feasible.

3. In (OptCP), there exists a feasible solution X such that max(−B̄X) ≤ 0; or, min(B̄X) ≥ 0.

4. In (OptCP), the global minimum t ≤ 0.

Since the feasible set O(r) is a Riemannian manifold (refer to Example 3), we treat the CP factorization

problem, i.e., (OptCP) as a problem of minimizing a nonsmooth function over a Riemannian manifold, for

which variants of subgradient methods [31], proximal gradient methods [56], and the alternating direction

method of multipliers (ADMM) [122] have been studied.

4.6 Numerical Experiments

The numerical experiments in Section 4.6 were performed on a computer equipped with an Intel Core

i7-10700 at 2.90GHz with 16GB of RAM using Matlab R2022a. Our Algorithm 4 is implemented in

the Manopt framework [37] (version 7.0). The number of iterations to solve the smoothed problem

(3.13) with the sub-algorithm is recorded in the total number of iterations. The codes is available at

https://github.com/GALVINLAI/RieSmooth.

In this section, we describe numerical experiments that we conducted on CP factorization in which

we solved (OptCP) using Algorithm 4, where different Riemannian algorithms were employed as sub-

algorithms and lse(−B̄X, µ) was used as the smoothing function. To be specific, we used three built-in

Riemannian solvers of Manopt 7.0 — Steepest Descent (SD), Conjugate Gradient (CG), and Trust Regions

(TR), denoted by SM_SD, SM_CG and SM_TR, respectively. We compared our algorithms with the

following non-Riemannian numerical algorithms for CP factorization that were mentioned in subsection

4.2. We followed the settings used by the authors in their papers.

• SpFeasDC_ls [48]: A difference-of-convex functions approach for solving the split feasibility problem,

it can be applied to (FeasCP). The implementation details regarding the parameters we used are the

same as in the numerical experiments reported in [48, Section 6.1].

• RIPG_mod [33]: This is a projected gradient method with relaxation and inertia parameters for solving

(4.1). As shown in [33, Section 4.2], RIPG_mod is the best among the many strategies of choosing

parameters.

• APM_mod [89]: A modified alternating projection method for CP factorization; it is described in

Section 4.5.

We have shown that lse(x, µ) is a smoothing function of max(x) with gradient consistency. The

lse(·, µ) of the matrix argument can be simply derived from entrywise operations. Then from the properties

of compositions of smoothing functions [22, Proposition 1 (3)], we have that lse(−B̄X, µ) is a smoothing

function of max(−B̄X) with gradient consistency.

https://github.com/GALVINLAI/RieSmooth
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In practice, it is important to avoid numerical overflow and underflow when evaluating lse(x, µ).

Overflow occurs when any xi is large and underflow occurs when all xi are small. To avoid these problems,

we can shift each component xi by max(x) and use the following formula:

lse(x, µ) = µ log(

n∑
i=1

exp((xi −max(x))/µ)) + max(x),

whose validity is easy to show.

The details of the experiments are as follows. If A ∈ CP(n) was of full rank, for accuracy reasons,

we obtained an initial B̄ by using Cholesky decomposition. Otherwise, B̄ was obtained by using spectral

decomposition. Then we extended B̄ to r columns by column replication (4.5). We set r = cp(A) if

cp(A) was known or r was sufficiently large. We used RandOrthMat.m [178] to generate a random

starting point X0 on the basis of the Gram-Schmidt process.

For our three algorithms, we set µ0 = 100, θ = 0.8 and used an adaptive rule (3.17) of δk := γµk

with γ = 0.5. Except for RIPG_mod, all the algorithms terminated successfully at k-th iteration , where

min(B̄Xk) ≥ −10−15 was attained before the maximum number of iterations (5,000) was reached. In

addition, SpFeasDC_ls failed when L̄k > 1010. Regarding RIPG_mod, it terminated successfully when

∥A−XkX
T
k ∥2F/∥A∥2F < 10−15 was attained before at most 10,000 iterations for n < 100, and before

at most 50,000 iterations in all other cases. In the tables of this section, we report the rounded success

rate (Rate) over the total number of trials, although the definitions of “Rate” in the different experiments

(described in Sections 4.1-4.4) vary slightly from one experiment to the other. We will describe them later.

4.6.1 Randomly Generated Instances

We examined the case of randomly generated matrices to see how the methods were affected by the

order n or r. The instances were generated in the same way as in [89, Section 7.7]. We computed C

by setting Cij := |Bij | for all i, j, where B is a random n× 2n matrix based on the Matlab command

randn, and we took A = CCT to be factorized. In Table 4.2, we set r = 1.5n and r = 3n for the

values n ∈ {20, 30, 40, 100, 200, 400, 600, 800}. For each pair of n and r, we generated 50 instances if

n ≤ 100 and 10 instances otherwise. For each instance, we initialized all the algorithms at the same

random starting point X0 and initial decomposition B̄, except for RIPG_mod. Note that each instance A

was assigned only one starting point.

Table 4.2 lists the average time in seconds (Time (s)) and the average number of iterations (Iter.)

among the successful instances. For our three Riemannian algorithms, Iter. contains the number of

iterations of the sub-algorithm. Table 4.2 also lists the rounded success rate (Rate) over the total number

(50 or 10) of instances for each pair of n and r. Boldface highlights the two best results in each row.

As shown in Table 4.2, except for APM_mod, each method had a success rate of 1 for all pairs of n

and r. Our three algorithms outperformed the other methods on the large-scale matrices with n ≥ 100. In

particular, SM_CG with the conjugate-gradient method gave the best results.
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4.6.2 Specifically Structured Instance

Let 1n denote the all-ones vector in Rn and consider the matrix [89, Example 7.1],

An =

[
0 1Tn−1

1n−1 In−1

]T [
0 1Tn−1

1n−1 In−1

]
∈ CP(n).

Theorem 14 shows thatAn ∈ int(CP(n)) for every n ≥ 2. By construction, it is obvious that cp(An) = n.

We tried to factorize An for the values n ∈ {10, 20, 50, 75, 100, 150} in Table 4.3. For each An, using

r = cp(An) = n and the same initial decomposition B̄, we tested all the algorithms on the same 50

randomly generated starting points, except for RIPG_mod. Note that each instance was assigned 50

starting points.

Table 4.3 lists the average time in seconds (Time (s)) and the average number of iterations (Iter.)

among the successful starting points. It also lists the rounded success rate (Rate) over the total number

(50) of starting points for each n. Boldface highlights the two best results for each n. We can see from

Table 4.3 that the success rates of our three algorithms were always 1, whereas the success rates of the

other methods decreased as n increased. Likewise, SM_CG with the conjugate-gradient method gave the

best results.

4.6.3 Easy Instance on Boundary

Consider the following matrix from [181, Example 2.7]:

A =


41 43 80 56 50

43 62 89 78 51

80 89 162 120 93

56 78 120 104 62

50 51 93 62 65

 .

The sufficient condition from [181, Theorem 2.5] ensures that this matrix is completely positive and

cp(A) = rank(A) = 3. Theorem 14 tells us that A ∈ bd(CP(5)), since rank(A) ̸= 5.

We found that all the algorithms could easily factorize this matrix. However, our three algorithms

returned a CP factorization B whose smallest entry was as large as possible. In fact, they also max-

imized the smallest entry in the n × r symmetric factorization of A, since (OptCP) is equivalent to

maxA=XXT ,X∈Rn×r{min(X)}. When we did not terminate as soon as min(B̄Xk) ≥ −10−15, for exam-

ple, after 1000 iterations, our algorithms gave the following CP factorization whose the smallest entry is

around 2.8573 ≫ −10−15:

A = BBT , where B ≈


3.5771 4.4766 2.8573
2.8574 3.0682 6.6650

8.3822 7.0001 6.5374

5.7515 2.8574 7.9219

2.8574 6.7741 3.3085

 .
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4.6.4 Hard Instance on Boundary

Next, we examined how well these methods worked on a hard matrix on the boundary of CP(n). Consider

the following matrix on the boundary taken from [69]:

A =


8 5 1 1 5

5 8 5 1 1

1 5 8 5 1

1 1 5 8 5

5 1 1 5 8

 ∈ bd(CP(5)).

Since A ∈ bd(CP(5)) and A is of full rank, it follows from Theorem 14 that cp+(A) = ∞; i.e.,

there is no strictly positive CP factorization for A. Hence, the global minimum of (OptCP), t = 0, is clear.

None of the algorithms could decompose this matrix under our tolerance, 10−15, in the stopping criteria.

As was done in [89, Example 7.3], we investigated slight perturbations of this matrix. Given

MMT =: C ∈ int(CP(5)) with M =


1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

 ,

we factorized Aλ := λA+ (1− λ)C for different values of λ ∈ [0, 1) using r = 12 > cp5 = 11. Note

that Aλ ∈ int(CP(5)) provided 0 ≤ λ < 1 and Aλ approached the boundary as λ → 1. We chose the

largest λ = 0.9999. For each Aλ, we tested all of the algorithms on 50 randomly generated starting points

and computed the success rate over the total number of starting points.

Table 4.1 shows how the success rate of each algorithm changes as Aλ approaches the boundary. The

table sorts the results from left to right according to overall performance. Except for SM_TR, whose

success rate was always 1, the success rates of all the other algorithms significantly decreased as λ

increased to 0.9999. Surprisingly, the method of SM_CG, which performed well in the previous examples,

seemed unable to handle instances close to the boundary.
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Table 4.1 Rate rate of CP factorization of Aλ for values of λ from 0.6 to 0.9999.

λ SM_TR SM_SD RIPG_mod SM_CG SpFeasDC_ls APM_mod

0.6 1 1 1 1 1 0.42

0.65 1 1 1 1 1 0.44

0.7 1 1 1 1 1 0.48

0.75 1 1 1 1 1 0.52

0.8 1 1 1 1 0.96 0.46

0.82 1 1 1 1 0.98 0.4

0.84 1 1 1 1 0.86 0.24

0.86 1 1 1 1 0.82 0.1

0.88 1 1 1 1 0.58 0.18

0.9 1 1 1 1 0.48 0.18

0.91 1 1 1 1 0.4 0.14

0.92 1 1 1 1 0.2 0.18

0.93 1 1 0.98 1 0.22 0.22

0.94 1 1 0.98 1 0.1 0.2

0.95 1 1 1 1 0.12 0.32

0.96 1 1 0.96 0.98 0.06 0.34

0.97 1 1 0.86 0.82 0.06 0.14

0.98 1 1 0.76 0.28 0.02 0

0.99 1 0.68 0.42 0 0 0

0.999 1 0 0.14 0 0 0

0.9999 1 0 0 0 0 0
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4.7 Note and References

In this chapter, we examined the problem of finding a CP factorization of a given completely positive

matrix and treated it as a Nonsmooth Riemannian Optimization.

Let us we summarize the relation of our approach to the existing CP factorization methods. Groetzner

and Dür [89] and Chen et al. [48] proposed different methods to solve (FeasCP). Boţ and Nguyen [33]

tried to solve another model (4.1). However, the methods they used do not belong to the Riemannian

optimization techniques, but are rather Euclidean ones, since they treated the set O(r) := {X ∈ Rr×r :

XTX = I} as a usual constraint in Euclidean space. By comparison, we recognize the existence of

manifolds, namely, the Stiefel manifold M = O(r), and use optimization techniques specific to them.

This change in perspective suggests the possibility of using the rich variety of Riemannian optimization

techniques. As the experiments in Section 4.6 show, our Riemannian approach is faster and more reliable

than the Euclidean methods.

As in the other numerical methods, there is no guarantee that Algorithm 4 will find a CP factorization

for every A ∈ CPn. It follows from Proposition 9 that A ∈ CP(n) if and only if the global minimum

of (OptCP), say t, is such that t ≤ 0. Since our methods only converge to a stationary point, Algorithm

4 provides us with a local minimizer at best. We are looking forward to finding a global minimizer of

(OptCP) in our future work.
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Methods (RIPM)
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Chapter 5

Riemannian Interior Point Methods
(RIPM)

Part Section

Part 1. Preparation work

5.1 Review of Interior Point Methods
5.2 Riemannian Optimality Conditions
5.4 Riemannian Newton Method
5.7 Prototype Algorithm of RIPM

Part 2. Core proposal
5.3 KKT Vector Field
5.5 Covariant Derivative of KKT Vector Field
5.8 Solving Perturbed Newton Equation Efficiently

Part 3. Core analysis
5.6 Implication of Standard Riemannian Assumptions
5.9 Local Convergence
5.10 Summary

Let M be a connected, complete d-dimensional Riemannian manifold. Starting from this chapter, we

consider the following Constrained Riemannian Optimization (CRO),

min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , l,

x ∈ M,

(CRO)

where f : M → R, h ≡ (h1, . . . , hl) : M → Rl, and g ≡ (g1, . . . , gm) : M → Rm are smooth functions.

This problem is also called the nonlinear programming problem on a Riemannian manifold. See Section

1.3 for a detailed overview of (CRO), including its research history and various applications.

In this chapter, we try to extend the interior point algorithms from the Euclidean setting, i.e., M ≡ Rd

in (CRO), to the Riemannian setting. We call this extension the Riemannian Interior Point Method (RIPM).

Under meaningful assumptions in the Riemannian setting, we establish the locally convergence. We

also show global convergence in next chapter. Let us now briefly review the history of the interior point

methods.
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5.1 Review of Interior Point Methods

The advent of interior point methods in the 1980s greatly advanced the field of optimization [202, 213, 88].

By the early 1990s, the success of these methods in linear and quadratic programming ignited interest in

using them on nonlinear cases [73, 208]. From the 1990s to the first decade of the 21st century, a large

number of interior point methods for nonlinear programming emerged. They proved to be as successful as

the linear ones [147, Chapter 19].

A subclass known as primal-dual interior point methods is the most efficient practical approach. As

described in [132], the primal-dual approach to linear programming was introduced in [136]: it was

first developed as an algorithm in [121] and eventually became standard for the nonlinear case as well

[73, 208]. Since it seems to be an application of the Newton method for solving the KKT conditions, it

has been called the Newton interior point method in some of the literature.

Recently, Hirai et al. [95] extended the self-concordance-based interior point methods to Riemannian

manifolds. They aimed to minimize a geodesically convex (i.e., convex on manifolds) objective f : D → R
defined on a geodesically convex subset D ⊂ M. In contrast, in (CRO) we do not require any convexity.

In practice, many convex functions (in the Euclidean sense) are not geodesically convex on some

interested manifolds. For example, for any geodesically convex function defined on a connected, compact

Riemannian manifold (e.g., Stiefel manifold), it must be constant [34, Corollary 11.10], which is not of

interest in the field of optimization. Thus, (CRO) has a wider applicability.

To our knowledge, interior point methods have yet to be considered for (CRO). Thus, we are trying to

fill that gap. Our proposal is a generalization of classical local and global convergence theory of interior

point methods for nonlinear programming first proposed by El-Bakry et al. [73]. We will build our

proposal step-by-step, starting with the optimality conditions of (CRO).

5.2 Riemannian Optimality Conditions

In the field of optimization, the optimality conditions are critical for studying constrained problems in

Euclidean setting. These conditions offer first-order/second-order necessary conditions for a solution to

be optimal, provided some Constraint Qualifications (CQs) are satisfied. These classical concepts have

been generalized to the manifolds case verbatim (see [209, 17, 194] and [128, Subsection 2.2]). In this

section, we summarize these results for the sake of completeness.

5.2.1 First-Order Optimality Conditions

The Lagrangian of (CRO) is defined as

L(x, y, z) := f(x) +
l∑

j=1

yjhj(x) +
m∑
i=1

zigi(x), (5.1)

where vectors y ∈ Rl and z ∈ Rm are called the Lagrange multipliers corresponding to the equality and

inequality constraints, respectively.
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Fixing multipliers y and z, the (Riemannian) gradient of Lagrangian with respect to the manifold

variable x ∈ M is denoted as gradx L(x, y, z), given by

gradx L(x, y, z) = grad f(x) +

l∑
j=1

yj gradhj(x) +

m∑
i=1

zi grad gi(x). (5.2)

Here, grad f(x), {gradhj(x)}li=1, {grad gi(x)}mi=1 are the gradients of f, hj , and gi respectively. We

have assumed that at least, those functions are differentiable, then their gradients exist. The active set

A(x) at a point x ∈ M is defined as

A(x) := {i : gi(x) = 0, i = 1, 2, . . . ,m} ,

and contains the indices of the inequality constraints that are “active”, i.e., the inequality constraints that

are exactly satisfied at x.

Definition 41 (Linear Independence Constraint Qualification (LICQ)). We say that the LICQ holds at

x ∈ M if the tangent vectors in the set

{gradhj(x)}lj=1 ∪ {grad gi(x)}i∈A(x)

are linearly independent in tangent space TxM.

The LICQ serve as a typical Constraint Qualification (CQ) to ensure that optimality conditions hold at

an optimal solution x ∈ M.

Definition 42 (First-Order Necessary Conditions (KKT Conditions)). We say that x ∈ M satisfies the

Karush-Kuhn-Tucker (KKT) conditions of (CRO) if there exist Lagrange multipliers y ∈ Rl and z ∈ Rm

such that the following hold.

(Stationarity) grad f(x) +
l∑

j=1

yj gradhj(x) +
m∑
i=1

zi grad gi(x) = 0x; (5.3)

(Primal feasibility) gi(x) ≤ 0, ∀i = 1, 2, . . . ,m; (5.4)

hj(x) = 0, ∀j = 1, 2, . . . , l; (5.5)

(Dual feasibility) zi ≥ 0, ∀i = 1, 2, . . . ,m; (5.6)

(Complementarity) zigi(x) = 0, ∀i = 1, 2, . . . ,m. (5.7)

Theorem 15 ([209, Theorem 4.4]). Suppose that x ∈ M is a local minimum of (CRO) and that the LICQ

holds at x. Then, x satisfies the KKT conditions (5.3)-(5.7).

Although we assume that LICQ holds under our consideration, some weaker CQs are also available

on manifolds. In particularly, [17] generalized the many other CQs for (CRO) and established a chain of

implications among these CQs:

LICQ =⇒ MFCQ =⇒ ACQ =⇒ GCQ.
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Here, the Mangasarian-Fromovitz Constraint Qualification (MFCQ), Abadie’s Constraint Qualification

(ACQ), and Guignard’s Constraint Qualification (GCQ) have been well-understood in the context of

Euclidean spaces, as detailed in works like [147, 20]. Furthermore, [17] showed that the weakest one, i.e.,

GCQ can replace the role of LICQ in Theorem 15, while its claim remains unchanged.

[17] also demonstrated that the stationary condition (5.3), which involves Riemannian gradients (and

thus is implicitly determined by a Riemannian metric), can be substituted by (see Definition 19)

Df(x) +

l∑
j=1

yjDhj(x) +

m∑
i=1

zjDgj(x) = 0,

where those differentials are well-defined without using any Riemannian metric on M, and the right

0 means the zero map from TxM to R. This implies that the KKT conditions are intrinsic optimality

conditions for (CRO) and independent of Riemannian metric of M.

5.2.2 Second-Order Optimality Conditions

Going one step further, the (Riemannian) Hessian of Lagrangian in (5.1) with respect to x ∈ M is denoted

as Hessx L(x, y, z), i.e., a linear operator on TxM such that, for any ξ ∈ TxM,

Hessx L(x, y, z)[ξ] = Hess f(x)[ξ] +
l∑

j=1

yj Hesshj(x)[ξ] +
m∑
i=1

ziHess gi(x)[ξ], (5.8)

or simply, as a linear combination of linear operators on TxM:

Hessx L(x, y, z) = Hess f(x) +
l∑

j=1

yj Hesshj(x) +
m∑
i=1

ziHess gi(x). (5.9)

Here, Hess f(x), {Hesshj(x)}li=1, {Hess gi(x)}mi=1 are Hessians of f, hj , and gi respectively. We have

assumed that at least, those functions are twice differentiable, then their Hessians exist.

To identify the second-order optimality conditions at a point x with associated Lagrange multipliers y

and z, we consider the critical cone C(x, y, z) inside the tangent space TxM defined as follows (see [209,

Subsection 4.2] and [147, Section 12.4]).

C (x, y, z) :=

 ξ ∈ TxM
⟨ξ, gradhj (x)⟩ = 0, for all j = 1, 2, · · · , l,
⟨ξ, grad gi (x)⟩ = 0, for all i ∈ A(x) with zi > 0,

⟨ξ, grad gi (x)⟩ ≤ 0, for all i ∈ A(x) with zi = 0.

 . (5.10)

Definition 43 (Second-Order Necessary Conditions (SONC)). We say that x ∈ M satisfies the SONC if

it satisfies KKT conditions (5.3)-(5.7) with associated Lagrange multipliers y and z, and

⟨Hessx L (x, y, z) ξ, ξ⟩ ≥ 0 for any ξ ∈ C (x, y, z) .
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Definition 44 (Second-Order Sufficient Conditions (SOSC)). We say that x ∈ M satisfies the SOSC if it

satisfies KKT conditions (5.3)-(5.7) with associated Lagrange multipliers y and z, and

⟨Hessx L (x, y, z) ξ, ξ⟩ > 0 for any nonzero ξ ∈ C (x, y, z) .

Theorem 16 ([209, Theorem 4.7]). Suppose that x ∈ M is a local minimum of (CRO) and that the LICQ

holds at x. Then, x satisfies the SONC (see Definition 43).

Theorem 17 ([209, Theorem 4.8]). Suppose that x ∈ M satisfies the SOSC (see Definition 44). Then, it

is a strict local minimum of (CRO).

The second-order optimality conditions will be further discussed in Section 5.6 to guarantee the

nonsingularity of covariant derivative of KKT vector field, which is a important result for our Riemannian

interior point method. We introduce the concept of KKT vector field in next section.

5.3 KKT Vector Field

In this section, using some more concise notations, we first revisit the KKT conditions (5.3)-(5.7) and

then transform those into a vector field defined on a product manifold. Following common usage in the

literature about interior-point methods, big letters denote the associated diagonal matrix, e.g.,

Z ≡ Diag (z1, 2, . . . , zn) for some z ∈ Rn,

S ≡ Diag (s1, 2, . . . , sn) for some s ∈ Rn.

For the elements of product manifold, the components in parentheses are sometimes arranged vertically

and sometimes horizontally. For example, x

y

z

 ≡ (x, y, z) ∈ M1 ×M2 ×M3

for some product manifold M1 ×M2 ×M3. Based on above notations and (5.2), the Riemannian KKT

conditions (5.3)-(5.7) are now reformulated as

gradx L(x, y, z) = 0x,

h(x) = 0,

g(x) ≤ 0,

Zg(x) = 0,

z ≥ 0.

(5.11)
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Let 1 be the all-ones column vector. With slack variables s := −g(x), furthermore, the above can be

written as

F (w) :=


gradx L(x, y, z)
h(x)

g(x) + s

ZS1

 = 0 :=


0x

0

0

0

 , (5.12)

and (z, s) ≥ 0, where

w := (x, y, z, s) ∈ N := M× Rl × Rm × Rm. (5.13)

Notice that for any w = (x, y, z, s) in N , the first component of F (w) is a tangent vector in TxM; the

Lagrange multipliers y, z and slack variables s, in turn, are treated as they usually are. In fact, we generate

a vector field F on the Riemannian product manifold N , i.e.,

F : N → TN ∼= TM× TRl × TRm × TRm,

where TN denotes the tangent bundle of N , and

TwN ∼= TxM× Rl × Rm × Rm

under the canonical identification TvE ∼= E for any vector space E and any v ∈ E . The readers may refer

to Section 2.20 for the details of geometry tools on product manifold N .

Definition 45 (KKT Vector Field). Let N = M× Rl × Rm × Rm. The vector field F on N defined in

(5.12) is called the KKT vector field of (CRO).

In summary, the KKT conditions (5.3)-(5.7) for (CRO) can be interpreted as ones for finding a

singularity (see Definition 46 in next section) of a vector field on a Riemannian product manifold but with

partial nonnegative requirements, namely,

Find w ∈ N such that F (w) = 0 and (z, s) ≥ 0. (5.14)

Notice that the goal of all the algorithms explored in this thesis is to find points that satisfy the above

first-order necessary conditions. Such points, denoted as x∗, or w∗ = (x∗, y∗, z∗, s∗), are termed KKT

points.

Remark 16 (Notes about KKT points). In contrast to convex optimization, where KKT conditions

also serve as sufficient conditions for a global minimizer, manifold constraints are generally nonconvex

structures. As nonconvex optimization problems present significant challenges, existing research primarily

aims to identify KKT points. Although the KKT points are not ensuring to be the optimal minimizer

(either locally or globally optimal), a large number of numerical experiments have indicated that the KKT

points are an effective criterion to reduce the objective function.
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5.4 Riemannian Newton Method

It is well known that in the Euclidean case, the interior point methods are closely related to the Newton

method, which is a powerful tool for finding the roots of nonlinear equations:

F (p) = 0 (5.15)

where F : Rn → Rn is a smooth nonlinear function. One of the most effective subclasses of interior point

methods, named primal-dual interior point methods (also named Newton interior point methods in some

literature), can be explained as motivated by the use of Newton method to solve a system of nonlinear

equations formed by the KKT conditions. We will track this motivation in the next sections and finally

present the interior point method on manifolds accordingly.

This section serves as an introduction to the existing research related to generalized Newton method

on Riemannian manifolds [77, 76, 74, 32]; it aims to find the singularity of a vector field defined as

follows.

Definition 46 (Singularity of a Vector Field). Consider a general manfiold M. Let F : M → TM be a

smooth vector field. The singularity of a vector field F is a point p ∈ M such that

F (p) = 0p ∈ TpM. (Singularity)

Remark 17. When M = Rn, (Singularity) reduces to nonlinear equations (5.15).

Let ∇ be the Riemannian connection on M. Recall the definition of covariant derivative ∇F , which

assigns each point p ∈ M a linear operator ∇F (p) from and to TpM. Then, the (standard) Riemannian

Newton method for solving (Singularity) is stated in Algorithm 5. Just as the usual Newton method

requires the solution of a linear equation at each iteration, so does Algorithm 5, except that the linear

equation is defined on the tangent space.

Algorithm 5: Riemannian Newton Method for (Singularity)
Input: A vector field F on M, an initial point p0 ∈ M and a retraction R on M.

Output: Sequence {pk} ⊂ M such that {pk} → p∗ and F (p∗) = 0p∗ ∈ Tp∗M.

Set k → 0;

while stopping criterion not satisfied do
1. Solve the Newton equation (a linear operator equation on tangent space TpkM):

∇F (pk)ξk = −F (pk) (5.16)

to obtain ξk ∈ TpkM;

2. Compute the next point as pk+1 := Rpk(ξk);

3. k → k + 1;

end

In particular, when the vector field F is set to the gradient vector field, i.e., F = grad f for some

smooth scalar field f on M, Algorithm 5 becomes the Riemannian Newton method for solving the
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unconstrained Riemannian optimization minx∈M f(x). Recall that if f is C1 and x∗ is a local minimizer

of minx∈M f(x), then grad f (x∗) = 0. By Definition 23, then Newton equation (5.16) reduces to

Hess f(pk)[ξk] = − grad f(pk)

We do not delve into the Riemannian Newton method for this specific case. If interested, please refer to

[5, 164, 1, 7].

Remark 18. In this thesis, the term “Riemannian Newton method” refers specifically to Algorithm 5

for solving general singularity problems (Singularity), and not for solving the optimization problems

minx∈M f(x).

Recent advancements in the convergence of the Riemannian Newton methods can be categorized into

local and global convergence. We assume that p∗ is a solution of (Singularity). On the topic of local

convergence, the following two notable results stand out. [76] demonstrated that if the map p 7→ ∇F (p)
is locally Lipschitz continuous at p∗ and

∇F (p∗) is nonsingular,

then the Algorithm 5 achieves local quadratic convergence. [74] revealed that under the more relaxed

condition of mere continuity of the map p 7→ ∇F (p) at p∗, if ∇F (p∗) is also nonsingular, then Algorithm

5 achieves local superlinear convergence. Thus, we can observed that the requirement of nonsingularity of

the covariant derivative at the solution is essential. On the topic of global convergence, the damped Newton

method on manifolds proposed in [32], guarantees global convergence and does so with a superlinear or

quadratic rate.

5.5 Covariant Derivative of KKT Vector Field

If we try to apply the Riemannian Newton method to (5.14) (ignoring the non-negative constraints of z

and s for the moment), we must first formulate the covariant derivative of KKT vector field F at arbitrary

w ∈ N , which will be given in Lemma 16.

5.5.1 Full Formulation

Recall that we have defined symbol w = (x, y, z, s) as in (5.13), then we can rewrite the Lagrangian

L(x, y, z) in (5.1) as L(w), and hence, gradx L(w) ≡ gradx L(x, y, z) in (5.2) and Hessx L(w) ≡
Hessx L(x, y, z) in (5.9) for the sake of simplicity. By using those notations, we have the following

important result.

Lemma 16 (Covariant Derivative of KKT Vector Field). Given any w ∈ N , for the KKT vector field F

defined in (5.12), its covariant derivative ∇F (w) : TwN → TwN is the linear operator given by

∇F (w)∆w =


Hessx L(w)∆x+

∑l
i=1∆yj gradhj(x) +

∑m
i=1∆zi grad gi(x)

⟨gradhj(x),∆x⟩x , for j = 1, 2, . . . , l

⟨grad gi(x),∆x⟩x +∆si, for i = 1, 2, . . . ,m

Z∆s+ S∆z

 (5.17)
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where ∆w = (∆x,∆y,∆z,∆s) ∈ TxM× Rl × Rm × Rm ∼= TwN . A compact formulation of above

will be given in Lemma 17 later.

Proof. For simplicity, we will consider the case in which (CRO) contains only inequality constraints.

Then, the Lagrangian L(x, z) = f(x) +
∑m

i=1 zigi(x) and KKT conditions are
gradx L(x, z) = grad f(x) +

m∑
i=1

zi grad gi(x) = 0x,

gi(x)zi = 0, i = 1, · · · ,m,

and −g(x) ≥ 0, z ≥ 0. To avoid a redundant derivation process, we do not introduce the slack variables

s := −g(x). Actually, it could be introduced, but there is no essential difference in the proof. Let G(x)

be the associated diagonal matrix of vector g(x) ∈ Rm; then, the KKT vector field (without introducing

the slack variables) is F : M× Rm → TM× TRm given by

F (x, z) =

(
F1(x, z)

F2(x, z)

)
=

(
gradx L(x, z)

G(x)z

)
,

where F1 : M×Rm → TM, F1(x, z) = gradx L(x, z), and F2 : M×Rm → TRm, F2(x, z) = G(x)z.

We will compute the covariant derivative ∇F (x, z) of F at (x, z) ∈ M× Rm step by step in accordance

with Lemma 15. Let Rm be equipped with the canonical Euclidean connection ∇ and M with a

Riemannian connection ∇, and we do not distinguish those connections with superscripts as in Lemma

15, since they should be clear from context.

Let (ux, uz) ∈ TxM× Rm be the tangent vector at given point (x, z) ∈ M× Rm.

(1) Fix z and consider F1(·, z) : M → TM (a vector field on M). From the R-linearity of the connection

∇ on M (see Definition 21), we have

∇uxF1 (·, z) = ∇ux gradx L(x, z) = Hessx L(x, z) [ux] .

(2) Fix x and consider F1(x, ·) : Rm → TxM (a map between two vector spaces). By calculus on vector

spaces, we have

DF1(x, ·)(z) [uz] = lim
t→0

F1 (x, z + tuz)− F1(x, z)

t
=

m∑
i=1

(uz)i grad gi(x).

(3) Fix x and consider F2(x, ·) : Rm → TRm (indeed, it is a map from Rm to Rm). By the canonical

Euclidean connection in Rm and calculus as usual, we have

∇uzF2 (x, ·) = DF2 (x, ·) (z) [uz] = G(x)uz = [g1(x)(uz)1, · · · , gm(x)(uz)m]T .

(4) Fix z and consider F2(·, z) : M → TzRm ∼= Rm (a map from M to Rm). Here, let F i
2(·, z) =

gi(x)zi be the component function for i = 1, . . . ,m. Since DF i
2(·, z)(x) [ux] =

〈
gradx F

i
2(·, z), ux

〉
x
=
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⟨zi grad gi(x), ux⟩x , we have

DF2(·, z)(x) [ux] =


DF 1

2 (·, z)(x)[ux]
...

DFm
2 (·, z)(x)[ux]

 =


z1 ⟨grad g1(x), ux⟩x

...

zm ⟨grad gm(x), ux⟩x

 .
(5) Finally, by combining the results for steps (1)-(4), ∇F (x, z) [ux, uz] is equal to

(
Hessx L(x, z) [ux] +

m∑
i=1

(uz)i grad gi(x),


z1 ⟨grad g1(x), ux⟩x + g1(x) (uz)1

...

zm ⟨grad gm(x), ux⟩x + gm(x) (uz)m


)
.

Vertically rewriting it yields

∇F (x, z) [ux, uz] =

(
Hessx L(x, z) [ux] +

∑m
i=1 (uz)i grad gi(x)

zi ⟨grad gi(x), ux⟩x + gi(x) (uz)i , for i = 1, 2, . . . ,m

)
(5.18)

At first glance, the above result is somewhat unlike (5.17). But the procedures for the four types of

functions, namely, steps (1) to (4) described above, are all situations we can encounter when we introduce

the slack variables s and the equality constraints h(x). Since there are 4 variables in (5.12), a careful

treatment of 16 steps yields (5.17). We omit these trivial processes in this thesis.

5.5.2 Compact Formulation

To make the formulation of ∇F (w) in (5.17) look simpler, we introduce the following symbols. For each

x ∈ M, we define two linear operators Hx : Rl → TxM and Gx : Rm → TxM by,

Hxv :=

l∑
j=1

vj gradhj(x), Gxv :=

m∑
i=1

vi grad gi(x), (5.19)

for v ∈ Rl(Rm), respectively. We observe that for every v ∈ Rl, ξ ∈ TxM,

⟨Hxv, ξ⟩x =
l∑

j=1

vj ⟨gradhj(x), ξ⟩x = vT


⟨gradh1(x), ξ⟩x

...

⟨gradhl(x), ξ⟩x

 .
Hence, the adjoint of Hx is given by H∗

x : TxM → Rl,

H∗
xξ = [⟨gradh1(x), ξ⟩x , · · · , ⟨gradhl(x), ξ⟩x]

T ,

which is exactly what is in the second line of (5.17). Similarly, G∗
x : TxM → Rm is given by

G∗
xξ = [⟨grad g1(x), ξ⟩x , · · · , ⟨grad gm(x), ξ⟩x]

T .

By using those symbols above, we obtain a compact form of (5.17) as follows.
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Lemma 17 (Compact Form of Covariant Derivative of KKT Vector Field). Given anyw ∈ N , for the KKT

vector field F defined in (5.12), its covariant derivative ∇F (w) : TwN → TwN is the linear operator

given by

∇F (w)∆w =


Hessx L(w)∆x+Hx∆y + Gx∆z

H∗
x∆x

G∗
x∆x+∆s

Z∆s+ S∆z

 , (5.20)

where ∆w = (∆x,∆y,∆z,∆s) ∈ TxM×Rl×Rm×Rm ∼= TwN . Moreover, its adjoint ∇F (w)∗ : TwN →
TwN is given by

∇F (w)∗∆w =


Hessx L(w)∆x+Hx∆y + Gx∆z

H∗
x∆x

G∗
x∆x+ S∆s

Z∆s+∆z

 . (5.21)

Let JF (x) ∈ Rq×p denote the Jacobian matrix of some function F : Rp → Rq at x, and Hf (x) ∈
Rp×p denote the Hessian matrix of some f : Rp → R at x. If we consider the Euclidean setting M = Rd

in (CRO), then H∗
x,G∗

x are expressed as the Jacobian matrices of h, g at point x, and Hx,Gx are their

transposes. In this case, operator ∇F (w) in (5.20) reduces to the matrix multiplication ∆w 7→ JF (w)∆w:

JF (w)∆w =


HL(w) Jh(x)

T Jg(x)
T 0

Jh(x) 0 0 0

Jg(x) 0 0 I

0 0 S Z




∆x

∆y

∆z

∆s

 . (5.22)

where JF (w) is the (d+ l + 2m)× (d+ l + 2m) Jacobian matrix of F at w. Actually, (5.20) reduces to

the matrix form of that in Euclidean interior point method (see [147, Equation (19.6), Page 566]).

Remark 19. Moreover, if M is a Riemannian submanifold of Rn equipped with the inherited metric

⟨·, ·⟩, we can express Hx and H∗
x (also, Gx and G∗

x) by only using Euclidean gradients. Let Projx be the

orthogonal projector form Rn onto TxM ⊂ Rn, and egradhj(x) be the Euclidean gradients of hj at x. It

follows from the linearity of Projx and equality

gradhj(x) = Projx[egradhj(x)]

(see [34, Proposition 3.61]) that

Hxv =
l∑

j=1

vj gradhj(x) =
l∑

j=1

vj Projx[egradhj(x)] = Projx

 l∑
j=1

vj egradhj(x)

 .

On the other hand, since Projx is self-adjoint (recall Section 2.1) and Projx ξ = ξ for every ξ ∈ TxM ,

we have

⟨gradhj(x), ξ⟩x = ⟨Projx[egradhj(x)], ξ⟩x = ⟨egradhj(x),Projx ξ⟩ = ⟨egradhj(x), ξ⟩ .



102 Chapter 5. Riemannian Interior Point Methods (RIPM)

Thus,

H∗
xξ = [⟨egradh1(x), ξ⟩ , · · · , ⟨egradhl(x), ξ⟩]T .

It can be applied verbatim to Gx and G∗
x.

5.6 Implication of Standard Riemannian Assumptions

At the end of Section 5.4, we discussed the conditions on guaranteeing local convergence of Riemannian

Newton method. We note that the requirement of nonsingularity for the covariant derivative at the solution

point (i.e., ∇F (p∗)) is of primary importance. In fact, under the meaningful optimality conditions

previously introduced in Section 5.2 , we can ascertain the nonsingularity of ∇F (w∗) for our KKT vector

field, as demonstrated in Proposition 10. Let A(x) := {i : gi(x) = 0} denote the active set at x ∈ M. We

collect those meaningful conditions as the following Assumption 1. We call them the standard Riemannian

assumptions for (CRO). Note that the x∗ and w∗ in (A2)-(A4) all refer to those in (A1).

Assumption 1 (Standard Riemannian Assumptions of (CRO)).
(A1) (Existence) There exists w∗ = (x∗, y∗, z∗, s∗) satisfying the KKT conditions (5.3)-(5.7), or equiva-

lently (5.11). Here, we introduce the slack variables s∗ := −g(x∗).
(A2) (Regularity) LICQ holds at x∗ (See Definition 41).

(A3) (Strict complementarity) (z∗)i > 0 if gi(x∗) = 0 for all i = 1, · · · ,m.

(A4) (Second-order sufficiency) SOSC holds at x∗ (See Definition 44). Under the condition (A3), SOSC

is equivalent to say that:

⟨Hessx L (w∗) ξ, ξ⟩ > 0 for all nonzero ξ ∈ Tx∗M satisfying ⟨ξ gradhj (x∗)⟩ = 0 for all j =

1, 2, · · · , l, and ⟨ξ grad gi (x∗)⟩ = 0 for all i ∈ A (x∗) .

Proposition 10. Let Assumptions (A1)-(A4) hold at some point w∗ for (CRO). Then the operator ∇F (w∗)

in (5.17) is nonsingular (i.e, invertible).

Proof. This proof omits all the asterisks of the variables. Define E := {1, . . . , l} and I := {1, . . . ,m}.

Take some w = (x, y, z, s) ∈ N satisfying (A1)-(A4), then we have si = −gi(x) and zisi = 0 for all

i ∈ I. For short, let A := A(x) ⊂ I.
Suppose that ∇F (w)[∆w] = 0 for some ∆w = (∆x,∆y,∆z,∆s) ∈ TwN ∼= TxM×Rl×Rm×Rm.

∆yi denotes the components of the vector ∆y, as do ∆zi, ∆si. To prove its nonsingularity, we will show

that ∆w = 0. Expanding the equation ∇F (w)[∆w] = 0 gives

0 = Hessx L(w)∆x+
∑
j∈E

∆yj gradhj(x) +
∑
i∈I

∆zi grad gi(x),

0 = ⟨gradhj(x),∆x⟩ , for all j ∈ E,

0 = ⟨grad gi(x),∆x⟩+∆si, for all i ∈ I,

0 = zi∆si + si∆zi, for all i ∈ I.

(5.23)
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Strict complementarity (A3) and the last equalities above imply that ∆si = 0 for all i ∈ A and ∆zi = 0

for all i ∈ I \ A. Substituting those values into the system (5.23) reduces it to
0 = Hessx L(w)∆x+

∑
j∈E

∆yj gradhj(x) +
∑
i∈A

∆zi grad gi(x),

0 = ⟨gradhj(x),∆x⟩ , for all j ∈ E,

0 = ⟨grad gi(x),∆x⟩ , for all i ∈ A,

(5.24)

and ∆si = −⟨grad gi(x),∆x⟩ for all i ∈ I \ A. It follows from system (5.24) that

0 = ⟨Hessx L(w)∆x+
∑
j∈E

∆yj gradhj(x) +
∑
i∈A

∆zi grad gi(x), ∆x⟩

= ⟨Hessx L(w)∆x,∆x⟩+
∑
j∈E

∆yj ⟨gradhj(x),∆x⟩+
∑
i∈A

∆zi ⟨grad gi(x),∆x⟩

= ⟨Hessx L(w)∆x,∆x⟩ ,

Thus, from second-order sufficiency (A4), ∆x must be zero element. And then ∆si = 0 for all i ∈ I \ A.
Next, substituting ∆x = 0 into the first equation in (5.24) yields

0 =
∑
j∈E

∆yj gradhj(x) +
∑
i∈A

∆zi grad gi(x).

The Regularity (A2) implies that the coefficients ∆yj for j ∈ E and ∆zi for i ∈ A must be zero. This

completes the proof.

The result of Proposition 10 again motivates the use of the Newton method for solving (5.14).

5.7 Prototype Algorithm of RIPM

In this section, we will formally propose the prototype of our Riemannian interior point manifold. This

prototype algorithm is indeed a local algorithm of RIPM.

Applying the Riemannian Newton method directly to the KKT vector field F : N → TN results in

the following Newton equation (see (5.16) without iteration count k ) at each iteration:

∇F (w)∆w + F (w) = 0. (5.25)

As with the usual interior point method in the Euclidean setting, once the iterates reach the boundary of

the feasible region, they are forced to stick to it [202, Page 6]. For the iterates to maintain a sufficient

distance from the boundary, we introduce a perturbed complementary equation for some number µ > 0

and define

Fµ(w) := F (w)− µê, and ê ≡ ê(w) :=


0x

0

0

1

 . (5.26)
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Here, 1 is the all-ones vector whose dimension is clear in context. Notice that the perturbation term ê,

indeed, is a special vector field on N , not a constant, because 0x is essentially dependent on w and/or x.

Definition 47 (Perturbed KKT Vector Field). For some parameter µ > 0, the vector field Fµ defined in

(5.26) is called the perturbed KKT vector field of (CRO).

Note that the covariant derivative of the perturbed KKT vector field is the same as that of the original

KKT vector field. From the linearity of the connection ∇, we have at any point w ∈ N and any µ > 0,

we have

∇Fµ(w) = ∇F (w)− µ∇ê(w) = ∇F (w), (5.27)

where the last equity comes from ∇ê(w)[∆w] = (0x, 0, 0, 0) for all ∆w ∈ TwN . Applying the Newton

method to Fµ(w) = 0 yields the perturbed Newton equation,

∇Fµ(w)∆w + Fµ(w) = 0.

From (5.26) and (5.27), this equation is equivalent to

∇F (w)∆w + F (w) = µê,

which reduces to the ordinary Newton equation (5.25) as µ→ 0. At this point, we can describe a prototype

of the Riemannian Interior Point Method (RIPM) in Algorithms 6.

Algorithm 6: Prototype Algorithm of RIPM for (CRO)
Input: A problem of (CRO), an initial point w0 = (x0, y0, z0, s0) ∈ N with (z0, s0) > 0 and a

retraction R on M.

Output: Sequence {xk} ⊂ M.

Set k → 0, µ0 > 0;

while stopping criterion not satisfied do
1. Solve the perturbed Newton equation (a linear operator equation on tangent space Twk

N ):

∇F (wk)∆wk = −F (wk) + µkê (5.28)

to obtain ∆wk = (∆xk,∆yk,∆zk,∆sk) ∈ Twk
N ;

2. Compute a step size 0 < αk ≤ 1 to ensure that (zk+1, sk+1) > 0;

3. Compute the next point as wk+1 = (xk+1, yk+1, zk+1, sk+1) := R̄wk
(αk∆wk);

4. Choose 0 < µk+1 < µk;

5. k → k + 1;

end

There are many schemes for choosing step size αk in above to ensure that (zk+1, sk+1) > 0. We here

present a simple scheme: choose γk with 0 < γ̂ ≤ γk ≤ 1 for some constant γ̂ and compute the step size,

αk := min

{
1, γk min

i

{
− (sk)i
(∆sk)i

| (∆sk)i < 0

}
, γk min

i

{
− (zk)i
(∆zk)i

| (∆zk)i < 0

}}
. (5.29)



Section 5.8 Solving Perturbed Newton Equation Efficiently 105

This scheme is sufficient to guarantee the local superlinear and quadratic convergence of Algorithm 6, as

will be proved in Section 5.9.

On the other hand, the next lemma gives a homotopy (or, continuation) derivation of interior point

method (see [147, Chapter 19]). Note that Séguin and Kressner [175] developed continuation methods for

Riemannian optimization, which are closely related to our Riemannian interior point method.

Lemma 18. Under Assumptions (A1)-(A4) at some w∗, there exist a sufficiently small µ̄ > 0 and a smooth

curve w : [0, µ̄) → N such that w(0) = w∗ and

Fµ(w(µ)) = 0, ∀µ ∈ [0, µ̄)

where F is the perturbed KKT vector field as in Definition 47.

Proof. By Proposition 10, we have that F0(w
∗) = 0 and ∇F0(w

∗) is nonsingular. The proof uses the

same technique as in [175, Theorem 3.1]. Roughly speaking, it applies the implicit function theorem to the

local coordinate representations of the vector field F and its full-rank Jacobian matrix at the solution.

This smooth curve µ 7→ w(µ) is called the central path, whose endpoint w(0) = w∗ is a solution of

(CRO). µ is customarily called the barrier parameter because Fµ(w(µ)) = 0 can be interpreted as the

Riemannian KKT conditions of the following barrier problem:

min f(x)− µ
∑m

i=1 log si

s.t. h(x) = 0, g(x) + s = 0,

(x, s) ∈ M× Rm
+ .

5.8 Solving Perturbed Newton Equation Efficiently

The challenge of Algorithm 6 is how to solve the Newton equation (5.28) in an efficient manner. In this

section, we will do this in two steps: the first step will be to turn the original full Newton equation, which

is asymmetric and consists of four variables, into an equivalent condensed form, which is symmetric and

consists of only two variables. In the second step, an iterative method, namely, Krylov subspace method,

is used to solve the operator equations directly, avoiding the expensive computational effort of converting

them into the usual matrix equations.

5.8.1 Condensed Form of Perturbed Newton Equation

In this subsection, we will transform original full system into an equivalent condensed system.

Let us consider Algorithm 6 and omit the iteration count k. Given the current point w ∈ N with

(z, s) > 0, for the KKT vector field F (w) in (5.12), we denote its components by Fx, Fy, Fz, Fs in

top-to-bottom order, namely,

Fx := gradx L(w), Fy := h(x), Fz := g(x) + s, Fs := ZS1.
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By using these symbols and the compact form (5.20), the full (perturbed) Newton equation (5.28) defined

on TwN ∼= TxM× Rl × Rm × Rm is expanded as:
Hessx L(w)∆x+Hx∆y + Gx∆z

H∗
x∆x

G∗
x∆x+∆s

Z∆s+ S∆z

 =


−Fx

−Fy

−Fz

−Fs + µ1

 . (5.30)

Not only does this equation contain four variables, but there is no symmetry on the left side of the equation,

so it would be unwise to solve it just like that.

We suppose that (z, s) > 0. (Recall that in our Algorithm 6, we can ensure (zk, sk) > 0 for every

iteration count k.) From the fourth line of (5.30), we can deduce

∆s = Z−1 (µ1− Fs − S∆z) .

Substituting above into the third line of (5.30), the whole system (5.30) reduces to Hessx L(w)∆x+Hx∆y + Gx∆z

H∗
x∆x

G∗
x∆x− Z−1S∆z

 =

 −Fx

−Fy

−Z−1µ1− g(x)

 . (5.31)

Again, from the third line of (5.31), we can deduce

∆z = S−1 [Z (G∗
x∆x+ Fz) + µ1− Fs] .

Substituting this ∆z further into the first line of (5.31) and combining it with the second line of (5.31)

yields the following condensed Newton equation, which is defined on TxM× Rl:

T (∆x,∆y) :=

(
Aw∆x+Hx∆y

H∗
x∆x

)
=

(
c

q

)
. (5.32)

where
Aw := Hessx L(w) + GxS

−1ZG∗
x,

c := −Fx − GxS
−1 (ZFz + µ1− Fs) ,

q := −Fy.

(5.33)

Here, c and q are constant vectors. If we defined operator

Ψ := GxS
−1ZG∗

x, (5.34)

then Aw = Hessx L(w) + Ψ. Note that both Ψ and Hessx L(w) are operators from and to TxM.

From the discussion above, for any w ∈ N with (z, s) > 0, the operator ∇F (w) in (5.20) is

nonsingular if and only if the newly defined operator T in (5.32) is nonsingular. Eventually, it is sufficient

for us to solve the equation (5.32) containing the only two variables ∆x and ∆y. In fact, when we
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consider the case of only inequality constraints in (CRO), then ∆y vanishes and only a linear equation

Aw[∆x] = c on TxM needs to be solved.

More importantly, the operator T in the left side of (5.32) is symmetric, or say self-adjoint (although

often indefinite). In following lemmas, we show that the operators Ψ and Aw are self-adjoint; and thus T
is self-adjoint.

Lemma 19. In condensed form (5.32),

• the linear operators Ψ,Aw is self-adjoint on TxM with inner product ⟨·, ·⟩x;

• the linear operator T is self-adjoint on the product vector space TxM× Rl equipped with the inner

product ⟨(ξx, ξy), (ηx, ηy)⟩ := ⟨ξx, ηx⟩x + ξTy ηy.

Proof. Ψ is self-adjoint because Ψ∗ =
(
GxS

−1ZG∗
x

)∗
= G∗

xZS
−1Gx = G∗

xS
−1ZGx. Then, we have

A∗
w = Hessx L(w)∗ + Ψ∗ = Hessx L(w) + Ψ = Aw. Then, to show that T is self-adjoint, taking

(ξx, ξy), (ηx, ηy) ∈ TxM× Rl, we have

⟨(Awξx +Hxξy,H∗
xξx) , (ηx, ηy)⟩ =⟨Awξx +Hxξy, ηx⟩x + ⟨H∗

xξx, ηy⟩

=⟨Awξx, ηx⟩x + ⟨Hxξy, ηx⟩x + ⟨H∗
xξx, ηy⟩

=⟨ξx,Awηx⟩x + ⟨ξy,H∗
xηx⟩+ ⟨ξx,Hxηy⟩x

⟨(ξx, ξy) , (Awηx +Hxηy,H∗
xηx)⟩ =⟨ξx,Awηx +Hxηy⟩x + ⟨ξy,H∗

xηx⟩.

This completes the proof.

Remark 20. We can also see that (5.32) is a saddle point problem defined on Hilbert spaces form its

special structure. See [15, 159].

The following theorem states two sufficient conditions to ensure that the T is nonsingular. They are a

direct extension of the classical results [28, Theorem 6]. Note that Hx in (5.19) is injective if and only if

the set {gradhj(x)}lj=1 is linearly independent in TxM.

Theorem 18. In condensed form (5.32), the linear operator T is nonsingular if one of the following

conditions hold:

(a) Aw and H∗
xA−1

w Hx are nonsingular;

(b) Hx is injective and Aw is positive definite on the null space of H∗
x.

Proof. (a) Choose an orthonormal basis of TxM× Rl to generate an isomorphism between the operators

and their the matrix representations. If notation “hat” denotes the corresponding matrix, we have

T̂ =

[
Âw Ĥx

ĤT
x 0

]
.

Since the invertibility, symmetry, and structure are preserved, then matrices Âw and ĤT
x Â−1

w Ĥx are

invertible. By the properties of Schur complement for block matrix, T̂ is invertible, i.e., T is nonsingular.

(b) We prove it in a direct way. Let T (∆x,∆y) = (0x, 0) and we show that (∆x,∆y) = (0x, 0).

Since

T (∆x,∆y) =

(
Aw∆x+Hx∆y

H∗
x∆x

)
=

(
0x

0

)
,
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we have H∗
x∆x = 0 by the second line, and

0 = ⟨(∆x,∆y) , T (∆x,∆y)⟩

= ⟨(∆x,∆y) , (Aw∆x+Hx∆y,H∗
x∆x)⟩

= ⟨∆x,Aw∆x⟩x + ⟨∆x,Hx∆y⟩x + ⟨∆y,H∗
x∆x⟩x

⟨∆x,Aw∆x⟩x = ⟨∆x,Aw∆x⟩x + 2 ⟨H∗
x∆x,∆y⟩ .

Since ∆x is in the null space of H∗
x and Aw is positive definite on the null space of H∗

x , then we must

have ∆x = 0x. Turn back to the first line of (5.8.1), we have Hx∆y = 0x. Because Hx is injective, we

have ∆y = 0.

5.8.2 Krylov Subspace Methods on Tangent Space

Next, how to solve (5.32) efficiently becomes critical. For simplicity, we consider the case of only

inequality constraints in (CRO), then we will only solve

Aw[∆x] = c (5.35)

with a self-adjoint operator Aw : TxM → TxM. Let d := dimTxM. Unfortunately, in most cases of

practical applications, Riemannian situation leaves us with no explicit matrix form available for Aw. This

means that we can only access A (subscript w omitted) by inputting a vector v to return Av. A general

approach is to first find the matrix representation Â for A under some basis of TxM. In detail, the full

process of this approach is described in Algorithm 7.

Algorithm 7: General Matrix Representation Method for (5.35)
Input: Sysmetric invertible linear operator A : TxM → TxM, nonzero c ∈ TxM.

Output: Solution ∆x of A∆x = c.

(Step 1) Obtain d random independent vectors on TxM (it often needs d orthogonal projection

operations onto subspace TxM when M is a Riemannian submanifold, e.g., M.randvec in

package Manopt [37]);

(Step 2) Obtain an orthonormal basis {ui}di=1 of TxM by the modified Gram-Schmidt algorithm;

(Step 3) Compute (Â)ij := ⟨Auj , ui⟩x for 1 ≤ i ≤ j ≤ d due to symmetry, then we obtain the

matrix representation Â ∈ Rd×d;

(Step 4) Compute (ĉ)i := ⟨c, ui⟩x for 1 ≤ i ≤ d, then we obtain the vector representation ĉ ∈ Rd;

(Step 5) Use an arbitrary linear solver to get the solution ∆x̂ ∈ Rd of matrix equation Â∆x̂ = ĉ;

(Step 6) Recovery the tangent vector ∆x ∈ TxM by ∆x =
∑d

i=1(∆x̂)iui;

Recall that in Algorithm 6, at each iteration, x is updated and thus the tangent space TxM changes

(so does operator A). Thus the six Steps in Algorithm 6 need to be done all over again. Obviously, this

approach is so expensive that it is not feasible in practice.

An ideal approach is to use an iterative method, such as a Krylov subspace method (e.g., conjugate

gradients method [34, Chapter 6.3]), on TxM directly. Such a method does not explicitly require a

coefficient matrix, and instead needs only a matrix-vector product. In general, it only needs to call an
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abstract linear operator v 7→ Av. Since A in (20) is self-adjoint but indefinite, for solving operator

equation (5.35), we will use the Conjugate Residual (CR) method (see [161, ALGORITHM 6.20]) as

stated in Algorithm 8.

Algorithm 8: Conjugate Residual (CR) Method on Tangent Spaces for (5.35)
Input: Sysmetric invertible linear operator A : TxM → TxM, nonzero c ∈ TxM and an initial

point v0 ∈ TxM.

Output: Sequence {vn} ⊂ TxM such that {vn} → v∗ and Av∗ = c.

Set n→ 0, r0 := c−Av0, p0 := r0 and compute Ar0,Ap0 ;

while stopping criterion not satisfied do
Update number αn := ⟨rn,Arn⟩x/⟨Apn,Apn⟩x ; // Update step size

vn+1 := vn + αnpn ; // Update iterate point

rn+1 := rn − αnApn ; // Update Residual

Compute Arn+1 ; // This is the only call to A in while loop

Update number βn := ⟨rn+1,Arn+1⟩x/⟨rn,Arn⟩x ;

pn+1 := rn+1 + βnpn ; // Update conjugate direction

Apn+1 := Arn+1 + βnApn ; // No need to call A here

n→ n+ 1;

end

A significant feature is that the iterates vn, conjugate directions pn, and residual vectors rn := Avn−c
are all contained in TxM. Usually, the initial point v0 is the zero element of TxM; the iteration terminates

when the relative residual ∥rn∥/∥c∥ ≤ ε for some threshold ε > 0, or some maximum number of iterates

is reached.

The discussion of the above two approaches can be naturally extended to the case containing equality

constraints, where we consider T with the product space TxM× Rl instead of A with TxM.

5.9 Local Convergence

In this section, we will prove the local superlinear/quadratic convergence of prototype Algorithm 6.

Along the lines of the local convergent analysis in Euclidean setting (see [73, Section 5]), we begin

with a perturbed damped Riemannian Newton method and then derive its local convergence theory in

Subsection 5.9.1. Then, the convergence of Algorithm 6 results from an application of the perturbed

damped Riemannian Newton method and will be described in Subsection 5.9.2 later. Here, for any two

nonnegative infinite sequences of reals {uk} and {vk}, we write uk = O(vk) if there is a constant M > 0

such that uk ≤Mvk for all sufficiently large k; and we write uk = o(vk) if vk > 0 and the sequence of

ratios {uk/vk} approaches zero.
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5.9.1 Perturbed Damped Riemannian Newton Method

Let us digress from the optimization problem (CRO) for a moment and refocus on the problem of finding

the singularity of a vector field (see Section 5.4) as follows:

F (p) = 0p ∈ TpM, (Singularity)

where F is a C1 vector field on M. We will rely on an application of so-called perturbed damped

Riemannian Newton method for solving (Singularity), which can be stated as Algorithm 9.

Algorithm 9: Perturbed Damped Riemannian Newton Method for (Singularity)
Input: A vector field F on M, an initial point p0 ∈ M and a retraction R on M.

Output: Sequence {pk} ⊂ M such that {pk} → p∗ and F (p∗) = 0p∗ ∈ Tp∗M.

Set k → 0, µ0 > 0 ;

while Stopping condition is not met do
1. Solve the perturbed Newton equation (a linear operator equation on tangent space TpkM):

∇F (pk)ξk = −F (pk) + µkê (5.36)

to obtain ξk ∈ TpkM;

2. Choose a (damped) step size 0 < αk ≤ 1 ;

3. Compute the next point as pk+1 := Rpk(αkξk) ;

4. Choose 0 < µk+1 < µk;

5. k → k + 1;

end

In contrast to the (standard) Riemannian Newton method described in Algorithm 5, the term “perturbed”

means that we solve a Newton equation (5.36) with a perturbed term µkê (for ê see (5.26)), while “damped”

means using αk instead of unit steps. It is well known that Algorithm 5 are locally superlinearly [74] and

quadratically [77] convergent under the following Standard Riemannian Newton assumptions:

Assumption 2 (Standard Riemannian Newton Assumptions of (Singularity)).
(B1) There exists p∗ ∈ M such that F (p∗) = 0p∗ .

(B2) The covariant derivative ∇F (p∗) is nonsingular.

(B3) The map p 7→ ∇F (p) is locally Lipschitz continuous at p∗.

As the following Proposition 11 shows, Algorithm 9 also has the same convergence properties as

Algorithm 5 if we control µk and αk according to the two schemes that Proposition 11 gives. We can

see that either scheme will have µk → 0 and αk → 1, which makes Algorithm 9 eventually reduce to

Algorithm 5 when k is sufficiently large.

Proposition 11 (Local Convergence of Algorithm 9). Consider the perturbed damped Riemannian Newton

method described in Algorithm 9 for singularity problem (Singularity). Let the standard assumptions

(B1)-(B3) hold at solution point p∗. If we choose the parameters µk and αk below (i) or (ii), then there

exists a constant δ > 0 such that for any initial point p0 with d(p0, p∗) < δ, the sequence {pk} in

Algorithm 9 is well-defined (i.e., for each k, equation (5.36) has a solution). Furthermore,
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(i) if we choose µk = o(∥F (pk)∥) and αk → 1, then {pk} converges to p∗ superlinearly;

(ii) if we choose µk = O(∥F (pk)∥2) and 1− αk = O(∥F (pk)∥), then {pk} converges to p∗ quadrati-

cally.

Proof. By Lemma 14, we can let pk be sufficiently close to p∗ such that ∇F (pk) is nonsingular, and∥∥∇F (pk)−1
∥∥ ≤ Ξ. Then, the next iterate,

pk+1 := Rpk [αk∇F (pk)−1(−F (pk) + µkê)],

is well-defined in Algorithm 9. It follows from p∗ = Rpk(η) with η := R−1
pk
p∗ and Lemma 6 that

d(pk+1, p
∗) ≤ a1∥αk∇F (pk)−1(−F (pk) + µkê)− η∥

= a1∥η + αk∇F (pk)−1(F (pk)− µkê)∥. (5.37)

Let rk := η + αk∇F (pk)−1(F (pk)− µkê). Algebraic manipulations show that

rk =(1− αk)η + αk∇F (pk)−1∇F (pk)η + αk∇F (pk)−1(F (pk)− µkê)

=(1− αk)η + αk∇F (pk)−1[∇F (pk)η + F (pk)− µkê]

=(1− αk)η + αk∇F (pk)−1[∇F (pk)η + F (pk)− P0→1
γ F (p∗)− µkê],

where Pγ is a parallel transport along the curve γ given by γ(t) = Rpk(tη).

Thus, using ∥η∥ ≤ 1
a0
d(pk, p

∗) from (iii) of Lemma 6 and the first estimation of Lemma 11, we have

∥rk∥ ≤ (1− αk)∥η∥+ αk∥∇F (pk)−1∥∥P0→1
γ F (p∗)− F (pk)−∇F (pk)η∥+ αk∥∇F (pk)−1∥∥ê∥µk

≤ 1

a0
(1− αk)d(pk, p

∗) + αk∥∇F (pk)−1∥c2d2(pk, p∗) + αk∥∇F (pk)−1∥∥ê∥µk

≤ 1

a0
(1− αk)d(pk, p

∗) + Ξc2d
2(pk, p

∗) + Ξ∥ê∥µk. (by Lemma 14 and 0 < αk ≤ 1)

Therefore, by combining the above with (5.37), we conclude that

d(pk+1, p
∗) ≤ κ1(1− αk)d(pk, p

∗) + κ2d
2(pk, p

∗) + κ3µk (5.38)

for some positive constants κ1, κ2, κ3. On the other hand, by Lemma 7, we have

∥F (pk)∥ = O(d(pk, p
∗)). (5.39)

In what follows, we prove assertions (i) and (ii).

(i) Suppose that αk → 1 and µk = o(∥F (pk)∥), which together imply µk = o(d(pk, p
∗)). By (5.38),

we have
d(pk+1, p

∗)

d(pk, p∗)
≤ κ1(1− αk) + κ2d(pk, p

∗) + κ3
µk

d(pk, p∗)
, (5.40)

and we can take δ sufficiently small and k sufficiently large, if necessary, to conclude that

d(pk+1, p
∗) <

1

2
d(pk, p

∗) < δ.
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Thus, pk+1 ∈ Bδ (p
∗). By mathematical induction, it is easy to show that the sequence {pk} is well-

defined and converges to p∗. Taking the limit of both sides of (5.40) proves superlinear convergence.

(ii) Again, we start from (5.38):

d(pk+1, p
∗) = (1− αk)O(d(pk, p

∗)) +O(d2(pk, p
∗)) +O(µk). (5.41)

Suppose that 1−αk = O(∥F (pk)∥) and µk = O(∥F (pk)∥2). Using (5.39), the above equality reduces to

d(pk+1, p
∗) = O(d2(pk, p

∗)).

This implies that there exists a positive constant ν such that d(pk+1, p
∗) ≤ νd2(pk, p

∗), and hence,

d(pk+1, p
∗) ≤ νd2(pk, p

∗) ≤ νδ2 < δ,

if δ is sufficiently small. Again, by mathematical induction, it is easy to show that the sequence {pk}
converges to p∗ quadratically.

5.9.2 Superlinear and Quadratic Convergence Theorem

Now, let us establish local convergence of RIPM in a way that almost replicates the results of perturbed

damped Newton method. In particular, we will consider Algorithm 6 with step size rule (5.29). We first

need the next lemma, which shows the relationship between the parameter γk and step size αk in the rule

(5.29).

Lemma 20. Consider the Algorithm 6 for problem (CRO). Let (A1) and (A3) hold at some w∗ =

(x∗, y∗, z∗, s∗). Suppose that the step size αk is chosen as in (5.29). Define a constant,

Π := 2max

{
max

i

{
1

(s∗)i
| (s∗)i > 0

}
,max

i

{
1

(z∗)i
| (z∗)i > 0

}}
.

For γk ∈ (0, 1), if

Π ∥∆wk∥ ≤ γk, (5.42)

then

0 ≤ 1− αk ≤ (1− γk) + Π ∥∆wk∥ . (5.43)

Proof. Notice that the fourth line of (5.30) yields

S−1
k ∆sk + Z−1

k ∆zk = µk(SkZk)
−11− 1,

which is exactly the same as in the usual interior point method in the Euclidean setting. We don not need

to pay attention to any concept of manifolds. Thus, the proof entails directly applying [208, Lemma 3 and

4] for the Euclidean case to the Riemannian case.

Remark 21. Rule (5.29) uses a single step size for the all variables. Another popular rule, also men-

tioned in [208, Equation (3.15)], uses different step sizes as follows: let wk+1 = (Rxk
(αxk

∆xk), yk +
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αyk∆yk, sk + αsk∆sk, zk + αzk∆zk), where

αsk = min

{
1, γk min

i

{
−

(sk)i
(∆sk)i

| (∆sk)i < 0

}}
,

αzk = min

{
1, γk min

i

{
−

(zk)i
(∆zk)i

| (∆zk)i < 0

}}
,

and αxk
= αyk are equal to one or αsk or αzk . For this step size rule, we can obtain a similar result as in

Lemma 20. Refer to [208, Lemma 5] for details.

Now, let us establish the local convergence of our Algorithm 6 in a way that replicates Proposition 11

except for taking account of parameter γk.

Theorem 19 (Local Convergence of Prototype Algorithm 6). Consider the prototype Algorithm 6 for

solving problem (CRO). Let (A1)-(A4) hold at some w∗. If we choose the parameters µk, γk as follows;

then there exists a constant δ > 0 such that, for all w0 ∈ N with d(w0, w
∗) < δ, the sequence {wk} is

well defined. Furthermore,

(i) if we choose µk = o(∥F (wk)∥) and γk → 1, then wk → w∗ superlinearly;

(ii) if we choose µk = O(∥F (wk)∥2) and 1− γk = O(∥F (wk)∥), then wk → w∗ quadratically.

Proof. We only prove (ii) because (i) can be proven in the same way. Suppose that d(wk, w
∗) < δ for

sufficiently small δ. Since F satisfies assumptions (B1)-(B3), form the proof of Proposition 11 and

equation (5.41), we also have

d(wk+1, w
∗) = (1− αk)O(d(wk, w

∗)) +O(d2(wk, w
∗)) +O(µk).

Since µk = O(∥F (wk)∥2), and ∥F (wk)∥ = O(d(wk, w
∗)) by equation (5.39), we obtain

µk = O(d2(wk, w
∗)). (5.44)

Thus, we have

∥∆wk∥ =
∥∥∇F (wk)

−1(−F (wk) + µkê)
∥∥

≤ Ξ(∥F (wk)∥+ µk∥ê∥) (by Lemma 14)

≤ O(F (wk)) +O(µk)

= O(d(wk, w
∗)) +O(d2(wk, w

∗)) = O(d(wk, w
∗)) (by equation (5.44)).

Since δ is sufficiently small, from equation (5.44) and the above inequalities, the conditions of Lemmas

20 are satisfied. Hence, we have

0 ≤ 1− αk ≤ (1− γk) + Π ∥∆wk∥ = (1− γk) +O(d(wk, w
∗)), (5.45)
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and

d(wk+1, w
∗) = (1− αk)O(d(wk, w

∗)) +O(d2(wk, w
∗)) +O(µk)

≤ [(1− γk) +O(d(wk, w
∗)]O(d(wk, w

∗)) +O(d2(wk, w
∗)) +O(d2(wk, w

∗)) (by (5.44), (5.45))

= O(d2(wk, w
∗)).

This completes the proof.

5.10 Summary

This chapter introduces the Riemannian Interior Point Methods (RIPM) applied to a connected, complete

Riemannian manifold for solving Constrained Riemannian Optimization (CRO). We extend the classical

primal-dual interior point method from the Euclidean setting to the Riemannian one, establishing local

convergence under certain assumptions.

Section 5.2 includes an overview of Riemannian optimality conditions, adapting classical concepts of

first-order/second-order necessary conditions and Constraint Qualifications (CQs) to manifold settings.

Section 5.3 reinterprets the KKT conditions of (CRO) as a special vector field (called KKT vector field) on

a Riemannian product manifold. In Section 5.4, the Riemannian Newton Method is discussed, along with

the covariant derivative of the KKT vector field given in Section 5.5, essential for applying the interior

point method to the (CRO). We provides both full and compact formulations for this covariant derivative.

Section 5.6 explores the implications of standard Riemannian assumptions, particularly the importance of

the nonsingularity of the covariant derivative at the solution point for local convergence. In Section 5.7,

a prototype algorithm of RIPM is proposed, focusing on local algorithms. The challenge of efficiently

solving the perturbed Newton equation is addressed in Section 5.8, proposing a two-step approach that

simplifies the equation and applies the Krylov subspace method for efficient computation. Finally, Section

5.9 concludes with a proof of local superlinear/quadratic convergence of the prototype RIPM algorithm

under applying the perturbed damped Riemannian Newton method for analysis.
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Chapter 6

Global Convergent Algorithm of RIPM

Part Section

Part 1. Core proposal
6.1 Interpretation of Algorithm 10
6.2 Sufficient Decreasing Condition
6.3 Centrality Conditions

Part 2. Core analysis

6.4 Global Convergence Theorem
6.5 Auxiliary I: Continuity of Some Special Scalar Fields
6.6 Auxiliary II: Boundedness of Sequences
6.7 Proofs of Global Convergence Theorem 20

Part 3. Experiments and summary 6.8 Numerical Experiments
6.9 Summary

In previous chapter, we discussed the prototype algorithm of Riemannian Interior Point Method

(RIPM) in Algorithm 6 and gave its local convergent result. In this chapter, however, we will propose

a globally convergent version of RIPM, which uses the classical line search described in [73]. We first

describe the globally convergent algorithm of RIPM in Algorithm 10 as follows, and we will explain it

step by step and prove its global convergent theorem in the following sections.
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Algorithm 10: Global Convergent Algorithm of RIPM for (CRO)
Input: A problem of (CRO), an initial point w0 = (x0, y0, z0, s0) ∈ N with (z0, s0) > 0 and a

retraction R on M. θ ∈ (0, 1), β ∈ (0, 0.5], γ−1 ∈ (0.5, 1).

Output: Sequence {wk} ⊂ N such that {wk} → w∗ and w∗ satisfies the KKT conditions (5.12).

Set k → 0 ;

while Stopping criterion not satisfied do
1. Choose σk ∈ (0, 1) and

ρk ∈
[
zTk sk/m, ∥F (wk)∥ /

√
m
]
; (6.1)

2. Obtain ∆wk = (∆xk,∆yk,∆zk,∆sk) ∈ Twk
N by solving the following linear equation:

∇F (wk)∆wk = −F (wk) + σkρkê; (6.2)

3. Step size selection:

(3a) Centrality conditions: Set γk ∈ (0.5, γk−1) and ᾱk = min{αI
k, α

II
k } from (6.8) ;

(3b) Sufficient decrease condition: Let αk := θtᾱk, where t is the smallest nonnegative

integer such that αk satisfies

φ(R̄wk
(αk∆wk))− φ(wk) ≤ αkβ ⟨gradφ(wk),∆wk⟩ ; (6.3)

4. Compute the next point as wk+1 := R̄wk
(αk∆wk) ;

5. k → k + 1 ;

end

6.1 Interpretation of Algorithm 10

In this section, we will provide new symbols and merit function needed in order to explain Algorithm 10.

In contrast to the prototype Algorithm 6, the main difference in the global Algorithm 10 is in the choice of

the step size. There is no major difference in solving the Newton equation to obtain the Newton direction.

Then, the efficient approach to solving the Newton equation discussed in Section 5.8 remains applicable.

Consequently, we often assume that the current Newton direction ∆wk is already known.

6.1.1 New Symbols

For a starting point w0 = (x0, y0, z0, s0) ∈ N = M×Rl ×Rm ×Rm with (z0, s0) > 0, define two real

numbers as

τ1 :=
min(Z0S01)

zT0 s0/m
, τ2 :=

zT0 s0
∥F (w0)∥w

. (6.4)

Here, m is the number of inequities constraints in (CRO). Then we have 0 < τ1 ≤ 1 and 0 < τ2 ≤
√
m.

For simplicity, we often omit the subscript of iteration count k. Given the current point w =

(x, y, z, s) ∈ N and current (Newton) direction ∆w = (∆x,∆y,∆z,∆s) ∈ TwN ∼= TxM × Rl ×
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Rm × Rm, the next iterate is calculated along a curve on N , namely,

α 7→ w(α) := R̄w(α∆w), (6.5)

for some step size α > 0. Recall that the retraction R̄ on N is defined as (2.43). By introducing the

notations

w(α) ≡ (x(α), y(α), z(α), s(α)),

we have

x(α) ≡ Rx(α∆x) ∈ M,

y(α) ≡ y + α∆y, z(α) ≡ z + α∆z, s(α) ≡ s+ α∆s.

Define two real to real functions

α 7→f I(α) := min(Z(α)S(α)1)− γτ1z(α)
T s(α)/m, (6.6)

α 7→f II(α) := z(α)T s(α)− γτ2∥F (w(α))∥w, (6.7)

where γ ∈ (0, 1) is a constant. Once the initial point w0 is selected, then τ1, τ2 above are also constants.

Here, the big letters Z(α), S(α) represent the diagonal matrices whose diagonals are given by the vectors

z(α), s(α), respectively. Now, given the functions f i(α), for i = I, II , furthermore compute

αi := max
α∈(0,1]

{
α | f i(t) ≥ 0, for all t ∈ (0, α]

}
, (6.8)

i.e., αi are either 1 or the smallest positive root for the functions f i(α) in (0, 1]. These are called centrality

conditions and will be discussed more in Section 6.3 later.

Remark 22. We note that the functions f i(α) (thus numbers αi) for i = I, II depend on the iteration

count k, because the definition of curve w(α) in (6.5) is determined by current point wk and current

tangent vector ∆wk. For simplicity we often choose not to write explicitly this dependency.

Remark 23. For a moment, we allow the existence of numbers αi for i = I, II in (6.8). A rigorous proof

will be presented in Proposition 14 later.

6.1.2 Merit Function

In constrained optimization, a merit function plays a crucial role by providing a mechanism to unify the

objective function and constraint violations, thereby guiding iterative algorithms towards feasible and

optimal solutions. Refer to [147, Section 15.4] for more. Choosing the Karush-Kuhn-Tucker (KKT)

conditions as a basis for constructing a merit function in constrained optimization can be an intuitive

choice. In previous Section 5.2, we know that the (Riemannian) KKT conditions (5.3)-(5.7) give a set

of necessary conditions for a solution to be feasible and optimal for (CRO). Thus, in Algorithm 10, we

selected the simplest merit function, φ(w) := ∥F (w)∥2w (subscript w is often omitted), which quantifies

the violation of the Riemannian KKT conditions. And, the ultimate goal of Algorithm 10 is to find w∗

such that φ(w∗) = 0 but while keeping z∗, s∗ nonnegative, see (5.14).
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Proposition 12 (Gradient of Merit Function). Consider the KKT vector field F in (5.12) of (CRO). Define

a merit function φ : N → R by

φ(w) := ∥F (w)∥2, (6.9)

then we have

gradφ(w) = 2∇F (w)∗[F (w)]. (6.10)

Here, ∇F (w)∗ is the adjoint operator of ∇F (w), see (5.21).

Proof. Equation (6.10) comes from the following derivation. Let ξ ∈ TwN and choose an arbitrary

V ∈ X(N ) with V (w) = ξ, we have

Dφ(w)[ξ] = Dφ(w)[V (w)]

= (V φ)(w) (by (2.16), V can be seem as a map V : F(N ) → F(N ))

= (V ⟨F, F ⟩)(w) (by φ = ∥F∥2 = ⟨F, F ⟩, also see (2.26))

= 2 ⟨∇ξF, F ⟩ (w) (by Theorem 3, compatibility with the metric for ∇)

= 2⟨∇F (w)[ξ], F (w)⟩ (by definition (2.28))

= ⟨ξ, 2∇F (w)∗[F (w)]⟩ .

The assertion (6.10) now follows from definition of Riemannian gradient.

We conclude this section with some observations. Since the norm on the tangent space of product

manifold is given by (2.41), it is easy to see (recall (5.12)):

∥F (w)∥2w = ∥gradx L(w)∥
2
x + ∥h(x)∥22 + ∥g(x) + s∥22 + ∥ZS1∥22. (6.11)

Let ∥v∥1 =
∑m

i=1 |vi| be the l1 norm for v ∈ Rm. It is well-known that the relation between l1 and l2
norm is ∥v∥2 ≤ ∥v∥1 ≤

√
m∥v∥2 for all v ∈ Rm. Then for any positive z, s ∈ Rm, one has

∥ZS1∥2 ≤ zT s = ∥ZS1∥1 ≤
√
m ∥ZS1∥2 . (6.12)

Hence, dividing both sides by
√
m, and (6.11) leads to

∥ZS1∥2 /
√
m ≤ zT s/

√
m ≤ ∥ZS1∥2 ≤ ∥F (w)∥. (6.13)

This also shows that the range of choices for ρk in (6.1) is well-defined.

6.2 Sufficient Decreasing Condition

In this section, let us focus on the Step (3b) sufficient decrease condition in Algorithm 10. Fixing the

current point w and current direction ∆w ∈ TwN , we denote a real to real function α 7→ ϕ(α) by

ϕ(α) := φ(R̄w(α∆w)), (6.14)
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where the right-hand φ is the merit function defined in (6.9). Note that ϕ(0) = φ(w). To emphasize

the k-th iteration, we often rewrite gradφ(wk) by gradφk, and φ(R̄wk
(α∆wk)) by ϕk(α). We also use

notations

ϕk ≡ ϕk(0) ≡ φ(wk) ≡ φk. (6.15)

It follows from the Definition 16 of retraction on manifold that the derivative of ϕ(α) at α = 0 is

ϕ′(0) = Dφ(R̄w(0))
[
DR̄w(0)[∆w]

]
= Dφ(w)[∆w] = ⟨gradφ(w),∆w⟩.

Hence at k-th wk and ∆wk, we have

ϕ′k(0) = ⟨gradφk,∆wk⟩,

and condition (6.3) is to say

ϕk(αk)− ϕk(0) ≤ αkβϕ
′
k(0), (6.16)

which is exactly the same as the sufficient decreasing condition (i.e., Armijo condition) in Euclidean

optimization. Finally, let us consider ϕ′k(0) in the right-hand side of the above inequality; by [147, Lemma

3.1], if ϕ′k(0) < 0, then the backtracking loop of Step (3b) in Algorithm 10 is well-defined, i.e., it will

terminate at finite loops. This leads to the following concept.

Definition 48 (Descent Direction). We say that ∆wk is a descent direction for φ(w) in (6.9) at wk if

⟨gradφk,∆wk⟩ < 0.

The next lemma shows the condition under which the Newton direction ∆wk generated by (6.2)

ensures the descent of the merit function.

Lemma 21 (Condition of Descent Direction — Setting of Parameter ρk). Consider the Algorithm 10. If

the direction ∆wk is the solution of equation (6.2), then

ϕ′k(0) = ⟨gradφ (wk) ,∆wk⟩ = 2
(
−∥F (wk)∥2 + σkρkz

T
k sk

)
. (6.17)

In this case, ∆wk is a descent direction for φ(w) at wk if and only if ρk < ∥F (wk)∥2 /σkzTk sk.

Proof. The iteration count k is omitted. Let direction ∆w be given as the solution of system (6.2), then

⟨gradφ(w),∆w⟩ = ⟨2∇F (w)∗F (w),∆w⟩ (by (6.10))

= 2⟨F (w),∇F (w)∆w⟩

= 2⟨F (w),−F (w) + σρê⟩ (by (6.2))

= 2(−⟨F (w), F (w)⟩+ σρ⟨F (w), ê⟩)

= 2(−∥F (w)∥2 + σρzT s).

For last equality above, note that by definitions of F in (5.12) and ê in (5.26), one has ⟨F (w), ê⟩ =

⟨ZS1,1⟩ = zT s. Hence, ϕ′(0) = ⟨gradφ(w),∆w⟩ < 0 if and only if ρ < ∥F (w)∥2/σzT s.

In particular, our choice for ρk in (6.1) of Algorithm 10 satisfies the condition stated in Lemma 21,

thus our Algorithm 10 always generates the descent directions ∆wk. We formalize this result in the next
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proposition and also show that the Algorithm 10 can generate monotone nonincreasing sequences {φk}.

Note that ϕk+1 = φ (wk+1) = ϕk (αk) under the notations (6.15).

Proposition 13 (Monotonically Nonincreasing Sequence {φk}). If ∥F (wk)∥ ̸= 0, then the direction

∆wk generated by Algorithm 10 is a descent direction for the merit function φ(w) at wk. Moreover, if

Armijo condition (6.3) is satisfied, then we have

ϕk(αk) ≤ [1− 2αkβ(1− σk)]ϕk(0).

And the sequence {φk} is monotonically nonincreasing.

Proof. The iteration count k is omitted. Suppose that we choose ρ ≤ ∥F (w)∥ /
√
m as in (6.1) and ∆w is

given by (6.2), we have

ϕ′(0) =⟨gradφ(w),∆w⟩

=2(−φ(w) + σρzT s) (by (6.17) and (6.9))

≤2(−φ(w) + σ ∥F (w)∥ zT s/
√
m)

≤2(−φ(w) + σ ∥F (w)∥2) (by (6.13))

=− 2(1− σ)φ(w)

=− 2(1− σ)ϕ(0) < 0. (since σ ∈ (0, 1) in Algorithm 10) (6.18)

This directly gives the result that ∆w is a descending direction. Alternatively, if we use the condition

from Lemma 21, it is sufficient to show that

∥F (w)∥/
√
m < ∥F (w)∥2/σzT s. (6.19)

Note that by (6.13), σzT s < zT s ≤
√
m∥F (w)∥; then, 1√

m
< ∥F (w)∥

σzT s
.Multiplying both sides by ∥F (w)∥

gives (6.19).

Moreover, if condition (6.3), i.e., (6.16) is satisfied, then under the notations (6.15) we have

ϕk+1 = ϕk (αk) ≤ ϕk(0) + αkβϕ
′
k(0)

≤ ϕk(0) + αkβ[−2(1− σk)ϕk(0)] (by (6.18))

= [1− 2αkβ(1− σk)]ϕk.

Finally, in Algorithm 10, note that we set β ∈ (0, 1/2], σk ∈ (0, 1), and αk ∈ (0, 1], hence 0 <

1−2αkβ (1− σk) < 1, which implies that the sequence {ϕk} ({φk}) is monotonically nonincreasing.

Remark 24. We can obtain the global Q-linear convergence of the values of the merit function φk to zero,

if moreover, we request that {αk} is bounded away from zero. Note that

lim
k→∞

φk+1

φk
= lim

k→∞

ϕk+1

ϕk
≤ lim

k→∞
[1− 2αkβ (1− σk)] < 1.
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6.3 Centrality Conditions

In Remark 23, we assumed the existence of numbers αi for i = I, II in (6.8) for a moment. The next

proposition shows that the strict feasibility of the initial vectors z0, s0 > 0 is sufficient to guarantee the

existence.

Proposition 14 (Well-definedness of Centrality Conditions). Let f I(α) and f II(α) be the centrality

functions defined in (6.6) and (6.7) where τ1, τ2 are given in (6.4). Set a sequence of parameters {γk}
with 0.5 < · · · < γ2 < γ1 < γ0 < 1. If z0 > 0, s0 > 0, then for each k = 0, 1, 2, . . .,

(i) there exists αI
k > 0 such that f Ik (α) ≥ 0, for all α ∈ (0, αI

k],

(ii) there exists αII
k > 0 such that f IIk (α) ≥ 0, for all α ∈ (0, αII

k ].

Hence, the Step (3a) centrality conditions in Algorithm 10 is well-defined.

Proof. We only prove (i) by mathematical induction. The same idea can be applied to (ii). Consider

k = 0. By construct of τ1 in (6.4), we have

f I0 (0) = min(Z0S01)− γ0τ1(z
T
0 s0/m)

= min(Z0S01)− γ0min(Z0S01)

= (1− γ0)min(Z0S01) > 0. (since z0 > 0, s0 > 0)

Thus, f I0 (0) > 0. It follows the continuity of f I0 at α = 0, there exists αI
0 > 0 such that f I0 (α) ≥ 0, ∀α ∈

(0, αI
0]. Hence, (i) holds for k = 0.

Suppose that for k = 0, 1, 2, . . ., (i) holds. Note that at k-th iteration, the quantities wk,∆wk and γk
together determine the function:

f Ik (α) = min(Zk(α)Sk(α)1)− γkτ1(zk(α)
T sk(α)/m).

A final step αk is chosen such that f Ik (αk) ≥ 0. For k + 1, we have

f Ik+1(0) = min(Zk+1(0)Sk+1(0)1)− γk+1τ1(zk+1(0)
T sk+1(0)/m)

= min(Zk+1Sk+11)− γk+1τ1(z
T
k+1sk+1/m)

> min(Zk+1Sk+11)− γkτ1(z
T
k+1sk+1/m) (since 0 < γk+1 < γk)

= min(Zk(αk)Sk(αk)1)− γkτ1(zk(αk)
T sk(αk)/m)

= f Ik (αk) ≥ 0.

Thus, f Ik+1(0) > 0. By continuity of f Ik+1 at α = 0, there exists αI
k+1 > 0 such that f Ik+1(α) ≥ 0,∀α ∈

(0, αI
k+1]. This completes the proof.

The role of the centrality conditions is to ensure the nonnegativity of zk and sk during the iteration

process (through f Ik ), as well as to prevent zTk sk from becoming too small (through f IIk ). Too small

zTk sk may lead to too small selection of ρk, which may affect the efficiency of the iteration of interior

point method. The above considerations are not any different from the interior point method in Euclidean

optimization. See [73, 28, 70] for more.
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At this point, all ingredients in Algorithm 10 have been explained and are well-defined. In the next

section, we directly state the convergence theorem of Algorithm 10. We end this section with following

minor result.

Lemma 22 (Bound of the Sequence {zTk sk}). Let {wk} be generated by Algorithm 10 and χ := τ22 /4.

Let m be the number of inequities constraints in (CRO). Then,

χφ(wk) ≤ (zTk sk)
2 ≤ mφ(wk).

Proof. By (6.7), we have zTk sk ≥ γkτ2∥F (wk)∥ ≥ τ2/2∥F (wk)∥, then (zTk sk)
2 ≥ (τ2/2)

2φ(wk), which

leads to the first inequality. The second inequality follows (6.12).

6.4 Global Convergence Theorem

Given an initial point w0 and ε ≥ 0, let us define the set

Ω(ε) := {w ∈ N : ε ≤ φ(w) ≤ φ0,min(ZS1)/(zT s/m) ≥ τ1/2, z
T s/∥F (w)∥ ≥ τ2/2}.

Note that Ω(ε) is a closed subset of N ; Ω(ε) ⊂ Ω(0) for any ε > 0. We now establish global convergence

of the Algorithm 10 for (CRO) under the following assumptions.

Assumption 3 (Assumptions of Global Convergence of (CRO)).
(C1) in the set Ω(0), the functions f, h, g are smooth; the gradients of the equality constraints are linearly

independent vector fields, i.e., the set {gradhj(x)}lj=1 is linearly independent in TxM for all x;

the map w 7→ ∇F (w) is Lipschitz continuous (with respect to parallel transport);

(C2) the sequences {xk} and {zk} are bounded [71, 28];

(C3) in any compact subset of Ω(0), the operator ∇F (w) is nonsingular.

Given the above assumptions, we can now prove the following statement.

Theorem 20 (Global Convergence of Algorithm 10). Let {wk} be generated by Algorithm 10 with

R = Exp and {σk} ⊂ (0, 1) be bounded away from zero and one. Let φ be Lipschitz continuous

on Ω(0). If assumptions (C1)-(C3) hold, then {∥F (wk)∥} converges to zero; and for any limit point

w∗ = (x∗, y∗, z∗, s∗) of {wk}, x∗ is a Riemannian KKT point of problem (CRO).

Note that although the exponential map Exp is used in the theorem, the numerical experiments

indicate that global convergence may hold for a general retraction R. The proof of above theorem will be

given in the following three sections. We first discuss the two classes of auxiliary results in Section 6.5

and Section 6.5, and eventually gives the proofs in Section 6.7.

6.5 Auxiliary I: Continuity of Some Special Scalar Fields

Many functions in Euclidean setting have an obvious continuity that is important for convergence analysis.

However, the counterparts of those functions in Riemannian setting lacks a direct result of their continuity.

In this section we focus on this issue and record these results in Proposition 15 and Proposition 16.
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Let M be a Riemannian manifold. If we assign a linear operator Ax : TxM → TxM to each point

x ∈ M, then the map

x 7→ ∥Ax∥

is a well-defined scalar field1 on M, and we should be aware that the operator norm ∥·∥ (see (2.1))

depends on x since the domain and codomain of Ax depend on x. Let ∥ · ∥2, ∥ · ∥F be the spectral norm,

Frobenius norm of matrices, respectively. Notice that ∥ · ∥2 is l2 norm for vector argument and spectral

norm for matrix argument. Next lemma shows that the maps

x 7→ ∥Âx∥2 and x 7→ ∥Âx∥F

are also well-defined scalar fields, where Âx denotes the matrix representation of Ax with respect to

arbitrary orthonormal basis of TxM. The term “well-defined”, here, means that the values ∥Âx∥2 and

∥Âx∥F are invariant under a change of orthonormal basis.

Lemma 23 (Well-definedness of Two Special Scalar Fields). Let M be a d-dimensional Riemannian

manifold endowed with a metric ⟨·, ·⟩. Let x ∈ M and Ax be a linear operator from and to TxM. Choose

a basis of TxM that is orthonormal with respect to the inner product ⟨·, ·⟩x, and let Âx ∈ Rd×d denote

the matrix representation of Ax under the basis. Then, the values ∥Âx∥2 and ∥Âx∥F are invariant under

a change of orthonormal basis; moreover,

∥Ax∥ = ∥Âx∥2 ≤ ∥Âx∥F.

Proof. Suppose that there two orthonormal bases {Ei}di=1, {E′
i}di=1 on TxM. With respect to those bases,

let P ∈ Rd×d denote the change-of-basis matrix, i.e.,

[P ]kj := ⟨E′
j , Ek⟩x, for 1 ≤ k, j ≤ d.

It is known that P is an orthogonal matrix due to the orthonormal properties of {Ei}di=1 and {E′
i}di=1. Let

Âx, Â′
x ∈ Rd×d denote the matrix representations of Ax with respect to the two bases, respectively. From

[9, 10.7, P298], we have Â′
x = P−1ÂxP. Since P is orthogonal,

∥Â′
x∥ = ∥P−1ÂxP∥ = ∥Âx∥

hold for the Frobenius norm, or the spectral norm. Therefore, the values ∥Âx∥2 and ∥Âx∥F are invariant

under a change of orthonormal basis.

Now, choose an orthonormal basis {Ei}di=1 on TxM. For any y ∈ TxM, its vector representation

ŷ ∈ Rd is defined by y =
∑d

i=1 ŷiEi. Thus, y 7→ ŷ establishes an isomorphism between TxM and Rd.

Then we have Âxy = Âxŷ, i.e., Axy =
∑d

i=1(Âxŷ)iEi, see [9, 3.65, P85]; and from the property of

orthonormal basis (see [9, 6.25, P180]), we have

∥Axy∥2x = ∥
d∑

i=1

(Âxŷ)iEi∥2x =
d∑

i=1

(Âxŷ)
2
i = ∥Âxŷ∥22. (6.20)

1The term “scalar field” is equal to “real-valued functions”.
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Thus, ∥Axy∥x = ∥Âxŷ∥2 for any y ∈ TxM. Finally, we obtain

∥Ax∥ = sup
y∈TxM,∥y∥x=1

{∥Axy∥x} = sup
ŷ∈Rd,∥ŷ∥2=1

{∥Âxŷ∥2} = ∥Âx∥2. (6.21)

It is clear that ∥Âx∥2 ≤ ∥Âx∥F (see [59, Theorem 3.1.3]).

From Lemma 23, we know that ∥Ax∥ = ∥Âx∥2 holds for all x ∈ M. Then x 7→ ∥Âx∥2 and

x 7→ ∥Ax∥ are the same function. Thus, the continuity of ∥Âx∥2 implies continuity of ∥Ax∥. However,

we do not have clarity on the continuity of scalar fields x 7→ ∥Âx∥2 and/or x 7→ ∥Âx∥F yet, since

continuity depends on how x 7→ Ax. In our problem (CRO), we consider a special case of x 7→ Ax, that

is, x 7→ Hess f(x). The following proposition illustrates the continuity of such an important case.

Proposition 15 (Continuity of Some Special Scalar Fields - I). Consider smooth function f in (CRO)

where M be a d-dimensional Riemannian manifold endowed with a metric ⟨·, ·⟩. Let ̂Hess f(x) ∈ S(d)

denote the matrix representation of Hess f(x) with respect to an arbitrary orthonormal basis of TxM.

Then, the map

x 7→ ∥ ̂Hess f(x)∥

is a well-defined continuous scalar field on M, for the Frobenius norm, or the spectral norm. Moreover,

x 7→ ∥Hess f(x)∥

is a well-defined continuous scalar field on M. The above results can be applied verbatim to the Hessian

of constraint functions {hj}lj=1 , {gi}
m
i=1 in (CRO).

Proof. Lemma 23 shows that scalar field x 7→ ∥ ̂Hess f(x)∥ is well-defined, it suffices to prove its

continuity. Recall Definition 18 of local frame in Section 2.8, for each x̄ ∈ M there is a smooth

orthonormal local frame {Ei}di=1 on a open neighborhood U of x̄, namely, {E1(x), . . . , Ed(x)} forms an

orthonormal basis on TxM for all x ∈ U (see [127, Corollary 13.8]). Choose such a local frame {Ei}di=1

around x̄, then the matrix representation of Hess f(x) with respect to {E1(x), . . . , Ed(x)} is given by,

for 1 ≤ k, j ≤ d,

[ ̂Hess f(x)]kj := ⟨Hess f(x)[Ej(x)], Ek(x)⟩x = ⟨(∇Ej grad f)(x), Ek(x)⟩x.

The last equality comes form Definition 23 of Hess f(x). Now, from the smoothness of Riemannian metric

⟨·, ·⟩ (see (2.21)), it follows that x 7→ ̂Hess f(x) is a continuous function from U ⊂ M to S(d). Since

any matrix norm is continuous, ∥ ̂Hess f(x)∥ is continuous on U containing x̄. Because the discussion

above hold for any x̄ ∈ M. We complete the proof.

The proof of the next proposition is similar to that of Lemma 23 and Proposition 15. It gives the

continuity of another special class of scalar fields.

Proposition 16 (Continuity of Some Special Scalar Fields - II). Consider smooth functions h, g in (CRO)

and the linear operator Hx and Gx defined in (5.19). Then

x 7→ ∥Hx∥ and x 7→ ∥Gx∥
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are well-defined continuous scalar fields on M.

Proof. We only prove the result for {hj}lj=1, because it can be applied verbatim to {gi}mi=1. Recall that

Hx : Rl → TxM is given by

Hxy :=
l∑

j=1

yj gradhj(x).

Since scalar field x 7→ ∥Hx∥ is well-defined for each x, it suffices to prove the continuity. The main idea

is the same as that of Lemma 23 and Proposition 15.

First we claim that ∥Hx∥ = ∥Ĥx∥2 for each x ∈ M, where Ĥx denotes the matrix representation of

Hx with respect to an arbitrary orthonormal basis of TxM and standard basis {ej}lj=1 of Rl. It is easy to

see ∥Hxy∥2x = ∥Ĥxy∥22 for all y ∈ Rl. Then we have

∥Hx∥ = sup
y∈Rl,∥y∥2=1

{∥Hxy∥x} = sup
y∈Rl,∥y∥2=1

{∥Ĥxy∥2} = ∥Ĥx∥2.

Next, since for each x̄ ∈ M there is a smooth, local orthonormal frame {Ei}di=1 on a neighborhood

U of x̄, we choose such a local frame {Ei}di=1 around x̄. The matrix representation of Hx with respect to

{Ei(x)}di=1 and {ej}lj=1 is Ĥx ∈ Rd×l given by, for 1 ≤ k ≤ d, 1 ≤ j ≤ l,

[Ĥx]kj = ⟨Hxej , Ek(x)⟩x = ⟨gradhj(x), Ek(x)⟩x . (6.22)

Again, by the smoothness of Riemannian metric ⟨·, ·⟩ (see (2.21)), it follows that x 7→ Ĥx is a continuous

function from U ⊂ M to Rd×l. Since any matrix norm is continuous, ∥Ĥx∥2 = ∥Hx∥ is continuous on

U containing x̄. Because the discussion above hold for any x̄ ∈ M, we complete the proof.

We end this section with next proposition that shows the matrix representation of covariant derivative

of KKT Vector Field ∇F (w) given in (5.20). The result of Proposition 17 is rather trivial, but we give the

proof for completeness.

Proposition 17 (Matrix Representation of Covariant Derivative of KKT Vector Field). Let M be a

d-dimensional Riemannian manifold endowed with a metric ⟨·, ·⟩. Given any w = (x, y, z, s) ∈ N =

M×Rl ×Rm ×Rm, consider the linear operator ∇F (w) : TwN → TwN given in (5.20). Let {Ei}di=1

be an orthonormal basis of TxM and {ej}lj=1, {ei}mi=1 be the standard bases of Rl,Rm, respectively

(should be clear in context). If we choose an orthonormal basis of TwN = TxM×Rl ×Rm ×Rm (thus,

dimTwN = d+ l + 2m) in the form of

{(Ei, 0, 0, 0)}di=1 ∪ {(0x, ej , 0, 0)}lj=1 ∪ {(0x, 0, ei, 0)}mi=1 ∪ {(0x, 0, 0, ei)}mi=1 . (6.23)

Then the matrix representation of ∇F (w) is given by

∇̂F (w) =


Q B C 0

BT 0 0 0

CT 0 0 I

0 0 S Z

 ,
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i.e., a matrix of order (d+ l + 2m) and, where

Q := Q(w) := ̂Hessx L(w) ∈ S(d) is given by [Q]kj := ⟨Hessx L(w) [Ej ] , Ek⟩x for 1 ≤ k, j ≤ d;

B := B(x) = [ĝradh1(x), · · · , ĝradhl(x)] ∈ Rd×l;

C := C(x) = [ĝrad g1(x), · · · , ̂grad gm(x)] ∈ Rd×m; and the “hat” in B,C means corresponding

vector representation under the basis {Ei}di=1 of TxM.

In this case, there is a continuous scalar field T : N → R such that ∥Q(w)∥F ≤ T (w) for any w.

Moreover, x 7→ ∥B(x)∥F and x 7→ ∥C(x)∥F are continuous scalar fields on M.

Proof. The matrix representation ∇̂F (w) under the basis (6.23) is obtained by a trivial process, so

we will omit its description. From (5.9), we have the linear dependence between the Hessian opera-

tors: Hessx L(w) = Hess f(x) +
∑l

j=1 yj Hesshj(x) +
∑m

i=1 ziHess gi(x). By the linearity of matrix

representation (see [9, 3.36 & 3.38, P73]), we have

Q(w) = ̂Hessx L(w) = Ĥess f(x) +
l∑

j=1

yj ̂Hesshj(x) +
m∑
i=1

zi ̂Hess gi(x),

under the same basis {Ei}di=1 of TxM. Thus,

∥Q(w)∥F ≤

∥Ĥess f(x)∥F +

l∑
j=1

|yj |∥ ̂Hesshj(x)∥F +

m∑
i=1

|zi|∥ ̂Hess gi(x)∥F

 =: T (w).

Note that ∥Q(w)∥F is invariant to under a change of orthonormal basis of TxM, by Lemma 23. From

Proposition 15, ∥Ĥess f(x)∥F, {∥ ̂Hesshj(x)∥F}lj=1, {∥ ̂Hess gi(x)∥F}mi=1 are all continuous function

with respect to variable x. It follows from the construct of T (w) that T is continuous with respect to

w = (x, y, z, s) ∈ N . As for ∥B(x)∥F, since the basis {Ei}di=1 is orthonormal ([9, 6.25, P180]), we have

∥B(x)∥2F =

l∑
j=1

∥ĝradhj(x)∥22 =
l∑

j=1

∥gradhj(x)∥2x ,

which implies the continuity of ∥B(x)∥F by discussion of (2.24). The same argument is valid for ∥C(x)∥F,

and we complete the proof.

6.6 Auxiliary II: Boundedness of Sequences

In this section, we continue to show more auxiliary results that will eventually be used to prove the global

convergence theorem. This section contains only Proposition 18 and Lemma 24, both of which assume

that the sequence {∥F (wk)∥} does not converge to zero, i.e., there exists ε > 0 such that wk ∈ Ω(ε) for

all k. In the next section, when we prove the global convergence by contradiction, those auxiliary results

will be very useful.

Proposition 18 (Boundedness of Some Sequences). Let assumptions (C1)-(C3) hold and {wk} be a

sequence generated by Algorithm 10. If for some ε > 0 and wk ∈ Ω(ε) for all k = 0, 1, 2, . . ., then

(a) the sequence {zTk sk} and {(zk)i(sk)i} , i = 1, 2, . . . ,m, are all bounded above and below away

from zero.
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(b) the sequence {zk} and {sk} are bounded above and component-wise bounded away from zero;

(c) the sequence {wk} is bounded;

(d) the sequence {∥∇F (wk)
−1∥} is bounded;

(e) the sequence {∆wk} is bounded.

Proof. (a) It follows from Lemma 22 that

0 < χε ≤ χφ(wk) ≤ (zTk sk)
2 ≤ mφ(wk) ≤ mφ0.

Thus, the sequence {zTk sk} is bounded above and below away from zero. (6.12) implies that {(zk)i(sk)i} ,
for i = 1, 2, . . . ,m, is bounded above, since

(zk)i(sk)i ≤ ∥ZkSk1∥2 ≤ zTk sk.

The centrality function (6.6) and condition (6.8) give

(zk)i(sk)i ≥ min(ZkSk1) ≥
1

2
τ1(z

T
k sk/m).

Therefore, {(zk)i(sk)i} , for i = 1, 2, . . . ,m, are bounded below away from zero.

(b) The boundedness of {xk} implies that {∥g(xk)∥} is bounded above say, by M2. Then we have

∥sk∥ ≤ ∥g(xk) + sk∥+ ∥−g(xk)∥ ≤ √
φ0 +M2,

which shows that {sk} is bounded above.

Since {(zk)i(sk)i} are bounded away from zero and {sk} is bounded above, it follows that {zk} is

bounded away from zero. By contradiction, suppose that lim inf zk = 0, i.e., there is a subsequence

zkl → 0. Since {sk} is bounded above, we have (zkl)i(skl)i → 0, for i = 1, 2, . . . ,m, which is a

contradiction. Analogously, for the same argument, {sk} is bounded below away from zero, because {zk}
is bounded above by assumption (C2).

(c) Based on the previous result (b), it suffices to prove that {yk} is bounded. For a moment, the

iteration count k is omitted. Note that by (5.2),

l∑
j=1

yj gradhj(x) = gradx L(w)− grad f(x)−
m∑
i=1

zi grad gi(x). (6.24)

By using the notations Hx and Gx defined by (5.19), we rewrite (6.24) as

Hxy = gradx L(w)− grad f(x)− Gxz =: b. (6.25)

By (C1), for all x, {gradh1(x), · · · , gradhl(x)} is linearly independent. Thus, rankHx = dimRl, i.e.,

Hx is injection. Then there exists the unique solution of Hxy = b. From (6.25), we have

y = [(H∗
xHx)

−1H∗
x] (gradx L(w)− grad f(x)− Gxz) . (6.26)
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Define Cx : TxM → Rl by Cx := (H∗
xHx)

−1H∗
x. Under the orthonormal basis of TxM and standard

basis {ei}li=1 of Rl, if Ĥx is the matrix corresponding to Hx, then Ĉx = (ĤT
x Ĥx)

−1ĤT
x is the matrix

corresponding to Cx [9, 7.10, P208; 3.43, P75]. Using the same idea as the context of equation (6.20),

(6.21), we have ∥Cx∥ = ∥Ĉx∥2 for any x. Recall that in the proof of Proposition 16, (6.22) shows that for

each x̄ ∈ M there is a neighborhood U of x̄ such that x 7→ Ĥx is continuous over U . Then by function

composition, x 7→ Ĉx = (ĤT
x Ĥx)

−1ĤT
x is also continuous over U . It shows that ∥Cx∥ = ∥Ĉx∥2 is

continuous at each point x̄, hence, on M.

Finally, with Proposition 16 together, ∥Cx∥ , ∥grad f(x)∥ , ∥Gx∥ are all continuous on M. Because

{xk} is bounded, by (6.26) we have

∥yk∥ ≤ ∥Cxk
∥ (∥gradx L(wk)∥+ ∥grad f(xk)∥+ ∥Gxk

∥ ∥zk∥) ≤ c1 (
√
φ0 + c2 + c3 ∥zk∥) ,

for some positive constants c1, c2, c3. Then {yk} is bounded because {zk} is bounded.

(d) For each wk, choose an arbitrary orthonormal basis of Twk
N . If matrix ∇̂F (wk) corresponds

to ∇F (wk), then the inverse matrix ∇̂F (wk)
−1

corresponds to ∇F (wk)
−1. By Lemma 23, we have∥∥∇F (wk)

−1
∥∥ ≤ ∥∇̂F (wk)

−1
∥F, where ∥∇̂F (wk)

−1
∥F is independent to the orthonormal basis we

choose. Since sequence {∥∇̂F (wk)
−1

∥F} is well-defined, it is sufficient to show that {∥∇̂F (wk)
−1

∥F}
is bounded.

For convenience, we choose the orthonormal basis of Twk
N given in (6.23). Then, we have

∇̂F (wk) =


Qk Bk Ck 0

BT
k 0 0 0

CT
k 0 0 I

0 0 Sk Zk

 . (6.27)

By Proposition 17, there is a continuous scalar field T (w) on N such that ∥Q(w)∥F ≤ T (w); and

∥B(x)∥F, ∥C(x)∥F are continuous on M. It follows from the boundedness of {xk}, {wk} that for all k,

∥Qk∥F = ∥Q(wk)∥F ≤ T (wk) ≤ c4,

∥Bk∥F = ∥B(xk)∥F ≤ c5,

∥Ck∥F = ∥C(xk)∥F ≤ c6,

for some positive constants c4, c5, c6.

Note that whichever basis {Ei}di=1 is used in the form of (6.23), the structure of matrix ∇̂F (wk) and

the properties of its submatrix blocks in (6.27) remain unchanged, e.g., symmetry of Qk; full-rank of Bk;

identity matrix I in third row; all zero matrices; diagonal matrices Sk, Zk; etc. This ensures that we can

obtain the result by performing the appropriate decomposition of the matrix ∇̂F (wk) as in the proof of

Euclidean version. Up to this point, we have created all the conditions needed in the proof of Euclidean

version. Applying [28, Theorem 2, (c)] directly, we claim that {∥∇̂F (wk)
−1

∥F} is bounded.

(e) By (6.2), we have ∥∆wk∥ ≤ ∥∇F (wk)
−1∥ (∥F (wk)∥+ ∥σkρkê∥) . We complete the proof.
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Lemma 24 (Boundedness of the Sequences {ᾱk}). Let assumptions (C1)-(C3) hold and {wk} be a

sequence generated by Algorithm 10. If for some ε > 0 and wk ∈ Ω(ε) for all k = 0, 1, 2, . . ., {σk} is

bounded away from zero, and ρk is as in (6.1). Then, the sequence {ᾱk} is bounded away from zero.

Proof. Since ᾱk = min{αI
k, α

II
k }, it is sufficient to show that {αI

k} and {αII
k } are bounded away from

zero. Let us suppress the iteration subscript k. First we have the following observations. In the perturbed

Newton equation (6.2), we have Z∆s+ S∆z = σρ1− ZS1, that is, for i = 1, 2, · · · ,m,

zi∆si + si∆zi = σρ− zisi. (6.28)

Summing up the items from i = 1 to m gives

m∑
i=1

(zi∆si + si∆zi) = zT∆s+ sT∆z = σρm− zT s. (6.29)

Recall that z(α) = z+α∆z and s(α) = s+α∆s. Let zi(α) and si(α) denote their components, namely,

z(α) = zi + α∆zi, si(α) = si + α∆si.

(Part 1) For result about αI , see [73, Lemma 6.3], [67, Theorem 3.1]. The proofs in those references

apply verbatim to the Riemannian case. However, their proofs are not complete, because of the lack of a

strict interpretation for αI ≥ α′, that will be shown later.

It follows from the definition of f I in (6.6) that

f I(α) = min
i

{
zi(α)si(α)−

γτ1
m
z(α)T s(α)

}
.

Note that for i = 1, 2, · · · ,m,

zi(α)si(α)−
γτ1
m
z(α)T s(α)

=zisi + α (si∆zi + zi∆si) + α2∆zi∆si −
γτ1
m

[
zT s+ α

(
sT∆z + zT∆s

)
+ α2∆zT∆s

]
=α2

(
∆zi∆si −

γτ1
m

∆zT∆s
)
+ zisi −

γτ1
m
zT s+ α

[
si∆zi + zi∆si −

γτ1
m

(
sT∆z + zT∆s

)]
=α2

(
∆zi∆si −

γτ1
m

∆zT∆s
)
+ zisi −

γτ1
m
zT s+ α

[
σρ− zisi − γτ1σρ+

γτ1
m
zT s

]
(by (6.28), (6.29))

=(1− α)
(
zisi −

γτ1
m
zT s

)
+ α(1− γτ1)σρ+ α2

(
∆zi∆si −

γτ1
m

∆zT∆s
)

≥α(1− γτ1)σρ− α2
∣∣∣∆zi∆si − γτ1

m
∆zT∆s

∣∣∣ .
The last inequality above comes from the following result. For α ∈ (0, 1] and x1 ≥ 0, x2, x2 ∈ R, one has

(1− α)x1 + αx2 + α2x3 ≥ αx2 − α2|x3|, (6.30)

where in our cases, x1 := zisi − γτ1
m zT s ≥ mini

{
zisi − γτ1

m zT s
}

= f I(0) ≥ 0. Hence, from the

boundedness of ∆w, we have for i = 1, 2, · · · ,m,

zi(α)si(α)−
γτ1
m
z(α)T s(α) ≥ α(1− γτ1)σρ− α2M1 =: ψ1(α),
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where ψ1 is a quadratic function and M1 is a constant such that∣∣∣∆zi∆si − γτ1
m

∆zT∆s
∣∣∣ ≤M1, ∀i = 1, 2, . . . ,m.

It shows that the function ψ1 is a lower bound of f I on α ∈ (0, 1]. Let α′ := 1−γτ1
M1

σρ denote the nonzero

root of ψ1(α). Because γ ∈ (1/2, 1), σ ∈ (0, 1), and τ1 ∈ (0, 1] is a constant that does not depend on k,

and (6.1), we have

α′ <
1− τ1/2

M1
ρ ≤ (1− τ1/2) ∥F (w)∥ /

√
m

M1
≤ [(1− τ1/2)φ0/

√
m]

M1
,

which imply that we can take a sufficiently large M1 so that the nonzero root α′ is less than one, if

necessary. Thus, by definition of αI in (6.8), it follows that αI ≥ α′.

On the other hand, we know that

α′ =
1− γτ1
M1

σρ ≥ 1− τ1
M1

σρ ≥
(
1− τ1
M1m

)
σzT s.

Since w ∈ Ω(ε), ε > 0, then zT s is bounded away from zero. Moreover, {σk} is bounded away from

zero; then, αI is bounded away from zero.

(Part 2) Now, we show that αII is bounded away from zero. Recall that w(α) = ¯Expw(α∆w). Fix

α and let Pγ be the parallel transport along the geodesic c(t) = ¯Expw (tα∆w). By the fundamental

theorem of calculus in the Riemannian case, we obtain

P0→1
c F (w(α)) =F (w) +

∫ 1

0
P0→t
c ∇F (c(t))Pt→0

c α∆wdt

=F (w) + α∇F (w)∆w − α∇F (w)∆w +

∫ 1

0
P0→t
c ∇F (c(t))Pt→0

c α∆wdt

=F (w) + α (σρê− F (w)) + α

∫ 1

0

[
P0→t
c ∇F (c(t))Pt→0

c −∇F (w)
]
∆wdt (by (6.2))

=(1− α)F (w) + ασρê+ α

∫ 1

0

[
P0→t
c ∇F (c(t))Pt→0

c −∇F (w)
]
∆wdt.

Taking the norm on both sides above gives

∥∥P0→1
c F (w(α))

∥∥
= ∥F (w(α))∥ (since parallel transport is isometric)

≤(1− α) ∥F (w)∥+ ασρ ∥ê∥+ α

∫ 1

0

∥∥P0→t
c ∇F (c(t))Pt→0

c −∇F (w)
∥∥ ∥∆w∥dt

≤(1− α) ∥F (w)∥+ ασρ
√
m+ α

∫ 1

0
L∥tα∆w∥ ∥∆w∥ dt (by Lipschitz continuity of ∇F )

=(1− α) ∥F (w)∥+ ασρ
√
m+

L

2
α2∥∆w∥2. (6.31)
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From the above inequalities and definition of f II in (6.7), it follows that

f II(α) =z(α)T s(α)− γτ2∥F (w(α))∥

=zT s+ α
(
sT∆z + zT∆s

)
+ α2∆zT∆s− γτ2∥F (w(α))∥

=zT s+ α
(
σρm− zT s

)
+ α2∆zT∆s− γτ2∥F (w(α))∥ (by (6.29))

=(1− α)zT s+ ασρm+ α2∆zT∆s− γτ2∥F (w(α))∥

≥(1− α)zT s+ ασρm+ α2∆zT∆s− γτ2

[
(1− α) ∥F (w)∥+ ασρ

√
m+

L

2
α2∥∆w∥2

]
=(1− α)

(
zT s− γτ2 ∥F (w)∥

)
+ ασρ

(
m− γτ2

√
m
)
+ α2

(
∆zT∆s− γτ2

L

2
∥∆w∥2

)
≥ασρ

√
m
(√
m− γτ2

)
− α2

∣∣∣∣∆zT∆s− γτ2
L

2
∥∆w∥2

∣∣∣∣ .
The last inequality also comes from (6.30), where x1 := zT s− γτ2 ∥F (w)∥ = f II(0) ≥ 0. Again, from

the boundedness of ∆w, we have

f II(α) ≥ ασρ
√
m
(√
m− γτ2

)
− α2M2 =: ψ2(α),

where ψ2 is a quadratic function and M2 is a constant such that∣∣∣∣∆zT∆s− γτ2
L

2
∥∆w∥2

∣∣∣∣ ≤M2.

It shows that the function ψ2 is a lower bound of f II on α ∈ (0, 1]. Let α′′ :=
√
m(

√
m−γτ2)
M2

σρ denote

the nonzero root of ψ2(α). Similar to that of part (1), but note that constant 0 < τ2 ≤
√
m, we have

α′′ <

√
m (

√
m− τ2/2)

M2
ρ ≤ ∥F (w)∥ (

√
m− τ2/2)

M2
≤ φ0 (

√
m− τ2/2)

M2
.

which imply that we can take a sufficiently large M2 so that α′′ < 1. Thus, by definition of αII in (6.8), it

follows that αII ≥ α′′. On the other hand,

α′′ =

√
m (

√
m− γτ2)

M2
σρ ≥

√
m (

√
m− τ2)

M2
σρ ≥

(√
m− τ2√
mM2

)
σzT s.

Under the same reason as part (1), αII is bounded away from zero. We complete the proof.

6.7 Proofs of Global Convergence Theorem 20

In the last two sections, we have completed the required auxiliary results. We are ready to give the proof

of the global convergence theorem.

Proof of Theorem 20. By Proposition 13, we know that {∥F (wk)∥} is monotonically nonincreasing,

hence convergent. Assume that {∥F (wk)∥} does not converge to zero. Then, there exists ε > 0 such that



132 Chapter 6. Global Convergent Algorithm of RIPM

{wk} ⊂ Ω(ε) for infinitely many k. We will show that the following two cases both lead to contradictions

and thus the hypothesis ∥F (wk)∥ ↛ 0 is not valid.

(Case 1) For infinitely many k, if Step (3b) in Algorithm 10 is executed with αk ≡ ᾱk, it follows

from Proposition 13 that

φ(wk+1)/φ(wk) ≤ [1− 2ᾱkβ (1− σk)] .

Since {ᾱk} is bounded away from zero by Lemma 24 and {σk} is bounded away from one, then {λk} is

bounded away from one and hence, φ (wk) → 0; this is a contradiction.

(Case 2) On the other hand, for infinitely many k, if αk < ᾱk, we have that αk ≤ θᾱk. Then, condition

(6.3) fails for an α̃k with αk < α̃k ≤ αk/θ = θt−1ᾱk. Notice that αk/θ is the value corresponding to the

last failure. Recall that the derivative of the real-valued function α 7→ ϕ(α) := φ
(

¯Expwk
(α∆wk)

)
at

some value α is

ϕ′(α) = Dφ
(

¯Expwk
(α∆wk)

) [
D ¯Expwk

(α∆wk) [∆wk]
]
. (6.32)

Applying the mean value theorem to ϕ(α) on interval [0, α̃k] yields a number ξ ∈ (0, 1) such that

α̃kϕ
′(ξα̃k) = ϕ(α̃k)− ϕ(0). (6.33)

For short, let u := ξα̃k∆wk. Hence,

α̃kβ ⟨gradφk,∆wk⟩ <ϕ(α̃k)− ϕ(0) (since condition (6.3), i.e., (6.17), fails for α̃k)

=α̃kϕ
′(ξα̃k) (by (6.33))

=α̃kDφ( ¯Expwk
(u))

[
D ¯Expwk

(u) [∆wk]
]

(by (6.32))

=α̃k

〈
gradφ( ¯Expwk

(u)),D ¯Expwk
(u) [∆wk]

〉
. (by Definition 19) (6.34)

On the other hand, note that

⟨gradφk,∆wk⟩ = ⟨gradφk, u⟩ /ξα̃k

=
〈
D ¯Expwk

(u) [gradφk] ,D ¯Expwk
(u) [u]

〉
/ξα̃k (by (4) of Proposition 4)

=
〈
D ¯Expwk

(u) [gradφk] ,D ¯Expwk
(u) [∆wk]

〉
. (6.35)

Subtracting α̃k ⟨gradφk,∆wk⟩ from both sides of (6.34) and using equalities (6.35) gives

α̃k(β − 1) ⟨gradφk,∆wk⟩

<α̃k

[〈
gradφ( ¯Expwk

(u)),D ¯Expwk
(u) [∆wk]

〉
− ⟨gradφk,∆wk⟩

]
=α̃k

〈
gradφ( ¯Expwk

(u))−D ¯Expwk
(u) [gradφk] ,D ¯Expwk

(u) [∆wk]
〉

≤α̃k

∥∥gradφ( ¯Expwk
(u))−D ¯Expwk

(u) [gradφk]
∥∥∥∥D ¯Expwk

(u) [∆wk]
∥∥

=α̃k

∥∥gradφ(y)−D ¯Expwk
(u) [gradφk]

∥∥∥∥D ¯Expwk
(u) [∆wk]

∥∥ (by letting y := ¯Expwk
(u))

≤α̃kκ ∥u∥ ∥∆wk∥ (by Lipschitz continuity of φ and (5) of Proposition 4)

=κξα̃2
k ∥∆wk∥2 .
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Finally, we obtain

α̃k(β − 1) ⟨gradφk,∆wk⟩ < κξα̃2
k ∥∆wk∥2 .

Consequently,

(β − 1) ⟨gradφk,∆wk⟩ /(κξ ∥∆wk∥2) < α̃k. (6.36)

Because αk satisfies condition (6.3) and ⟨gradφk,∆wk⟩ < 0, then

ϕk(0)− ϕk(αk) ≥− αkβ ⟨gradφk,∆wk⟩

≥ − θβα̃k ⟨gradφk,∆wk⟩

≥ − θβ ⟨gradφk,∆wk⟩ (β − 1) ⟨gradφk,∆wk⟩ /(κξ ∥∆wk∥2) (by (6.36))

≥[θβ(1− β)/κξ] (⟨gradφk,∆wk⟩ / ∥∆wk∥)2

=ω (⟨gradφk,∆wk⟩ / ∥∆wk∥) ,

where ω(·) is an F -function (see [149, Definition 14.2.1 & 14.2.2 in P479]). Since {φk} is bounded below

and φk ≥ φk+1, it follows that limk→∞(φk − φk+1) = 0. By the definition of F -functions, we obtain

⟨gradφk,∆wk⟩ / ∥∆wk∥ → 0.

Since {∥∆wk∥} is bounded (see Proposition 18), we have ⟨gradφk,∆wk⟩ → 0. Choosing ρk with

zTk sk/m ≤ ρk ≤ ∥F (wk)∥ /
√
m implies that

⟨gradφk,∆wk⟩ /(−2) =φk − σkρkz
T
k sk (by Lemma 21)

≥φk − σk ∥F (wk)∥ zTk sk/
√
m

≥φk − σk ∥F (wk)∥2 (by (6.13))

≥(1− σk)φk.

This shows that φ(wk) → 0, because {σk} is bounded away from one; this is a contradiction. We

complete the proof.

6.8 Numerical Experiments

The numerical experiments compared the performance of the globally convergent RIPM (Algorithm 10)

with those of other Riemannian methods. Here, we will test two problems: Nonnegative Low-Rank Matrix

(NLRM) Approximation and Projection onto Nonnegative Stiefel Manifold, which were discussed in

Section 1.3.2. They involve three manifolds:

fixed-rank manifold Fr(m,n, r) :=
{
X ∈ Rm×n : rank(X) = r

}
,

Stiefel manifold St(n, k) :=
{
X ∈ Rn×k : XTX = Ik

}
,

Oblique manifold Ob(n, k) :=
{
X ∈ Rn×k : each column of X has unit l2 norm

}
.
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We only consider their embedded geometry and we apply the default retractions in Manopt, e.g., the

retraction based on QR decomposition for the Stiefel manifold. Notice that although Fr(m,n, r) is not

complete, RIPM is still valid in practice. The numerical experiments were performed in Matlab R2022a

on a computer equipped with an Intel Core i7-10700 at 2.90GHz with 16GB of RAM. Our algorithms are

built in the framework of Manopt 7.0 [37], a Riemannian optimization toolbox on Matlab. The code is

freely available at https://github.com/GALVINLAI/RIPM.

6.8.1 Implementation Details

Parameters of Our RIPM

Our RIPM implementation (Algorithm 10) chooses the initial z0 and s0 from a uniform distribution in

[0,1] and sets y0 to zero if y exists. In Step 1, ρk = zTk sk/m and σk = min{0.5, ∥F (wk)∥1/2}. If the

method is not specified in advance, we use the CR method to solve equation (5.32) and terminate it if the

relative residual is smaller than 10−9 or the maximum number (1000) of iterates is reached. In Step 3,

instead of finding the exact values of αi
k, i = I, II, we use a backtracking line search simultaneously for

the central conditions and the sufficient decreasing condition. As a slight simplification (see [73]), we do

not enforce the second central condition. Here, we set γ0 = 0.9, γk+1 = (γk + 0.5)/2; and β = 10−4,

θ = 0.5.

Experimental Setting

We compared our method with the following Riemannian methods [128, 148]:

• RALM [128]: Riemannian augmented Lagrangian method.

• REPMlqh [128]: Riemannian exact penalty method with smoothing function of linear-quadratic and

pseudo-Huber.

• REPMlse [128]: Riemannian exact penalty method with smoothing function of log-sum-exp.

• RSQP [148]: Riemannian sequential quadratic programming method.

• RIPM (Our method): Riemannian interior point method method (Algorithm 10).

Our experimental settings followed those of Obara et al. [148], where they used residuals based on

the KKT conditions (5.3)-(5.7) to measure the deviation of an iterate from the set of KKT points. The

KKT residual is defined by√√√√∥gradx L(w)∥
2 +

m∑
i=1

{min (0, zi)
2 +max (0, gi(x))

2 + |zigi(x)|2}+
l∑

j=1

|hj(x)|2 +Manvio(x),

where Manvio measures the violation of the manifold constraints. If M := {x : fMan
j (x) = 0, j =

1, . . . , p}, then

Manvio(x) :=

p∑
j=1

|fMan
j (x)|.

Only for the fixed-rank manifold Fr(m,n, r), we define Manvio(X) := 0 if rank(X) = r and +∞,

otherwise. For the parameters of RALM, REPMs and RSQP, we utilize the experimental setting and

Matlab codes provided by [148].

https://github.com/GALVINLAI/RIPM


Section 6.8 Numerical Experiments 135

To measure the stability and speed of the algorithms, we conducted 20 random trials of each problem

and model. In each trial, all the algorithms ran with the same initial point. The stopping criteria were based

on the KKT residual, maximum iteration, maximum time, and changes in parameters. Concretely, each

experiment terminated successfully if a solution with a KKT residual εkkt was found. For the first-order

algorithms (including RALM and the REPMs), if the spent time exceeded tmax seconds, or the outer

iteration number was over 1,000, or the algorithm did not update any parameters, we considered that the

algorithm had terminated unsuccessfully. For the second-order algorithms (including RSQP, RIPM), if

the spent time exceeded tmax seconds, or the iteration number was over 10,000, we considered that the

algorithm had terminated unsuccessfully.

Here, considering that some problems might not have converged easily, the maximum number of

iterations was chosen to be 1,000 (10,000), which was a sufficiently large value. The selection of tmax

related to the actual time it took to run all the codes on the computer. Setting tmax too large resulted

in excessive time spent on poorly performing algorithms. On the other hand, εkkt was chosen to better

demonstrate that second-order algorithms could achieve more accurate solutions. Therefore, we chose the

appropriate values for tmax and εkkt according to the problem that was to be solved.

6.8.2 Experiment I: Nonnegative Low-Rank Matrix Approximation

Problem Setting

The first experiment examines the problem of nonnegative low-rank matrix approximation in (NLRM). We

will consider three cases m = 20, 30, 40 and let n = 0.8m, r = 0.1m. For each (m,n, r), we randomly

generated nonnegative matrices L ∈ Rm×r and R ∈ Rr×n whose entries follow a uniform distribution

in [0,1]. The original nonnegative matrix A := LR is then obtained, and rank(A) = r with a very high

probability. In the same way, we can generate a random feasible initial point x0. Moreover, just like in

[182], we add Gaussian noise with zero mean and different standard deviation (σ = 0, 0.001, 0.01) to the

original A. When there is no noise (i.e., σ = 0), the input data matrix A itself is exactly a solution.

Here, we set tmax = 180 and εkkt = 10−8. The tables of this subsection report the success rate (Rate)

divided by the total number of trials, the average time in seconds (Time (s)), and the average iteration

number (Iter.) among the successful trials. Boldface highlights the best results under the combined

considerations of stability and speed; that is, for each setting, the Rate column shows in bold the success

rates that are ≥ 0.95 and the Time column shows in bold the two (if any) fastest results among the

algorithms with success rates ≥ 0.95.

Results and Analysis

The numerical results are shown in Table 6.1. RIPM performed the best. While the first-order algorithms

(including RALM and the REPMs) were as fast but less stable. The time spent by RALM and the REPMs

grew slowly with the problem size, but their success rates dropped sharply as the noise level (standard

deviation σ) intensified, eventually leading to non-convergence.

In contrast, the convergence of the second-order algorithms (including RSQP, RIPM) was more stable,

with RIPM being much faster than RSQP. The cost of a single iteration of RSQP drastically increased

with the problem size. This is because RSQP requires solving a quadratic programming problem on the
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Table 6.1 Performance of various Riemannian methods on problem (NLRM).

(m,n, r) (20,16,2) (30,24,3) (40,32,4)

no noise Rate Time (s) Iter. Rate Time (s) Iter. Rate Time (s) Iter.

RALM 0.4 1.115 31 0.65 1.813 31 0.75 2.800 31

REPMlqh 1 5.165×10−1 31 1 1.009 31 1 1.747 31

REPMlse 1 2.242 31 1 4.041 31 0.95 6.952 31

RSQP 0.9 6.429 7 0.9 3.944×10 8 0.9 1.254×102 8

RIPM 1 4.920×10−1 19 1 2.247 27 1 5.277 32

(m,n, r) (20,16,2) (30,24,3) (40,32,4)

σ = 0.001 Rate Time (s) Iter. Rate Time (s) Iter. Rate Time (s) Iter.

RALM 0.2 1.001 31 0.15 2.050 31 0.05 2.758 31

REPMlqh 0.1 4.983×10−1 32 0.25 1.035 31 0.15 1.787 31

REPMlse 0.15 2.444 31 0.1 4.867 31 0.05 8.371 31

RSQP 0.95 6.619 7 0.95 3.848×10 8 0.9 1.299×102 8

RIPM 1 5.376×10−1 20 1 2.342 27 1 4.631 29

(m,n, r) (20,16,2) (30,24,3) (40,32,4)

σ = 0.01 Rate Time (s) Iter. Rate Time (s) Iter. Rate Time (s) Iter.

RALM 0 - - 0 - - 0 - -

REPMlqh 0 - - 0 - - 0 - -

REPMlse 0 - - 0 - - 0 - -

RSQP 1 7.295 8 0.95 4.114×10 8 0.95 1.430×102 9

RIPM 1 5.980×10−1 21 0.95 1.883 25 0.95 4.602 29

tangent space of xk in each iteration. As with RIPM, there is no explicit matrix form available. RSQP

transforms it into a matrix representation form (similar to Step 1-6 in Algorithm 7) before using a quadratic

programming solver. Instead, our RIPM avoids the expensive computation of the matrix representation by

using the Krylov subspace methods. As can be seen from the table, RIPM takes the same amount (order

of magnitude) of time as RALM and the REPMs.

6.8.3 Experiment II: Projection onto Nonnegative Stiefel Manifold

Problem Setting

The second experiment examines the problem of projecting onto the nonnegative part of Stiefel manifold

in (Model_St), and its equivalent formulation (Model_Ob). Note that the former is a problem on Stiefel

manifold, while the latter is on Oblique manifold. We examine both models on different manifolds.

We will consider the cases of n = 40, 50, 60, 70 and let k = 0.2n. For a general matrix C, it is

always difficult to seek nonnegative projections globally. Fortunately, [116, Proposition 1] showed a way

to construct matrix C such that (Model_St) has a unique and known solution X∗. First, we generate a

random feasible point B of (Model_St); then, we obtained C by using the following Matlab code:
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X1=(B>0).*(1+rand(n,k)); Xstar =X1./sqrt(sum(X1.*X1));

L=rand(k,k); L=L+k*eye(k); C=Xstar*L’.

The initial point is computed by projecting C onto the Stiefel manifold, that is obtained by

[U,~,V]=svd(C,’econ’); X0=U*V’.

The same settings are applied to (Model_Ob), except for

p=1; V=ones(k,p); V=V/norm(V,"fro").

We set tmax = 600 and εkkt = 10−6 for both models (Model_St) and (Model_Ob). Since the

true solution is known, we added an Error column showing the average error ∥Xfinal −X∗∥F. Here,

Xfinal denotes the final iterate point of a successful trial. As a full demonstration, in the second model

(Model_Ob), we also tested RIPM by using the matrix representation method (Algorithm 7) to solve the

Newton equation; this is denoted as RIPM_RepMat.

The tables of this subsection report the success rate (Rate) divided by the total number of trials, the

average time in seconds (Time (s)), and the average iteration number (Iter.) among the successful trials.

Boldface highlights the best results under the combined considerations of stability and speed; that is, for

each setting, the Rate column shows in bold the success rates that are ≥ 0.95 and the Time column shows

in bold the two (if any) fastest results among the algorithms with success rates ≥ 0.95.

Results and Analysis

The numerical results are listed in Table 6.2 and 6.3. The Error columns show that if the KKT residual is

sufficiently small, thenXfinal does approximate the true solution. In particular, the second-order algorithms

(including RSQP, RIPM) yield a more accurate solution (the error is less than 10−7). From Table 6.2,

we can see that RALM is stable and fast for (Model_St). However, from Table 6.3, RALM’s success

rate of convergence for (Model_Ob) decreases as the problem size becomes larger. The REPMs do not

work at all on either model. RSQP also does not perform well on both models. RIPM_RepMat and

RIPM successfully solved all instances of both models, though the time taken by RIPM_RepMat grew

explosively. Overall, RIPM using the iterative method was fast and the most stable.

6.9 Summary

In the previous chapter, under standard assumptions, we established the local convergence of the Rieman-

nian Interior Point Method (RIPM). This chapter continues to investigate and proves the global conver-

gence of the RIPM when combined with classical linear search and the merit function φ(w) = ∥F (w)∥2.

Numerical experiments demonstrate the stability and efficiency of our method.
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Table 6.2 Performance of various Riemannian methods on (Model_St).

(n, k) (40,8) (50,10)

Rate Time (s) Iter. Error Rate Time (s) Iter. Error

RALM 1 2.347 45 5.41×10−7 1 4.344 54 5.21×10−7

REPMlqh 0 - - - 0 - - -

REPMlse 0 - - - 0 - - -

RSQP 0.9 1.352×10 7 2.05×10−9 0.7 3.097×10 6 2.47×10−9

RIPM 1 2.225 31 3.72×10−8 1 3.785 32 3.38×10−8

(n, k) (60,12) (70,14)

Rate Time (s) Iter. Error Rate Time (s) Iter. Error

RALM 1 4.097 34 4.93×10−7 1 6.234 37 5.34×10−7

REPMlqh 0 - - - 0 - - -

REPMlse 0 - - - 0 - - -

RSQP 0.65 7.802×10 7 6.48×10−9 0.85 1.661×102 7 2.64×10−9

RIPM 1 5.555 32 2.81×10−8 1 7.574 33 2.45×10−8

Table 6.3 Performance of various Riemannian methods on (Model_Ob).

(n, k) (40,8) (50,10)

Rate Time (s) Iter. Error Rate Time (s) Iter. Error

RALM 1 2.510 51 5.04×10−7 0.95 4.727 64 4.94×10−7

REPMlqh 0 - - - 0 - - -

REPMlse 0 - - - 0 - - -

RSQP 0.65 8.618 5 2.30×10−10 0.7 2.782×10 6 1.12×10−10

RIPM 1 3.791 22 5.62×10−9 1 5.880 23 7.93×10−9

RIPM_RepMat 1 1.954×10 31 4.34×10−8 1 4.718×10 32 3.56×10−8

(n, k) (60,12) (70,14)

Rate Time (s) Iter. Error Rate Time (s) Iter. Error

RALM 0.6 5.725 49 3.82×10−7 0.6 8.223 52 3.85×10−7

REPMlqh 0 - - - 0 - - -

REPMlse 0 - - - 0 - - -

RSQP 0.7 4.446×10 5 1.17×10−9 0.5 9.138×10 5 1.82×10−9

RIPM 1 7.134 23 9.69×10−9 1 9.268 24 1.06×10−8

RIPM_RepMat 1 1.018×102 32 3.20×10−8 1 1.861×102 33 2.75×10−8
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Chapter 7

Several Theoretical Results for
Quasi-Newton RIPM

Part Section

Part 1. Preparation work 7.1 Quasi-Newton RIPM

Part 2. Theoretical results 7.2 Local and Linear Convergence of Quasi-Newton RIPM
7.3 Local and Superlinear Convergence of Quasi-Newton RIPM

Part 3. Proofs 7.4 Collection of Proofs

In this chapter, we study the several theoretical results about local convergence of quasi-Newton

Riemannian Interior Point Methods (RIPM). The quasi-Newton RIPM can approximate the Hessian of

Lagrangian in (5.9) with gradient information while ensuring its local convergence. First of all, Section

7.1 introduces the classical quasi-Newton method and then quasi-Newton RIPM algorithm. In Section 7.2,

we state a sufficient condition, called bounded deterioration property, for the locally linear convergence

of quasi-Newton RIPM. In Section 7.3, we establish the locally superlinear convergence of quasi-Newton

RIPM by using an analogous Dennis Moré condition. For convenience, we have put the technical proofs all

together in Section 7.4. However, there is still a great deal of work to be done to refine the quasi-Newton

RIPM. As the last chapter of this thesis, we only give some constructive results.

7.1 Quasi-Newton RIPM

In classical Euclidean optimization, the interior point method is a typical “second-order” optimization

algorithm because it requires computing the Hessian matrices at the current point at every iteration, i.e.,

it requires obtaining the second-order information of the functions based on that point (note that it is

necessary to reacquire it at every iteration). In the case of simple problems such as linear programming and

quadratic programming, where the objective and constraint functions are linear or quadratic, computing

their Hessian matrices is trivial. However, for general nonconvex nonlinear objective and constraint

functions in (CEO), there are also some difficulties in obtaining their Hessian matrices, as follows:

1. General nonconvex nonlinear functions are too complex (e.g., training of deep neural networks),

so their Hessian matrices may be intractable, or it is mathematically difficult to find their closed
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form. In addition, In addition, if the user has to manually provide the solver with second-order

information about the optimization problem, it raises the bar for the user, which is not conducive to

the popularization of the algorithm.

2. Even if the Hessian matrix has closed from, the computational cost is unacceptable in practice. This

will cause it to be a bottleneck in the practice of interior point method.

To overcome the above issues, the interior point method in the Euclidean setting borrows the idea of

quasi-Newton methods — approximating Hessian matrices using gradients, i.e., using only first-order

information. This greatly reduces the computational effort. Below we briefly review the whole process of

quasi-Newton method for unconstrained minimization in the Euclidean setting, see Algorithm 11.

Algorithm 11: Quasi-Newton Method for (UEO)
Input: An objective function f defined on Rn, an initial point x0 ∈ Rn, and an initial Hessian

approximation H0 ∈ Rn×n.

Output: Sequence {xk} ⊂ Rn that converges to the minimizer of f .

Set k → 0;

while stopping criterion not satisfied do
1. Compute the gradient egrad f(xk) ∈ Rn;

2. Compute the quasi-Newton direction by solving linear equation Hkdk = − egrad f(xk);

3. Compute a step size tk > 0 ;

4. Compute the next point as xk+1 := xk + tkdk;

5. Compute Hk+1 using an update formula (e.g., BFGS update);

6. k → k + 1;

end

In Step 5 above, different update rules exist for Hk+1. The most popular one is called Broyden-

Fletcher-Goldfarb-Shanno (BFGS) update, as described below:

Hk+1 := Hk +
yyT

yT s
− Hkss

THk

sTHks

where

s = xk+1 − xk, y = egrad f(xk+1)− egrad f(xk).

There are also DFP, SR1, Broyden (family), etc., see [59, 119, 147] for details. Regardless of which update

formula is used, as long as Hk ∈ Rn×n satisfies certain conditions (i.e., expressing how Hk approximates

the original Hessian Hf (x) ∈ Rn×n) then Algorithm 11 will have the same locally convergence as the

standard Newton method. Using the same idea, in the interior point method we can also construct Hessians

using gradients. Specifically, i.e., the matrix HL(wk) in (5.22) (in fact, this is the only place in the interior

point method where second-order information is needed) is replaced by an approximation matrix Gk; all

others remain the same. This is the quasi-Newton RIPM in Euclidean setting and can be found in papers

[134, 208, 205].

Next, it is natural to apply on this thought to Riemannian setting. Let us consider the prototype

Algorithm 6 of RIPM. We define an approximate operator of ∇F (wk) : Twk
N → Twk

N , denoted by

Bk : Twk
N → Twk

N , by replacing Hessx L(wk) in the first row of (5.17) with some Gk : Txk
M →
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Txk
M and keeping everything else the same:

Bk∆w :=


Gk∆x+

∑l
j=1∆yj gradhj(xk) +

∑m
i=1∆zi grad gi(xk)

⟨gradhj(xk),∆x⟩ , for j = 1, 2, . . . , l

⟨grad gi(xk),∆x⟩+∆si, for i = 1, 2, . . . ,m

Zk∆s+ Sk∆z

 (7.1)

for all ∆w = (∆x,∆y,∆s,∆z) ∈ Twk
N . Now, we obtain quasi-Newton RIPM by replacing (5.28) in

Algorithm 6 with Bk∆wk = −F (wk) + µkê. For the sake of completeness, we formulate the algorithm

as follows, where the simple step scheme (5.29) is chosen.

Algorithm 12: Prototype Algorithm of Quasi-Newton RIPM for (CRO)
Input: A problem of (CRO), an initial point w0 = (x0, y0, z0, s0) ∈ N with (z0, s0) > 0 and a

retraction R on M.

Output: Sequence {xk} ⊂ M.

Set k → 0, µ0 > 0, 0 < γ̂ ≤ 1;

while stopping criterion not satisfied do
1. Solve the perturbed Newton equation (a linear operator equation on tangent space Twk

N ):

Bk∆wk = −F (wk) + µkê (7.2)

to obtain ∆wk = (∆xk,∆yk,∆zk,∆sk) ∈ Twk
N ;

2. Choose γ̂ ≤ γk ≤ 1 and compute the step size:

αk := min

{
1, γk min

i

{
− (sk)i
(∆sk)i

| (∆sk)i < 0

}
, γk min

i

{
− (zk)i
(∆zk)i

| (∆zk)i < 0

}}
.

3. Compute the next point as wk+1 = (xk+1, yk+1, zk+1, sk+1) := R̄wk
(αk∆wk);

4. Choose 0 < µk+1 < µk;

5. k → k + 1;

end

The operator Gk should of course be properly chosen to approximate the original Hessian operator

Hessx L(wk). In following sections, we will describe the properties that characterize Gk such that we can

obtain the same local convergence as Algorithm 6. To distinguish, we will refer to Algorithm 6 as the

Newton RIPM.

7.2 Local and Linear Convergence of Quasi-Newton RIPM

In this section, we will show local and linear convergence of quasi-Newton RIPM. Throughout this chapter,

let M be a Riemannian manifold endowed with an isometric vector transport T and an associated retraction

R. Let w∗ = (x∗, y∗, z∗, s∗) be a solution point of (CRO) and the current point wk = (xk, yk, zk, sk)
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sufficiently close to w∗. We define

ζxk := R−1
x∗ (xk) , ζ

y
k := yk − y∗, ζzk := zk − z∗, ζsk := sk − s∗,

then, by (2.43) we have

wk = R̄w∗ (ζk) = (Rx∗ (ζxk ) , y
∗ + ζxk , z

∗ + ζzk , s
∗ + ζsk) ,

where ζk := (ζxk , ζ
y
k , ζ

z
k , ζ

s
k) ∈ Tw∗N . The following lemma is an auxiliary result for Theorem 21 and is

a generalization of [208, Lemma 7].

Lemma 25. Consider the Algorithm 12 for solving problem (CRO). Suppose that (A1)-(A4) hold at some

w∗ and Algorithm 12 generates the sequence {wk}. If there exist positive constants ε, δ such that for all

wk and linear operators Gk : Txk
M → Txk

M satisfying

d(wk, w
∗) ≤ ε, and

∥∥∥Gk − Tζxk
Hessx L(w∗)T−1

ζxk

∥∥∥ ≤ δ, (7.3)

where ζxk = R−1
x∗ (xk) ∈ Tx∗M, then the following hold:

(i) there exist positive constants c1, c2 such that for all k ≥ 0,∥∥∥Bk − T̄ζk∇F (w∗) T̄−1
ζk

∥∥∥ ≤
√
δ2 + δc1ε+ c2ε,

where ζk = R̄−1
w∗ (wk) ∈ Tw∗N ;

(ii) there exists a positive constant Φ such that for all k ≥ 0, Bk is nonsingular and ∥B−1
k ∥ ≤ Φ;

(iii) furthermore, if we choose the parameter µk such that µk = O(∥F (wk)∥), we have

1− αk ≤ (1− γk) +O(F (wk)) +O(µk). (7.4)

The bounded deterioration property [39, Theorem 3.2] is a well-known sufficient condition for the

general local convergence of quasi-Newton methods. It covers most of the quasi-Newton update formulas,

such as BFGS. The next theorem shows the local convergence property of our quasi-Newton RIPM. We

require the sequence of linear operators {Gk} on Txk
M to satisfy an analogous bounded deterioration

property. Theorem 21 is a generalization of [208, Theorem 2] to a Riemannian manifold.

Theorem 21 (Local and Linear Convergence of Quasi-Newton RIPM). Consider the Algorithm 12 for

solving problem (CRO) and choose the parameter µk such that µk = O(∥F (wk)∥1+τ ) for some positive

constant τ . Let (A1)-(A4) hold at some w∗. Suppose further that the sequence of linear operators {Gk}
with Gk : Txk

M → Txk
M satisfies the bounded deterioration property:∥∥∥Gk+1 − Tζxk+1

Hessx L(w∗)T−1
ζxk+1

∥∥∥ ≤ (1 + β1σk)
∥∥∥Gk − Tζxk

Hessx L(w∗)T−1
ζxk

∥∥∥+ β2σk, (7.5)

where ζxk = R−1
x∗ (xk), β1 and β2 are some positive constants, and σk := max{d(wk, w

∗), d(wk+1, w
∗)}.
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Then for Algorithm 12 and any ν ∈ (1− γ̂, 1), there exist positive constants ε ≡ ε(ν) and δ ≡ δ(ν)

such that, for all w0 ∈ N and initial operator G0 with

d(w0, w
∗) ≤ ε, and

∥∥∥G0 − Tζx0
Hessx L(w∗)T−1

ζx0

∥∥∥ ≤ 1

2
δ,

the sequence {wk} is well-defined and converges to w∗. Furthermore, for each k ≥ 0, we have

d(wk+1, w
∗)

d(wk, w∗)
≤ ν, and

∥∥∥Gk − Tζxk
Hessx L(w∗)T−1

ζxk

∥∥∥ ≤ δ. (7.6)

7.3 Local and Superlinear Convergence of Quasi-Newton RIPM

The well-known Dennis Moré condition [58, Theorem 2.2] has a very important place in the analyses of

quasi-Newton methods in the Euclidean setting. It is a necessary and sufficient condition for superlinear

convergence of the quasi-Newton method. This condition encompasses a large category of well-known

update formulas, such as BFGS, DFP. Gallivan et al. [81] have generalized it to the Riemannian quasi-

Newton methods. In this section, we give an analogous Dennis Moré condition for our quasi-Newton

RIPM in Theorem 22 and establish its superlinear convergence in Theorem 23. On the basis of the

previous section, we assume that a well-defined sequence {wk} converges linearly to w∗.

Theorem 22 (Dennis Moré Condition for Quasi-Newton RIPM). Consider the Algorithm 12 for solving

problem (CRO). Suppose that (A1)-(A4) hold at some w∗; the sequence {wk} generated by Algorithm 12

converges linearly to w∗; and the sequence {∥B−1
k ∥} is bounded. Choose the parameters µk, γk such that

µk = o(∥F (wk)∥) and γk → 1. (7.7)

Then, the following are equivalent:

(a) the sequence of linear operators {Bk} satisfies

lim
k→∞

∥∥∥(Bk − T̄ζk∇F (w∗) T̄−1
ζk

)
∆wk

∥∥∥
∥∆wk∥

= 0, (7.8)

where ζk = R̄−1
w∗ (wk) ∈ Tw∗N ;

(b) the sequence {F (wk)} satisfies

lim
k→∞

∥∥∥T̄−1
αk∆wk

F (wk+1)
∥∥∥

∥αk∆wk∥
= 0;

(c) the sequence {F (wk)} satisfies

lim
k→∞

∥F (wk+1)∥
∥∆wk∥

= 0;

(d) the sequence {wk} converges superlinearly to w∗, i.e.,

lim
k→∞

d(wk+1, w
∗)

d(wk, w∗)
= 0.
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For the superlinear convergence, (a) of Theorem 22 requires the property for {Bk}. However, next

theorem can guarantee the convergence by a direct requirement for {Gk}. Please compare (7.8) and (7.9).

Theorem 23 (Superlinear Convergence of Quasi-Newton RIPM). Consider the Algorithm 12 for solving

problem (CRO). Suppose that (A1)-(A4) hold at some w∗. Choose the parameters µk, γk such that

µk = o(∥F (wk)∥) and γk → 1. If the sequence of linear operators {Gk} with Gk : Txk
M → Txk

M
satisfies the bounded deterioration property (7.5) and

lim
k→∞

∥∥∥(Gk − Tζxk
Hessx L(w∗)T−1

ζxk

)
∆xk

∥∥∥
∥∆xk∥

= 0, (7.9)

where ζxk = R−1
x∗ (xk), then the sequence {wk} generated by Algorithm 12 converges locally and

superlinearly to w∗.

7.4 Collection of Proofs

7.4.1 Proof of Lemma 25

Proof. (i) Take any ∆w = (∆x,∆y,∆s,∆z) ∈ Twk
N . First, we compute(

Bk − T̄ζk∇F (w∗) T̄−1
ζk

)
∆w.

Using the vector transport on the product manifold T̄ζk in (2.45), its inverse T̄−1
ζk

in (2.46), and ∇F (w∗)

in (5.17), we obtain that T̄ζk∇F (w) T̄−1
ζk

∆w is equal to


Tζxk

Hessx L(w∗)T−1
ζxk

∆x+
∑l

j=1(∆y)jTζxk
gradhj(x

∗) +
∑m

i=1(∆z)iTζxk
grad gi(x

∗)

⟨gradhj(x∗),T−1
ζxk

∆x⟩, for j = 1, 2, . . . , l

⟨grad gi(x∗),T−1
ζxk

∆x⟩+ (∆s)i, for i = 1, 2, . . . ,m

Z∗∆s+ S∗∆z

 .

(7.10)

Then, subtracting (7.10) from Bk∆w in (7.1) yields
(
Bk − T̄ζk∇F (w∗) T̄−1

ζk

)
∆w, which is equal to



(
Gk − Tζxk

Hessx L(w∗)T−1
ζxk

)
∆x+

∑l
j=1(∆y)j [gradhj(xk)− Tζxk

gradhj(x
∗)]

+
∑m

i=1(∆z)i[grad gi(xk)− Tζxk
grad gi(x

∗)]

⟨gradhj(xk),∆x⟩ − ⟨gradhj(x∗),T−1
ζxk

∆x⟩, for j = 1, 2, . . . , l

⟨grad gi(xk),∆x⟩ − ⟨grad gi(x∗),T−1
ζxk

∆x⟩, for i = 1, 2, . . . ,m

(Zk − Z∗)∆s+ (Sk − S∗)∆z


. (7.11)

Consider hj , for j = 1, 2, . . . , l. By the isometry of vector transport T, we get

⟨gradhj(x∗),T−1
ζxk

∆x⟩ = ⟨(T−1
ζxk

)∗ gradhj(x
∗),∆x⟩ = ⟨Tζxk

gradhj(x
∗),∆x⟩.

Hence, the second row of (7.11) can be simplified as ⟨gradhj(xk)− Tζxk
gradhj(x

∗),∆x⟩. In the same

way, consider gi, for i = 1, . . . ,m, the third row of (7.11) is equal to ⟨grad gi(xk)−Tζxk
grad gi(x

∗),∆x⟩.
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For simplification, we introduce the following notations:

θj := gradhj (xk)− Tζxk
gradhj (x

∗) , for j = 1, 2, . . . , l,

λi := grad gi (xk)− Tζxk
grod gi (x

∗) , for i = 1, 2, . . . ,m,

α1 :=
(
Gk − Tζxk

Hessx L(w∗)T−1
ζxk

)
∆x.

Then, (7.11) reduces to

(
Bk − T̄ζk∇F (w∗) T̄−1

ζk

)
∆w =


α1 +

∑l
j=1(∆y)jθj +

∑m
i=1(∆z)iλi

⟨θj ,∆x⟩, for j = 1, 2, . . . , l

⟨λi,∆x⟩, for i = 1, 2, . . . ,m

(Zk − Z∗)∆s+ (Sk − S∗)∆z

 . (7.12)

Note that, smoothness and Lipschitz continuity of {hj}, {gi} at x∗ (see Definition 29) imply that

∥θj∥ ≤ κ ∥ζxk ∥ for j = 1, 2, . . . , l, and ∥λi∥ ≤ κ ∥ζxk ∥ for i = 1, 2, . . . ,m. (7.13)

Without loss of generality, we can take a single constant κ for each hj , gi above. Again, we introduce the

following notations: α := α1+α2, and α2 :=
∑l

j=1(∆y)jθj+
∑m

i=1(∆z)iλi, βj := ⟨θj ,∆x⟩ for β ∈ Rl,

γi := ⟨λi,∆x⟩ for γ ∈ Rm, δ := δ1 + δ2 ∈ Rm, and δ1 := (Zk − Z∗)∆s, and δ2 := (Sk − S∗)∆z.

These notations give ∥(Bk − T̄ζk∇F (w∗) T̄−1
ζk

)∆w∥2 = ∥α∥2xk
+ ∥β∥2 + ∥γ∥2 + ∥δ∥2.

Now, let us examine each term on the right-hand side of the equation above. First, we assert that

∥β∥2 =
l∑
j

|⟨θj ,∆x⟩|2 ≤
l∑
j

(∥θj∥ ∥∆x∥)2 (by the Cauchy–Schwarz inequality)

≤lκ2 ∥ζxk ∥
2 ∥∆x∥2 (by (7.13))

≤lκ2 1

a20
d2(wk, w

∗) ∥∆w∥2 (by (iv) of Lemma 6, (2.41) and (2.42))

=O(d2(wk, w
∗)) ∥∆w∥2 . (7.14)

In a similar manner, we obtain ∥γ∥2 = O(d2(wk, w
∗)) ∥∆w∥2 . Next, for ∥δ∥2 we see that

∥δ1∥ = ∥(Zk − Z∗)∆s∥ ≤ ∥Zk − Z∗∥F ∥∆s∥ (by the properties of the Frobenius norm)

= ∥zk − z∗∥ ∥∆s∥ (since Zk, Z
∗ are diagonal matrices)

≤d(wk, w
∗) ∥∆w∥ (by (2.41) and (2.42)).
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Similarly, ∥δ2∥ ≤ d(wk, w
∗) ∥∆w∥ . Thus, ∥δ∥2 = O(d2(wk, w

∗)) ∥∆w∥2 . To deal with ∥α∥2, we note

that ∥α∥2 = ∥α1 + α2∥2 ≤ (∥α1∥+ ∥α2∥)2 = ∥α1∥2 + ∥α2∥2 + 2∥α1∥∥α2∥. Next, consider

∥α2∥ =∥
l∑
j

(∆y)jθj +

m∑
i

(∆z)iλi∥ ≤
l∑
j

| (∆y)j | ∥θj∥+
m∑
i

|(∆z)i| ∥λi∥

≤κ ∥ζxk ∥
l∑
j

| (∆y)j |+ κ ∥ζxk ∥
m∑
i

|(∆z)i| (by (7.13))

=κ ∥ζxk ∥ (∥∆y∥1 + ∥∆z∥1) (by the definition of the l1 norm)

≤κ ∥ζxk ∥ [
√
l ∥∆y∥+

√
m ∥∆z∥] (from the relationship of the l1 and l2 norms)

≤κ ∥ζxk ∥ [
√
l ∥∆w∥+

√
m ∥∆w∥] (by (2.41))

≤κmax{
√
l,
√
m} ∥ζxk ∥ ∥∆w∥

≤κmax{
√
l,
√
m}d(xk, x∗) ∥∆w∥ /a0 (by (iv) of Lemma 6)

≤κmax{
√
l,
√
m}d(wk, w

∗) ∥∆w∥ /a0 (by (2.42))

=O(d(wk, w
∗)) ∥∆w∥ . (7.15)

Finally, combining the results from (7.12) to (7.15), we conclude that∥∥∥(Bk − T̄ζk∇F (w∗) T̄−1
ζk

)
∆w
∥∥∥2

≤
∥∥∥(Gk − Tζxk

Hessx L (w∗) T−1
ζxk

)
∆x
∥∥∥2 +O(d2(wk, w

∗)) ∥∆w∥2

+O(d(wk, w
∗)) ∥∆w∥

∥∥∥(Gk − Tζxk
Hessx L (w∗) T−1

ζxk

)
∆x
∥∥∥ . (7.16)

Define operators

S := Bk − T̄ζk∇F (w∗) T̄−1
ζk
, T := Gk − Tζxk

Hessx L (w∗) T−1
ζxk
.

Now, take ∆w = (∆x,∆y,∆s,∆z) ∈ Twk
N such that ∥∆w∥ = 1. From (7.3), we have d(wk, w

∗) ≤ ε;

thus, inequality (7.16) becomes

∥S∆w∥2 ≤ ∥T∆x∥2 + ∥T∆x∥c1ε+ c2ε (7.17)

for some constant c1, c2 > 0. Consider ∆x, which is a component of ∆w of the unit norm; (2.41) implies

∥∆x∥ ≤ ∥∆w∥ = 1. Thus, we have

∥T∆x∥ ≤ sup{∥T ∆̃x∥ | ∥∆̃x∥ ≤ 1, ∆̃x ∈ Txk
M} (since ∥∆x∥ ≤ 1)

= ∥T∥ (by the definition of operator norm)

≤ δ (by assumption (7.3)). (7.18)

Finally, we have ∥S∥ = sup{∥S∆w∥ | ∥∆w∥ = 1,∆w ∈ Twk
N} ≤

√
δ2 + δc1ε+ c2ε. Thus, this

proves assertion (i).
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(ii) Since T̄ is isometric, ∥(T̄ζk∇F (w∗) T̄−1
ζk

)−1∥ = ∥T̄ζk∇F (w∗)−1 T̄−1
ζk

∥ = ∥∇F (w∗)−1 ∥. By

choosing ε and δ such that √
δ2 + δc1ε+ c2ε∥∇F (w∗)−1 ∥ < 1,

we have

∥(T̄ζk∇F (w∗) T̄−1
ζk

)−1∥∥Bk − T̄ζk∇F (w∗) T̄−1
ζk

∥ ≤
√
δ2 + δc1ε+ c2ε∥∇F (w∗)−1 ∥ < 1,

and it follows from the Banach’s Lemma 13 that Bk is nonsingular and

∥B−1
k ∥ ≤ Φ :=

∥∇F (w∗)−1∥
1−

√
δ2 + δc1ε+ c2ε∥∇F (w∗)−1∥

(7.19)

for some constant Φ. This proves assertion (ii).

(iii) Since Bk is nonsingular, ∆wk is well-defined and by (7.19)we have

∥∆wk∥ = ∥B−1
k (−F (wk) + µkê)∥ ≤ ∥B−1

k ∥(∥F (wk)∥+ µk∥ê∥) = O(F (wk)) +O(µk). (7.20)

To prove (7.4), we note that if ε and δ are sufficiently small, then from the parameter condition µk =

O (∥F (wk)∥) and inequality (7.20), the assumptions (5.42) of Lemmas 20 are satisfied. By (5.43), we

have

0 ≤ 1− αk ≤ (1− γk) + Ω ∥∆wk∥ = (1− γk) +O(F (wk)) +O(µk).

This proves assertion (iii).

7.4.2 Proof of Theorem 21

Proof. By mathematical induction, we will prove that if for i = 0, 1, 2, . . . , k,

d(wi, w
∗) < ε, and

∥∥∥Gi − Tζxi
Hessx L(w∗)T−1

ζxi

∥∥∥ ≤ δ. (7.21)

Then,

d(wk+1, w
∗) ≤ νd(wk, w

∗) < ε, and
∥∥∥Gk+1 − Tζxk+1

Hessx L(w∗)T−1
ζxk+1

∥∥∥ ≤ δ, (7.22)

Condition (7.21) clearly holds when k = 0. If ε and δ are sufficiently small, it follows from (ii) of

Lemma 25 that Bk is nonsingular and ∥B−1
k ∥ ≤ Φ with a positive constant. From the linear system (7.2),

we have

∆wk = B−1
k (−F (wk) + µkê) . (7.23)

Noting that w∗ = R̄wk
(ξk) where ξk := R̄−1

wk
(w∗), wk+1 = R̄wk

(αk∆wk), and (ii) of Lemma 6, we

obtain

d(wk+1, w
∗) ≤ a1 ∥αk∆wk − ξk∥ = a1∥αkB

−1
k (−F (wk) + µkê)− ξk∥. (7.24)
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Let r := αkB
−1
k (−F (wk) + µkê)− ξk. By T̄−1

ξk
F (w∗) = 0 and ζk := R̄∗

wk
(w−1), we have

r =(αk − 1) ξk + αkµkB
−1
k êαkB

−1
k

(
Bk − T̄ζk∇F (w∗) T̄−1

ζk

)
T̄ζk∇F (w∗)−1 T̄−1

ζk
F (wk)

+ αkT̄ζk∇F (w∗)−1 T̄−1
ζk

(
T̄−1
ξk
F (w∗)− F (wk)− T̄ζk∇F (w∗) T̄−1

ζk
ξk

)
.

(7.25)

Let θ1 and θ2 respectively denote the last two terms of the above equality, i.e.,

θ1 := αkB
−1
k

(
Bk − T̄ζk∇F (w∗) T̄−1

ζk

)
T̄ζk∇F (w∗)−1 T̄−1

ζk
F (wk),

θ2 := αkT̄ζk∇F (w∗)−1 T̄−1
ζk

(
T̄−1
ξk
F (w∗)− F (wk)− T̄ζk∇F (w∗) T̄−1

ζk
ξk

)
.

Then, by (i) of Lemma 25,

∥θ1∥ ≤ αk∥B−1
k ∥

∥∥∥Bk − T̄ζk∇F (w∗) T̄−1
ζk

∥∥∥∥∥∥T̄ζk∇F (w∗)−1 T̄−1
ζk

∥∥∥ ∥F (wk)∥

≤ Φ
√
δ2 + δc1ε+ c2ε ∥∇F (w∗)−1 ∥∥F (wk)∥ (since T is isometric)

=
√
δ2 + δc1ε+ c2εO(d(wk, w

∗)) (by Lemma 7), (7.26)

and by (ii) of Lemma 12,

∥θ2∥ ≤ αk

∥∥∥T̄ζk∇F (w∗)−1 T̄−1
ζk

∥∥∥∥∥∥T̄−1
ξk
F (w∗)− F (wk)− T̄ζk∇F (w∗) T̄−1

ζk
ξk

∥∥∥
≤ c3∥∇F (w∗)−1 ∥ ∥ξk∥ d(wk, w

∗)

= O(d2(wk, w
∗)) (by (iv) of Lemma 6). (7.27)

Since d(wk+1, w
∗) ≤ a1 ∥r∥ by (7.24), it follows from (7.25) to (7.27) and (iii) of Lemma 25 that

d(wk+1, w
∗) ≤ a1(1− αk) ∥ξk∥+O(µk) +O(d2(wk, w

∗)) +
√
δ2 + δc1ε+ c2εO(d(wk, w

∗))

≤ [(1− γk) +O(F (wk)) +O(µk)]
a1
a0
d(wk, w

∗)

+O(µk) +O(d2(wk, w
∗)) +

√
δ2 + δc1ε+ c2εO(d(wk, w

∗))

≤ a1
a0

(1− γk)d(wk, w
∗) + [O(F (wk)) +O(µk)]O(d(wk, w

∗))

+O(µk) +O(d2 (wk, w
∗)) +

√
δ2 + δc1ε+ c2εO(d(wk, w

∗))

≤ a1
a0

(1− γ̂)d(wk, w
∗) +

√
δ2 + δc1ε+ c2εO(d(wk, w

∗)) + εmin(1,τ)O(d(wk, w
∗))

=

{
1 + ε̄

1− ε̄
(1− γ̂) +M1

√
δ2 + δc1ε+ c2ε+M2ε

min(1,τ)

}
d(wk, w

∗),

where a0 = 1− ε̄, a1 = 1 + ε̄ for any ε̄ > 0 by (i) of Lemma 6, M1 and M2 are constants. Let

ψ(ε̄, ε, δ) :=

{
1 + ε̄

1− ε̄
(1− γ̂) +M1

√
δ2 + δc1ε+ c2ε+M2ε

min(1,τ)

}
.

Then,

lim
ε̄→0+,ε→0+,δ→0+

ψ(ε̄, ε, δ) = 1− γ̂ < ν.
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By choosing ε̄, ε, and δ such that ψ(ε̄, ε, δ) < ν, we obtain d(wk+1, w
∗) ≤ νd(wk, w

∗) < ε.

The second part of the induction uses the same technique as in [39, Theorem 3.2]. For i =

0, 1, 2, . . . , k, ∥∥∥Gi+1 − Tζxi+1
Hessx L(w∗)T−1

ζxi+1

∥∥∥− ∥∥∥Gi − Tζxi
Hessx L(w∗)T−1

ζxi

∥∥∥
≤ β1

∥∥∥Gi − Tζxi
Hessx L(w∗)T−1

ζxi

∥∥∥σi + β2σi (by (7.5))

≤ (β1δ + β2)σi (by (7.21))

≤ (β1δ + β2) ν
iε.

By summing both sides from i = 0 to i = k, we obtain∥∥∥Gk+1 − Tζxk+1
Hessx L(w∗)T−1

ζxk+1

∥∥∥ ≤
∥∥∥G0 − Tζx0

Hessx L(w∗)T−1
ζx0

∥∥∥+ (β1δ + β2) ε

1− ν
.

By choosing ε and δ such that (β1δ+β2)ε
1−ν < 1

2δ, we obtain∥∥∥Gk+1 − Tζxk+1
Hessx L(w∗)T−1

ζxk+1

∥∥∥ ≤ δ.

The proof is complete.

7.4.3 Proof of Theorem 22

Proof. Let us show an auxiliary result:

∥F (wk)∥ = O(∥∆wk∥).

This comes from that the sequence {wk} converges linearly to the solution w∗. Note that linear conver-

gence implies, for some ν ∈ (0, 1),

d(wk, w
∗) ≤ d(wk, wk+1) + d(wk+1, w

∗) ≤ d(wk, wk+1) + νd(wk, w
∗).

Thus, we have
d(wk, w

∗)

d(wk, wk+1)
≤ 1

1− ν
.

Since wk+1 = R̄wk
(αk∆wk), by (iii) of Lemma 6 we have d(wk, wk+1) ≤ a1 ∥αk∆wk∥. By Lemma 7,

∥F (wk)∥ ≤ a3d(wk, w
∗). Finally, we see that

∥F (wk)∥
∥∆wk∥

=
αka1∥F (wk)∥
a1 ∥αk∆wk∥

≤ αka1a3d(wk, w
∗)

d(wk, wk+1)
≤ a1a3

1− ν
, (7.28)

and that ∥F (wk)∥ = O(∥∆wk∥).
Next, we show that

αk → 1. (7.29)
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Since we have assumed that {∥B−1
k ∥} is bounded above, we have

∥∆wk∥ =
∥∥B−1

k (−F (wk) + µkê)
∥∥ (by (7.2))

≤ ∥B−1
k ∥(∥F (wk)∥+ µk∥ê∥) = O(F (wk)) +O(µk) = O(F (wk)) (by (7.7) for µk), (7.30)

and (7.30) together with wk → w∗ implies that the conditions of Lemmas 20 are satisfied,

0 ≤ 1− αk ≤ (1− γk) + Ω ∥∆wk∥ = (1− γk) +O(F (wk)).

Thus, γk → 1 implies αk → 1.

(a ⇔ b). Let (a) hold. By Bk∆wk = µkê− F (wk), we have

T̄−1
αk∆wk

F (wk+1) = T̄−1
αk∆wk

F (wk+1)− F (wk)− T̄ζk∇F (w∗) T̄−1
ζk
αk∆wk

−
(
Bk − T̄ζk∇F (w∗) T̄−1

ζk

)
αk∆wk + (1− αk)F (wk) + αkµkê,

(7.31)

where ζk = R−1
w∗ (wk). Thus, by Lemma 12, we see that∥∥∥T̄−1

αk∆wk
F (wk+1)

∥∥∥
≤
∥∥∥T̄−1

αk∆wk
F (wk+1)− F (wk)− T̄ζk∇F (w∗) T̄−1

ζk
αk∆wk

∥∥∥
+
∥∥∥(Bk − T̄ζk∇F (w∗) T̄−1

ζk

)
αk∆wk

∥∥∥+ (1− αk) ∥F (wk)∥+ αkµk ∥ê∥

≤ c3 ∥αk∆wk∥max{d(wk, w
∗), d(wk+1, w

∗)}+
∥∥∥(Bk − T̄ζk∇F (w∗) T̄−1

ζk

)
αk∆wk

∥∥∥
+ (1− αk) ∥F (wk)∥+ αkµk ∥ê∥ ,

and by dividing both sides by ∥αk∆wk∥, we get∥∥∥T̄−1
αk∆wk

F (wk+1)
∥∥∥

∥αk∆wk∥
≤ c3max{d(wk, w

∗), d(wk+1, w
∗)}+

∥∥∥(Bk − T̄ζk∇F (w∗) T̄−1
ζk

)
∆wk

∥∥∥
∥∆wk∥

+

(
1

ak
− 1

)
∥F (wk)∥
∥∆wk∥

+
µk

∥F (wk)∥
∥F (wk)∥
∥∆wk∥

∥ê∥ .

Note that ∥F (wk)∥
∥∆wk∥ is bounded by (7.28) and µk = o(∥F (wk)∥). Taking the limit of the above gives (b).

Conversely, let (b) hold. From (7.31), we have(
Bk − T̄ζk∇F (w∗) T̄−1

ζk

)
αk∆wk = T̄−1

αk∆wk
F (wk+1)− F (wk)− T̄ζk∇F (w∗) T̄−1

ζk
αk∆wk

− T̄−1
αk∆wk

F (wk+1) + (1− αk)F (wk) + αkµkê.
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Again, taking the norm and using Lemma 12, we get∥∥∥(Bk − T̄ζk∇F (w∗) T̄−1
ζk

)
αk∆wk

∥∥∥ ≤
∥∥∥T̄−1

αk∆wk
F (wk+1)− F (wk)− T̄ζk∇F (w∗) T̄−1

ζk
αk∆wk

∥∥∥
+
∥∥∥T̄−1

αk∆wk
F (wk+1)

∥∥∥+ (1− αk) ∥F (wk)∥+ αkµk ∥ê∥

≤ c3 ∥αk∆wk∥max{d(wk, w
∗), d(wk+1, w

∗)}

+
∥∥∥T̄−1

αk∆wk
F (wk+1)

∥∥∥+ (1− αk) ∥F (wk)∥+ αkµk ∥ê∥ .

Dividing both sides by ∥αk∆wk∥ and taking the limit gives (a) for the same reason described above.

(b ⇔ c). This part mainly uses Lemma 8. Let (b) hold. Observe that

T̄−1
αk∆wk

F (wk+1) = T̄−1
αk∆wk

F (wk+1)− P−1
αk∆wk

F (wk+1) + P−1
αk∆wk

F (wk+1). (7.32)

Thus, Lemma 8 and the isometry of parallel transport P−1
αk∆wk

show that∥∥∥T̄−1
αk∆wk

F (wk+1)
∥∥∥ ≥

∥∥∥P−1
αk∆wk

F (wk+1)
∥∥∥− ∥∥∥T̄−1

αk∆wk
F (wk+1)− P−1

αk∆wk
F (wk+1)

∥∥∥
≥ ∥F (wk+1)∥ − a4 ∥F (wk+1)∥ ∥αk∆wk∥ ,

for some constant a4, and hence,∥∥∥T̄−1
αk∆wk

F (wk+1)
∥∥∥

∥αk∆wk∥
+ a4 ∥F (wk+1)∥ ≥ ∥F (wk+1)∥

∥αk∆wk∥
≥ ∥F (wk+1)∥

∥∆wk∥
.

Since ∥F (wk)∥ → 0, taking the limit of the above gives (c).

Conversely, let (c) hold. Again, (7.32), Lemma 8, and the isometry of parallel transport yield∥∥∥T̄−1
αk∆wk

F (wk+1)
∥∥∥ ≤

∥∥∥T̄−1
αk∆wk

F (wk+1)− P−1
αk∆wk

F (wk+1)
∥∥∥+ ∥∥∥P−1

αk∆wk
F (wk+1)

∥∥∥
≤ a4 ∥F (wk+1)∥ ∥αk∆wk∥+ ∥F (wk+1)∥ ,

and hence, ∥∥∥T̄−1
αk∆wk

F (wk+1)
∥∥∥

∥αk∆wk∥
≤ a4 ∥F (wk+1)∥+

∥F (wk+1)∥
∥∆wk∥

1

αk
.

Since ∥F (wk)∥ → 0 and αk → 1, taking the limit of the above gives (b).

(c ⇔ d). Note that the statement that {wk} converges superlinearly to w∗ can be rewritten equivalently

as

lim
k→∞

∥ζk+1∥
∥ζk∥

= 0,

where ζk ∈ Tw∗N is defined by ζk = R−1
w∗(wk). We will show that the above equation holds if and only

if (c) holds.

This part mainly uses Corollary 1 and (iv) of Lemma 6. Let (c) hold. By (iv) of Lemma 6, it follows

that

a0 ∥αk∆wk∥ ≤ d(wk, wk+1) ≤ d(wk, w
∗) + d(wk+1, w

∗) ≤ a1 (∥ζk∥+ ∥ζk+1∥) ,
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thus,

∥αk∆wk∥ ≤ a1
a0

(∥ζk∥+ ∥ζk+1∥) . (7.33)

On the other hand, by Corollary 1,

a4∥ζk+1∥ ≤ ∥F (wk+1)∥ ≤ a5∥ζk+1∥. (7.34)

Therefore, by (7.33) and (7.34), we obtain

∥F (wk+1)∥
∥∆wk∥

= αk
∥F (wk+1)∥
∥αk∆wk∥

≥ αk
a0a4 ∥ζk+1∥

a1 (∥ζk∥+ ∥ζk+1∥)
= αk

a0a4
a1

· ∥ζk+1∥ / ∥ζk∥
(1 + ∥ζk+1∥ / ∥ζk∥)

.

By (7.29), taking the limit of the above gives (d).

Conversely, let (d) hold. Again by (iv) of Lemma 6, similarly to the proof of [81, Theorem 14.1, Page

292], we find that

∥αk∆wk∥ ≥ 1

a1
d(wk, wk+1) ≥

1

a1
(d(wk, w

∗)− d(wk+1, w
∗)) ≥ a0

a1
(∥ζk∥ − ∥ζk+1∥) .

It follows that

∥F (wk+1)∥
∥∆wk∥

= αk
∥F (wk+1)∥
∥αk∆wk∥

≤ αk
a21 ∥ζk+1∥

a0 (∥ζk∥ − ∥ζk+1∥)
= αk

a21
a0

· ∥ζk+1∥ / ∥ζk∥
(1− ∥ζk+1∥ / ∥ζk∥)

.

Taking the limit of the above gives (c). We complete the proof.

7.4.4 Proof of Theorem 23

Proof. Recall that ∆wk = (∆xk,∆yk,∆sk,∆zk) ∈ Twk
N . By Theorem 21 and (7.5), the sequence

{wk} locally converges to w∗ and ∥Gk − Tζxk
Hessx L (w∗) T−1

ζxk
∥ is bounded for all k ≥ 0. From

inequality (7.16) in the proof of Lemma 25, we conclude that∥∥∥(Bk − T̄ζk∇F (w∗) T̄−1
ζk

)
∆wk

∥∥∥2
≤
∥∥∥(Gk − Tζxk

Hessx L (w∗) T−1
ζxk

)
∆xk

∥∥∥2
+
∥∥∥Gk − Tζxk

Hessx L (w∗) T−1
ζxk

∥∥∥ ∥∆xk∥O (d (wk, w
∗)) ∥∆wk∥

+O (d (wk, w
∗)) ∥∆wk∥2

≤
∥∥∥(Gk − Tζxk

Hessx L (w∗) T−1
ζxk

)
∆xk

∥∥∥2 +O (d (wk, w
∗)) ∥∆wk∥2 . (7.35)

The last inequality comes from∥∥∥Gk − Tζxk
Hessx L (w∗) T−1

ζxk

∥∥∥ ∥∆xk∥O (d(wk, w
∗)) ∥∆wk∥

= ∥∆xk∥O (d(wk, w
∗)) ∥∆wk∥ (by boundedness of ∥Gk − Tζxk

Hessx L (w∗) T−1
ζxk

∥)

≤O (d (wk, w
∗)) ∥∆wk∥2 (by ∥∆xk∥ ≤ ∥∆wk∥).
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Thus, by dividing both sides of (7.35) by ∥∆wk∥2, we have∥∥∥(Bk − T̄ζk∇F (w∗) T̄−1
ζk

)
∆wk

∥∥∥2
∥∆wk∥2

=

∥∥∥(Gk − Tζxk
Hessx L (w∗) T−1

ζxk

)
∆xk

∥∥∥2
∥∆wk∥2

+O(d(wk, w
∗))

≤

∥∥∥(Gk − Tζxk
Hessx L (w∗) T−1

ζxk

)
∆xk

∥∥∥2
∥∆xk∥2

+O(d(wk, w
∗)).

Taking the limit above with (7.9) and invoking Theorem 22 complete the proof.
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Chapter 8

Conclusions and Future Research

8.1 Conclusions

Riemannian optimization is an important research area in the field of optimization theory. Existing

research on Riemannian algorithms has focused on the problems with smooth objective functions on a

single manifold. In this thesis, two variants of Riemannian optimization are investigate, each of which

solves a different challenge in practical applications.

The first variant is Nonsmooth Riemannian Optimization (NRO), which is concerned with optimization

problems with nonsmooth objective functions. For NRO problems, we propose a generalized framework

of Riemannian smoothing method, ensuring efficient convergence to the limiting stationary point. Our

framework facilitates the use of existing solvers such as Manopt, thus enabling fast code implementation.

In particular, we apply our method to the completely positive matrix factorization problem. Numerical

experiments confirm that our method is particularly suitable for large-scale factorization problems.

The second variant is Constrained Riemannian Optimization (CRO), which deals with optimization

problems on non-single manifolds, i.e., problems involving additional constraints. For CRO problems,

we propose a Riemannian version of the classical interior point method, namely the Riemannian Interior

Point Method (RIPM), and establish its local and global convergence. To our knowledge, this is the first

study to apply the primal-dual interior point method on a Riemannian manifold. Numerical experiments

show the stability and efficiency of our method. To conclude this subsection, let us compare with the

existing interior point method, i.e., the so-called Euclidean Interior Point Method (EIPM), to illustrate the

theoretical advantages of our RIPM.

Comparison: Riemannian Interior Point Methods (RIPM) v.s. Euclidean Interior Point Methods
(EIPM).

1. RIPM generalizes EIPM form Euclidean space to general Riemannian manifolds. EIPM is a special

case of RIPM when M = Rn or Rm×n in (CRO).

2. RIPM inherits the all advantages of Riemannian optimization. For example, we can exploit the

geometric structure of M, which is usually regarded as a set of constraints from the Euclidean

viewpoint.

3. Note that in both RIPM and EIPM, we have to solve the condensed Newton equation (5.32) at each

iteration. However, if the equality constraints can be considered to be a manifold, RIPM can solve
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(5.32) with a smaller order on TxM× Rl. For example, the problem (Model_St) can be rewritten

as

min
X∈Rn×k

−2 trace(XTC) s.t. XTX = Ik, X ≥ 0.

Here, Stiefel manifold is replaced by the equality constraints, i.e., we define h : Rn×k → Sym(k) :

X 7→ h(X) := XTX − Ik; and M = Rn×k, l = dimSym(k) = k(k + 1)/2 in (CRO). Then,

when we apply EIPM, it requires us to solve (5.32) of order nk + k(k + 1)/2. On the other hand,

if we apply RIPM to (Model_St), then (5.32) reduces to (5.35) since there are only inequality

constraints on M = St(n, k). In this case, we solve the equation of order nk− k(k+1)/2, i.e., the

dimension of St(n, k). Compared to EIPM, using RIPM reduces our dimensionality by k(k + 1).

4. RIPM can solve some problems that EIPM cannot. For example, the problem (NLRM) can be

rewritten as

min
X∈Rm×n

∥A−X∥2F s.t. rank(X) = r, X ≥ 0.

Since the rank function, X 7→ rank(X), is not even continuous, we cannot apply EIPM.

8.2 Future Research

Finally, we discuss several promising research topics. Since the work in this thesis on the extension of the

interior point method on manifolds is the first of its kind, much meaningful work remains to be explored.

Considering the maturity of the existing Euclidean interior point methods in all aspects of numerical

implementation and algorithmic theory, it is well worthwhile to continue exploring these methods on

manifolds in the future.

Preconditioner for linear operator equation. Due to the complementary condition, as k → ∞, the

values of S−1
k Zk display a huge difference in magnitude: some of them tend to zero while others go

to infinity. Hence, the presence of the operator Ψ := GxS
−1ZG∗

x in the system (5.32) makes it very

ill-conditioned, so the iterative method will likely fail unless it is carefully preconditioned. Unfortunately,

operator equation has no explicit matrix form available, which makes the most common preconditioner

methods based on matrix decomposition techniques useless. A possible way around this is to find another

nonsingular operator P such that the condition number of the new operator P−1T becomes smaller.

Treatment of more state-of-the-art interior point methods. While we have considered interior point

methods on a manifold for the first time, our Euclidean theoretic counterpart is an early nonlinear interior

point method algorithm [73]; however, the counterpart now appears to be obsolete compared with more

recent interior point methods. For example, our method does not drive the iteration towards minimizers,

but only towards stationary points; globalization is done by monitoring only the KKT residuals; moreover,

the boundedness assumption (C2) of {zk} is too strong to hold in some simple cases (see Wächter-Biegler

effect [199]). It remains an important issue to adapt more modern interior point methods to manifolds,

although we may encounter various difficulties in Riemannian geometry.
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