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This note is modified from [Bou23, § 7.6] and [CYRL19].
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Chapter 1

Basic

1.1 Calculus

We write F : A Ñ B to designate a map F whose domain is all of A. If C is a subset of A, we write

F |C : C Ñ B to designate the restriction of F to the domain C, so that F |C pxq “ F pxq for all x P C.

Let U, V be open sets in two linear spaces E ,F . A map F : U Ñ V is smooth if it is infinitely

differentiable (class C8 ) on its domain. We also say that F is smooth at a point x P U if there exists a

neighborhood U 1 of x such that F |U 1 is smooth. Accordingly, F is smooth if it is smooth at all points in

its domain.

If F : U Ñ V is smooth at x, the differential of F at x is the linear map DF pxq : E Ñ F defined by

DF pxqrus “
d

dt
F px ` tuq

ˇ

ˇ

ˇ

ˇ

t“0

“ lim
tÑ0

F px ` tuq ´ F pxq

t
. (1.1)

For a curve c : R Ñ E , we write c1 to denote its velocity: c1ptq “ d
dtcptq.

For a smooth function f : E Ñ R defined on a Euclidean space E , the (Euclidean) gradient of f is

the map grad f : E Ñ E defined by the following property:

@x, v P E , xgrad fpxq, vy “ Dfpxqrvs. (1.2)

The (Euclidean) Hessian of f at x is the linear map Hess fpxq : E Ñ E defined by

Hess fpxqrvs “ Dpgrad fqpxqrvs “ lim
tÑ0

grad fpx ` tvq ´ grad fpxq

t
. (1.3)

1.2 Hyperbolic functions and their inverses

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined

using the hyperbola rather than the circle. Just as the points (cos t, sin tq form a circle with a unit radius,

the points (cosh t, sinh tq form the right half of the unit hyperbola. Also, similarly to how the derivatives

of sinptq and cosptq are cosptq and ´ sinptq respectively, the derivatives of sinhptq and coshptq are

coshptq and ` sinhptq respectively.
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1.2.1 Hyperbolic functions: Definitions in terms of exponentiation

There are various equivalent ways to define the hyperbolic functions. Here, we use the definitions in

terms of the exponential function.

• Hyperbolic sine: the odd part of the exponential function, that is,

sinhx “
ex ´ e´x

2
“

e2x ´ 1

2ex
“

1 ´ e´2x

2e´x
. (1.4)

• Hyperbolic cosine: the even part of the exponential function, that is,

coshx “
ex ` e´x

2
“

e2x ` 1

2ex
“

1 ` e´2x

2e´x
. (1.5)

• Hyperbolic tangent:

tanhx “
sinhx

coshx
“

ex ´ e´x

ex ` e´x
“

e2x ´ 1

e2x ` 1
. (1.6)

• Hyperbolic cotangent: for x ‰ 0,

cothx “
coshx

sinhx
“

ex ` e´x

ex ´ e´x
“

e2x ` 1

e2x ´ 1
. (1.7)

• Hyperbolic secant:

sechx “
1

coshx
“

2

ex ` e´x
“

2ex

e2x ` 1
. (1.8)

• Hyperbolic cosecant: for x ‰ 0,

cschx “
1

sinhx
“

2

ex ´ e´x
“

2ex

e2x ´ 1
. (1.9)

1.2.2 Inverse hyperbolic functions: Definitions in terms of logarithms

Since the hyperbolic functions are quadratic rational functions of the exponential function expx, they

may be solved using the quadratic formula and then written in terms of the natural logarithm.

arsinhpxq “ ln
´

x `
a

x2 ` 1
¯

x P R (1.10)

arcoshpxq “ ln
´

x `
a

x2 ´ 1
¯

x ě 1 (1.11)

artanhpxq “
1

2
ln

ˆ

1 ` x

1 ´ x

˙

|x| ă 1 (1.12)

arcothpxq “
1

2
ln

ˆ

x ` 1

x ´ 1

˙

|x| ą 1 (1.13)

arsechpxq “ ln

˜

1

x
`

c

1

x2
´ 1

¸

“ ln

˜

1 `
?
1 ´ x2

x

¸

0 ă x ď 1 (1.14)

arcschpxq “ ln

˜

1

x
`

c

1

x2
` 1

¸

x ‰ 0 (1.15)
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Figure 1.1: sinh, cosh and tanh

Figure 1.2: csch, sech and coth
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Figure 1.3: sinhx is half the difference of ex and e´x
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Figure 1.4: coshx is the average of ex and e´x
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Figure 1.5: A ray through the unit hyperbola x2 ´ y2 “ 1 at the point pcosh a, sinh aq, where a is twice
the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis,
the area is considered negative (see animated version with comparison with the trigonometric (circular)
functions).

Figure 1.6
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1.2.3 Useful relations

The hyperbolic functions satisfy many identities, all of them similar in form to the trigonometric identi-

ties.

Odd and even functions: coshx and sechx are even functions; the others are odd functions:

sinhp´xq “ ´ sinhx (1.16)

coshp´xq “ coshx (1.17)

tanhp´xq “ ´ tanhx (1.18)

cothp´xq “ ´ cothx (1.19)

sechp´xq “ sechx (1.20)

cschp´xq “ ´ cschx (1.21)

Relations of inverses:

arsechx “ arcosh

ˆ

1

x

˙

(1.22)

arcschx “ arsinh

ˆ

1

x

˙

(1.23)

arcothx “ artanh

ˆ

1

x

˙

(1.24)

Hyperbolic sine and cosine satisfy:

coshx ` sinhx “ ex (1.25)

coshx ´ sinhx “ e´x (1.26)

cosh2 x ´ sinh2 x “ 1 (1.27)

the last of which is similar to the Pythagorean trigonometric identity. One also has

sech2 x “ 1 ´ tanh2 x (1.28)

csch2 x “ coth2 x ´ 1 (1.29)

for the other functions.

1.2.4 Hyperbolic Identities

Sums of arguments:

sinhpx ` yq “ sinhx cosh y ` coshx sinh y (1.30)

coshpx ` yq “ coshx cosh y ` sinhx sinh y (1.31)

tanhpx ` yq “
tanhx ` tanh y

1 ` tanhx tanh y
(1.32)
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Particularly,

coshp2xq “ sinh2 x ` cosh2 x “ 2 sinh2 x ` 1 “ 2 cosh2 x ´ 1 (1.33)

sinhp2xq “ 2 sinhx coshx (1.34)

tanhp2xq “
2 tanhx

1 ` tanh2 x
(1.35)

sinhx ` sinh y “ 2 sinh

ˆ

x ` y

2

˙

(1.36)

cosh

ˆ

x ´ y

2

˙

coshx ` cosh y “ 2 cosh

ˆ

x ` y

2

˙

cosh

ˆ

x ´ y

2

˙

(1.37)

Square formulas:
sinh2 x “

1

2
pcosh 2x ´ 1q

cosh2 x “
1

2
pcosh 2x ` 1q

1.2.5 Derivatives

d

dx
sinhx “ coshx (1.38)

d

dx
coshx “ sinhx (1.39)

d

dx
tanhx “ 1 ´ tanh2 x “ sech2 x “

1

cosh2 x
for x ‰ 0 (1.40)

d

dx
cothx “ 1 ´ coth2 x “ ´ csch2 x “ ´

1

sinh2 x
for x ‰ 0 (1.41)

d

dx
sechx “ ´ tanhx sechx (1.42)

d

dx
cschx “ ´ cothx cschx (1.43)

d

dx
arsinhx “

1
?
x2 ` 1

(1.44)

d

dx
arcoshx “

1
?
x2 ´ 1

for 1 ă x (1.45)

d

dx
artanhx “

1

1 ´ x2
for |x| ă 1 (1.46)

d

dx
arcothx “

1

1 ´ x2
for 1 ă |x| (1.47)

d

dx
arsechx “ ´

1

x
?
1 ´ x2

for 0 ă x ă 1 (1.48)

d

dx
arcschx “ ´

1

|x|
?
1 ` x2

for x ‰ 0 (1.49)

Each of the functions sinh and cosh is equal to its second derivative, that is:

d2

dx2
sinhx “ sinhx (1.50)

d2

dx2
coshx “ coshx. (1.51)
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All functions with this property are linear combinations of sinh and cosh, in particular the exponential

functions ex and e´x.

1.2.6 Taylor series expressions

It is possible to express explicitly the Taylor series at zero (or the Laurent series, if the function is not

defined at zero) of the above functions.

sinhx “ x `
x3

3!
`

x5

5!
`

x7

7!
` ¨ ¨ ¨ “

8
ÿ

n“0

x2n`1

p2n ` 1q!
(1.52)

This series is convergent for every complex value of x. Since the function sinhx is odd, only odd

exponents for x occur in its Taylor series.

coshx “ 1 `
x2

2!
`

x4

4!
`

x6

6!
` ¨ ¨ ¨ “

8
ÿ

n“0

x2n

p2nq!
(1.53)

This series is convergent for every complex value of x. Since the function coshx is even, only even

exponents for x occur in its Taylor series. The sum of the sinh and cosh series is the infinite series

expression of the exponential function.

1.2.7 Relationship to the exponential function

The decomposition of the exponential function in its even and odd parts gives the identities

ex “ coshx ` sinhx (1.54)

and

e´x “ coshx ´ sinhx. (1.55)

Combined with Euler’s formula

eix “ cosx ` i sinx (1.56)

this gives

ex`iy “ pcoshx ` sinhxqpcos y ` i sin yq (1.57)

for the general complex exponential function. Additionally,

ex “

c

1 ` tanhx

1 ´ tanhx
“

1 ` tanh x
2

1 ´ tanh x
2

(1.58)
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1.2.8 Composition of hyperbolic and inverse hyperbolic functions

sinhparcoshxq “
a

x2 ´ 1 for |x| ą 1 (1.59)

sinhpartanhxq “
x

?
1 ´ x2

for ´ 1 ă x ă 1 (1.60)

coshparsinhxq “
a

1 ` x2 (1.61)

coshpartanhxq “
1

?
1 ´ x2

for ´ 1 ă x ă 1 (1.62)

tanhparsinhxq “
x

?
1 ` x2

(1.63)

tanhparcoshxq “

?
x2 ´ 1

x
for |x| ą 1 (1.64)

1.3 Differential Geometry

Manifold. An d-dimensional manifold M is a topological space that locally resembles the topological

space Rd near each point. More concretely, for each point x on M, we can find a diffeomorphism

(continuous bijection with continuous inverse) between a neighborhood of x and Rd. The notion of

manifold is a generalization of surfaces in high dimensions.

Tangent space. Intuitively, if we think of M as a d-dimensional manifold embedded in Rd`1, the

tangent space TxM at point x on M is a d-dimensional hyperplane in Rd`1 that best approximates M
around x. Another possible interpretation for TxM is that it contains all the possible directions of curves

on M passing through x. The elements of TxM are called tangent vectors and the union of all tangent

spaces is called the tangent bundle T M “ YxPMTxM.

Riemannian manifold. A Riemannian manifold is a pair pM,gq, where M is a smooth manifold and

g “ pgxqxPM is a Riemannian metric, that is a family of smoothly varying inner products on tangent

spaces, gx : TxM ˆ TxM Ñ R. Riemannian metrics can be used to measure distances on manifolds.

Distances and geodesics. Let pM,gq be a Riemannian manifold. For v P TxM, define the norm of

v by }v}g :“
a

gxpv,vq. Suppose γ : ra, bs Ñ M is a smooth curve on M. Define the length of γ by:

Lpγq :“

ż b

a

›

›γ1ptq
›

›

g
dt (1.65)

Now with this definition of length, every connected Riemannian manifold becomes a metric space and

the distance d : M ˆ M Ñ r0,8q is defined as:

dpx,yq :“ inf
γ

tLpγq : γ is a continuously differentiable curve joining x and yu (1.66)

Geodesic distances are a generalization of straight lines (or shortest paths) to non-Euclidean geometry.

A curve γ : ra, bs Ñ M is geodesic if

dpγptq, γpsqq “ L
´

γ|rt,ss

¯

@pt, sq P ra, bspt ă sq.
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Figure 6: From left to right: a surface of negative curvature, a surface of zero curvature, and a surface of positive
curvature.

where λx := 2
1−||x||22

and Id is the identity matrix. The induced distance between two points (x,y) in Dd,1 can be
computed as:

d1
D(x,y) = arcosh

(
1 + 2 ||x− y||22

(1− ||x||22)(1− ||y||22)

)
.

A.2.2 Hyperboloid model

Hyperboloid model. Let 〈., .〉L : Rd+1 × Rd+1 → R denote the Minkowski inner product,

〈x,y〉L := −x0y0 + x1y1 + . . .+ xdyd.

The hyperboloid model with unit imaginary radius and constant negative curvature −1 in d dimensions is defined as the
Riemannian manifold (Hd,1, (gx)x) where

Hd,1 := {x ∈ Rd+1 : 〈x,x〉L = −1, x0 > 0},

and

gx :=




−1
1

. . .
1


 .

The induced distance between two points (x,y) in Hd,1 can be computed as:

d1
L(x,y) = arcosh(−〈x,y〉L).

Geodesics. We recall a result that gives the unit speed geodesics in the hyperboloid model with curvature −1 [33]. This
result can be used to show Propositions 3.1 and 3.2 for the hyperboloid manifold with negative curvature −1/K, and
then learn K as a model parameter in HGCN.

Theorem A.1. Let x ∈ Hd,1 and u ∈ TxHd,1 unit-speed (i.e. 〈u,u〉L = 1). The unique unit-speed geodesic
γx→u : [0, 1]→ Hd,1 such that γx→u(0) = x and γ̇x→u(0) = u is given by:

γx→u(t) = cosh(t)x + sinh(t)u.

15

Figure 1.7

It must be emphasized that it is local.

Parallel transport. Parallel transport is a generalization of translation to non-Euclidean geometry.

Given a smooth manifold M, parallel transport PxÑyp¨q maps a vector v P TxM to PxÑypvq P

TyM. In Riemannian geometry, parallel transport preserves the Riemannian metric tensor (norm, inner

products...).

Curvature. At a high level, curvature measures how much a geometric object such as surfaces deviate

from a flat plane. For instance, the Euclidean space has zero curvature while spheres have positive

curvature. We illustrate the concept of curvature in Figure 6. (Figure 6: From left to right: a surface of

negative curvature, a surface of zero curvature, and a surface of positive curvature.)
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Chapter 2

Hyperbolic Spaces

The hyperbolic space in d dimensions is the unique complete, simply connected d-dimensional Rieman-

nian manifold with constant negative sectional curvature.

There exist several models of hyperbolic space such as the Poincaré model or the hyperboloid model

(also known as the Minkowski model or the Lorentz model). In what follows, we review the Poincaré

and the hyperboloid models of hyperbolic space as well as connections between these two models.

2.1 Geometry of Hyperboloid model

An inner product (see [Axl15, 6.3 Definition]) on a real vector space V is a function that associates a

real number xu, vy with each pair of vectors u and v in V in such a way that the following properties are

satisfied for all vectors u, v and z in V and all scalars k.

1. symmetry: xu, vy “ xu, vy;

2. additivity in first slot: xu ` v, zy “ xu, zy ` xv, zy;

3. homogeneity in first slot: xku, vy “ kxu, vy;

4. positivity: xv, vy ě 0;

5. definiteness: xv, vy “ 0 if and only if v “ 0.

A real vector space with an inner product is called a real inner product space.

Definition 1: Minkowski (pseudo) Inner Product

Consider the bilinear map

x¨, ¨yM : Rn`1 ˆ Rn`1 Ñ R

defined by

xu, vyM “ ´u0v0 `

n
ÿ

i“1

uivi “ uJJv (2.1)

where J “ diagp´1, 1, . . . , 1q P Rpn`1qˆpn`1q. It is called the Minkowski (pseudo) inner product

on Rn`1.

This is not an inner product on Rn`1 because J has one negative eigenvalue, but it is a pseudo-inner

product because all eigenvalues of J are nonzero. Gavin a constant K ą 0, the equation

xx, xyM “ ´K, (2.2)
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i.e.,

x20 “ K `

n
ÿ

i“1

x2i ě K, (2.3)

defines two connected components, determined by the sign of x0. Note that x0 ě K or x0 ď ´K. The

condition x0 ą 0 selects one of them.

Definition 2: Hn,K

Consider the following subset of Rn`1:

Hn,K :“
␣

x P Rn`1 : xx, xyM “ ´K and x0 ą 0
(

(2.4)

“
␣

x P Rn`1 : x20 “ K ` x21 ` ¨ ¨ ¨ ` x2n and x0 ą 0
(

(2.5)

“
␣

x P Rn`1 : hpxq :“ xx, xyM ` K “ 0
(

with x0 ą 0. (2.6)

The defining function hpxq “ xx, xyM ` K has differential

Dhpxqrus “ 2xx, uyM “ p2JxqJu. (2.7)

Notice that x0 ‰ 0 for all x P Hn,K ; hence, 2Jx ‰ 0 for all x P Hn,K (J is invertible matrix, thus

Jx “ 0 if and only if x “ 0). This implies that differential Dhpxq : Rn`1 Ñ R is surjective (i.e.,

rankDhpxq “ 1) for all x P Hn,K . By [Bou23, Definition 3.10 & Theorem 3.15], we conclude the

following proposition.

Proposition 1: tangent Space TxHn,K

Given any constant K ą 0, the set Hn,K is an embedded submanifold of Rn`1 of dimension n

with tangent space:

TxHn,K “ kerDhpxq (2.8)

“
␣

u P Rn`1 : xx, uyM “ 0
(

(2.9)

“ tu P Rn`1 : x0u0 “

n
ÿ

i“1

xiuiu (2.10)

which is an n-dimensional subspace of Rn`1. The tangent bundle of Hn,K is given as

THn,K :“
␣

px, uq | x P M,u P TxHn,K
(

. (2.11)

Example 1. For n “ 1,K “ 1, the manifold H1,1 is one sheet of a hyperbola of two sheets in R2:

H1,1 “
␣

x P R2 : x20 ´ x21 “ 1 and x0 ą 0
(

. (2.12)

Proposition 2: x¨, ¨yM is a inner product on TxHn,K

x¨, ¨yM is only a pseudo-inner product on Rn`1, however, it is an inner product restricted to the

tangent spaces of Hn,K , i.e.,

x¨, ¨yM : TxHn,K ˆ TxHn,K Ñ R (2.13)
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is a well-defined inner product on TxHn,K for all x P Hn,K . Then, }u}M “
a

xu, uyM is a

well-defined norm on it.

Proof. Symmetry, additivity and homogeneity hold since xu, vyM “ uJJv with diagonal J . We next

show the positivity and definiteness. For all px, uq P THn,K , we have

xu, uyM “ p

n
ÿ

i“1

u2i q ´ u20 (2.14)

“ p

n
ÿ

i“1

u2i q ´
1

x20
p

n
ÿ

i“1

xiuiq
2 (by u P TxHn,K , i.e., xx, uyM “ 0 and x0 ą 0) (2.15)

ě p

n
ÿ

i“1

u2i q ´
1

x20
p

n
ÿ

i“1

x2i qp

n
ÿ

i“1

u2i q (by Cauchy-Schwarz inequality) (2.16)

“ p

n
ÿ

i“1

u2i q

ˆ

1 ´

řn
i“1 x

2
i

x20

˙

(2.17)

“ p

n
ÿ

i“1

u2i q

ˆ

1 ´
x20 ´ K

x20

˙

(by x P Hn,K , i.e., xx, xyM “ ´K) (2.18)

“
K

x20

`

u21 ` ¨ ¨ ¨ ` u2n
˘

ě 0. (2.19)

Note that 0 ă K
x2
0

ď 1 here. If xu, uyM “ 0, then by (2.19) we have
řn

i“1 u
2
i “ 0; thus ui “ 0 for

i “ 1, . . . , n. For i “ 0, u20 “
řn

i“1 u
2
i “ 0. This completes the proof.

Remark 1. xu, uyM can be negative if u does not belong to any tangent space of Hn,K .

Definition 3: Hyperbolic Space Hn,K

The restriction of x¨, ¨yM to each tangent space TxHn,K defines a Riemannian metric on Hn,K ,

turning it into a Riemannian manifold. With this Riemannian structure, we call Hn,K a hyperbolic

space in the hyperboloid model. The main geometric trait of Hn,K with n ě 2 is that its sectional

curvatures are negative constant, equal to

´
1

K
for some K ą 0. (2.20)

Manifolds with that property are called hyperbolic spaces. There are several other models that share

this trait, namely the Beltrami-Klein model, the Poincaré ball model and the Poincaré half-space model.

For more about curvature and these models, see [Lee18, page 62].

Definition 4: North Pole Point

The point o :“ p
?
K, 0, 0, . . . , 0q P Hn,K is called the north pole point of Hn,K .
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Figure 2.1: Curvatures ´ 1
K determined by K ą 0.

We observe that

ToHn,K “

!

u P Rn`1 : xo, uyM “ ´
?
Ku0 “ 0

)

(2.21)

“
␣

u P Rn`1 : u0 “ 0
(

(2.22)

“
␣`

0, u1
˘

P Rn`1 : u1 P Rn
(

(2.23)

» Rn. (2.24)

Thus, if we fix the dimension n, then for different curvatures ´ 1
K , the manifolds Hn,K have different

north pole points but share the same tangent space at their north pole points. See Figure 2.2.

Proposition 3: Riemannian distance on Hn,K

The distance function induced by Riemannian metric x¨, ¨yM is

dKMpx, yq “
?
K arcosh p´xx, yyM{Kq (2.25)

for all x, y P Hn,K .

We now check the well-definedness of (2.25). Recall that the natural domain of the inverse hyperbolic

function

arcoshpzq “ ln
´

z `
a

z2 ´ 1
¯

(2.26)

is r1,8q. We need to show that ´xx, yyM{K ŕ 1 for all x, y P Hn,K . Define two vectors in Rn`1:

x1 :“
´?

K,x1, . . . , xn

¯

, y1 :“
´?

K, y1, . . . , yn

¯

. (2.27)
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Figure 2.2: Graphs of H1,K with K “ 1, 4, 9, 16. Dashed lines denote the tangent spaces at north pole
points.

Since x, y P Hn,K and (2.3), }x1}2 “ x0 ą 0 and }y1}2 “ y0 ą 0. Then

´xx, yyM “ x0y0 ´

n
ÿ

i“1

xiyi (2.28)

“
›

›x1
›

›

2

›

›y1
›

›

2
´ p

n
ÿ

i“1

xiyi `
?
K

?
Kq ` K (2.29)

“
›

›x1
›

›

2

›

›y1
›

›

2
´
@

x1, y1
D

` K (here x¨, ¨y is usual inner product on Rn`1) (2.30)

ŕ K (by Cauchy-Schwarz inequality) (2.31)

Therefore, dKMpx, yq is well-defined for any pair of x, y in Hn,K .

Recall that the tangent space TxHn,K is an n-dimensional subspace of Rn`1. We consider its

orthogonal complement in Rn`1 as below.

Proposition 4: Normal Space NxHn,K

The orthogonal complement of TxHn,K with respect to x¨, ¨yM is the one-dimensional normal

space:

NxHn,K :“
␣

v P Rn`1 : xu, vyM “ 0 for all u P TxHn,K
(

(2.32)

“ spanpxq. (2.33)

Proof. From dimTxHn,K “ n, we know that dimNxHn,K “ 1, which means the normal space

NxHn,K at point x P Hn,K is a one-dimensional subspace in Rn`1. By definition, we have x P

NxHn,K . Since x always is nonzero, we clam that TxHn,K “ spanpxq.

18
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αx

Figure 2.3: The unique decomposition of z under the direct sum of tangent space and normal space.

Proposition 5: Orthogonal Projector Projx

The orthogonal projector Projx : Rn`1 Ñ TxHn,K is given by

Projxpzq “ z `
1

K
xx, zyM ¨ x. (2.34)

for z P Rn`1.

Proof. Let z P Rn`1. Since tangent space and normal space consist a direct sum of Rn`1, then we have

the unique decomposition of z in the form (See Figure 2.3):

z “ αx ` Projxpzq (2.35)

for some α P R. From (2.32), the normal part of z is αx. By definition of orthogonal projection,

Projxpzq is exactly the tangent part of z. By rearranging terms and redefining the symbol α, we have

Projxpzq “ z ` αx (2.36)

for some α P R. Since Projxpzq P TxHn,K , equation xProjxpzq, xyM “ 0 implies that

xz ` αx, xyM “ xz, xyM ` αxx, xyM “ xz, xyM ´ αK “ 0. (2.37)

Thus, α “ 1
K xz, xyM.

With this tool in hand, we can construct a useful formula to compute gradients of functions on Hn,K .

Proposition 6: Compute Riemannian Gradients

Let f̄ : Rn`1 Ñ R be a smooth function on the Euclidean space Rn`1 with the usual inner product

xu, vy “ uJv. Let f “ f̄
ˇ

ˇ

Hn,K be the restriction of f̄ to Hn,K with the Riemannian structure as

described above. The gradient of f is related to that of f̄ as follows:

grad fpxq “ ProjxpJ egrad f̄pxqq, (2.38)
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where J “ diagp´1, 1, . . . , 1q and Projx is defined by (2.34).

Proof. By definition, grad fpxq is the unique vector in TxHn,K such that Dfpxqrus “ xgrad fpxq, uyM

for all u P TxHn,K . Since f̄ is a smooth extension of f , we can compute

D fpxqrus “ Df̄pxqrus (2.39)

“ xegrad f̄pxq, uy (by definition of egrad f̄pxq) (2.40)

“ xJ egrad f̄pxq, uyM (by definition of x¨, ¨yM) (2.41)

“
@

J gegrad f̄pxq,Projxpuq
D

M (because u is tangent at x) (2.42)

“ xProjpJ egrad f̄pxqq, uyM. (Projx is self-adjoint with respect to x¨, ¨yM) (2.43)

The claim follows by uniqueness.

Some notes from hyperbolicfactory.m in Manopt:

• Hn,K is an embedded submanifold of Rn`1 equipped with the usual inner product. Thus, when defin-

ing the Euclidean gradient for example (problem.egrad), it should be specified as if the function

were defined in Euclidean space directly. The tool M.egrad2rgrad will automatically convert that

gradient to the correct Riemannian gradient, as needed to satisfy the metric. The same is true for the

Euclidean Hessian and other tools that manipulate elements in the embedding space.

• Importantly, Hn,K is not a Riemannian submanifold of Rn`1, because its metric is not obtained simply

by restricting the Euclidean metric to the tangent spaces.

• However, Hn,K is a semi-Riemannian submanifold of Minkowski space, that is, Rn`1 equipped with

the Minkowski inner product.

• Minkowski space itself can be seen as a (linear) semi-Riemannian manifold embedded in Euclidean

space.

Note that J egrad f̄pxq in (2.38) is the gradient of f̄ in the Minkowski space Rn`1 with pseudo-

inner product x¨, ¨yM . See [O’n83] for a general treatment of submanifolds of spaces equipped with

pseudo-inner products.

Proposition 7: Geodesic

For arbitrary px, uq P THn,K with u ‰ 0,

cptq :“

$

&

%

cosh
´

}tu}M?
K

¯

¨ x `
?
K sinh

´

}tu}M?
K

¯

¨ tu
}tu}M

if t ‰ 0

x if t “ 0
(2.44)

“ cosh

ˆ

t}u}M
?
K

˙

¨ x `
?
K sinh

ˆ

t}u}M
?
K

˙

¨
u

}u}M
for all t P R (2.45)

defines the unique geodesic on Hn,K such that cp0q “ x and c1p0q “ u.

Let K “ 1, then

cptq “ cosh pt}u}Mq ¨ x `
sinh pt}u}Mq

}u}M
¨ u. (2.46)

Let K “ 1 and u P TxHn,K be unit-speed, then

cptq “ cosh ptqx ` sinh ptqu. (2.47)
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Proof. (1) We first show that (2.44) is equal to (2.45). When t ‰ 0, we have

cptq :“ cosh

ˆ

}tu}M
?
K

˙

¨ x `
?
K sinh

ˆ

}tu}M
?
K

˙

¨
tu

}tu}M
(2.48)

“ cosh

ˆ

|t| ¨ }u}M
?
K

˙

¨ x `
?
K sinh

ˆ

|t| ¨ }u}M
?
K

˙

¨
tu

|t| ¨ }u}M
(2.49)

“ cosh

ˆ

˘t ¨ }u}M
?
K

˙

¨ x `
?
K sinh

ˆ

˘t ¨ }u}M
?
K

˙

¨
tu

˘t ¨ }u}M
(2.50)

“ cosh

ˆ

t ¨ }u}M
?
K

˙

¨ x ˘
?
K sinh

ˆ

˘t ¨ }u}M
?
K

˙

¨
u

}u}M
(2.51)

“ cosh

ˆ

t}u}M
?
K

˙

¨ x `
?
K sinh

ˆ

t}u}M
?
K

˙

¨
u

}u}M
. (2.52)

Furthermore, substituting t “ 0 into (2.52) yields coshp0qx ` sinhp0qu “ x.

(2) Show that cptq is a curve on Hn,K , i.e., cptq P Hn,K for all t P R. Let p :“ t}u}M?
K

. Then,

xcptq, cptqyM “

B

cosh ppq ¨ x `
?
K sinh ppq ¨

u

}u}M
, cosh ppq ¨ x `

?
K sinh ppq ¨

u

}u}M

F

M
(2.53)

“ cosh2ppqxx, xyM `
K sinh2ppq

}u}2M
xu, uyM ` 2

?
K

coshppq sinhppq

}u}M
xx, vyM (2.54)

“ cosh2ppqxx, xyM `
K sinh2ppq

}u}2M
xu, uyM (2.55)

“ ´K cosh2ppq ` K sinh2ppq (2.56)

“ ´Kpcosh2ppq ´ sinh2ppqq (2.57)

“ ´K. (2.58)

xcptq, cptqyM “

B

coshppq ¨ x `
sinhppq

p
t ¨ u, coshppq ¨ x `

sinhppq

p
t ¨ u

F

M
(2.59)

“ cosh2ppqxx, xyM `
t2 sinh2ppq

p2
xu, uyM ` 2

coshppq sinhppq

p
txx, vyM (2.60)

“ cosh2ppqxx, xyM `
t2 sinh2ppq

p2
xu, uyM (2.61)

“ ´K cosh2ppq ` K sinh2ppq (2.62)

“ ´Kpcosh2ppq ´ sinh2ppqq (2.63)

“ ´K. (2.64)

(2) Show that cptq is the geodesic on Hn,K such that cp0q “ x and c1p0q “ u.
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The (extrinsic) velocity and acceleration of c in Rd are easily derived:

9cptq “
}u}M
?
K

¨ sinh

ˆ

t}u}M
?
K

˙

¨ x ` cosh

ˆ

t}u}M
?
K

˙

¨ u, (2.65)

:cptq “
}u}2M
K

¨ cosh

ˆ

t}u}M
?
K

˙

¨ x `
}u}M
?
K

¨ sinh

ˆ

t}u}M
?
K

˙

¨ u (2.66)

“ }u}2M ¨ cptq. (2.67)

The velocity c1ptq matches 9cptq. Owing to (5.23), to get the (intrinsic) acceleration of c on Sd´1, we

project:

c2ptq “ Projcptq :cptq “
`

Id ´ cptqcptqJ
˘

:cptq “ 0. (2.68)

c2ptq “ Projcptqp:cptqq (2.69)

“ :cptq `
1

K
xcptq, :cptqyM ¨ cptq (2.70)

“ }u}2M ¨ cptq `
1

K
xcptq, }u}2M ¨ cptqyM ¨ cptq (2.71)

“ }u}2M ¨ cptq `
}u}2M
K

xcptq, ¨cptqyM ¨ cptq (2.72)

“ 0. (2.73)

Thus, c is a curve with zero acceleration on Hn,K .

Remark 2 (Compare with the geodesics on the sphere). [Bou23, Example 5.37.] Consider the sphere

Sd´1 “
␣

x P Rd : xJx “ 1
(

equipped with the Riemannian submanifold geometry of Rd with the

canonical metric. For a given x P Sd´1 and v P Tx Sd´1 (nonzero), consider the curve

cptq “ cospt}v}q ¨ x `
sinpt}v}q

}v}
¨ v, (2.74)

which traces a so-called great circle on the sphere. Then c is a geodesic on Sd´1 such that cp0q “ x and

c1p0q “ v. Compare (2.46) with above equation.

Notice that this geodesic cptq is defined for all t. Thus, we have the next result.

Lemma 1: Completeness of Hn,K

Hyperbolic Space Hn,K is a complete Riemannian manifold.

Mapping between tangent space and hyperbolic space is done by exponential and logarithmic maps.

Given x P Hn,K and a tangent vector v P TxHn,K , the exponential map

expKx : TxHn,K Ñ Hn,K (2.75)

assigns to v the point expKx pvq :“ γp1q, where γ is the unique geodesic satisfying γp0q “ x and

9γp0q “ v. The logarithmic map

logKx : Hn,K Ñ TxHn,K (2.76)
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is the reverse map that maps back to the tangent space at x such that

logKx ˝ expKx “ identity map on TxHn,K , (2.77)

expKx ˝ logKx “ identity map on Hn,K . (2.78)

Remark 3. In general Riemannian manifolds these operations are only locally defined, but in hyperbolic

space they form a bijection between Hn,K and TxHn,K at any point x.

We have the following direct expressions of the exponential and the logarithmic maps.

Proposition 8: Exponential and Logarithmic Maps

For x P Hn,K , v P TxHn,K and y P Hn,K such that v ‰ 0 and y ‰ x, the exponential and

logarithmic maps are given by:

expKx pvq “ cosh

ˆ

}v}M
?
K

˙

¨ x `
?
K sinh

ˆ

}v}M
?
K

˙

¨
v

}v}M
, (2.79)

and

logKx pyq “ dKMpx, yq ¨
y ` 1

K xx, yyM ¨ x
›

›y ` 1
K xx, yyM ¨ x

›

›

M
(2.80)

“ dKMpx, yq ¨
Projxpyq

}Projxpyq}M
. (2.81)

Proof. We only verify that exp, log are well-defined.

(1) Show that expKx pvq P Hn,K for all px, vq P THn,K . Define two numbers a, b as below:

expKx pvq “ cosh

ˆ

}v}M
?
K

˙

looooooomooooooon

a

¨x `
?
K sinh

ˆ

}v}M
?
K

˙

1

}v}M
looooooooooooooomooooooooooooooon

b

¨v, (2.82)

By introducing t :“ }v}M?
K

, we have

xexpKx pvq, expKx pvqyM “xax ` bv, ax ` bvyM (2.83)

“ cosh2ptqxx, xyM ` K sinh2ptq
1

}v}2M
xv, vyM ` 2abxx, vyM (2.84)

“ cosh2ptqxx, xyM ` K sinh2ptq
1

}v}2M
xv, vyM (2.85)

“ cosh2ptqxx, xyM ` K sinh2ptq (2.86)

“ ´ K
`

cosh2ptq ´ sinh2ptq
˘

(2.87)

“ ´ K. (2.88)

Thus, expKx pvq P Hn,K .

(2) Show that logKx
“

expKx pvq
‰

“ v for all v P TxHn,K . Define y :“ expKx pvq, namely, y :“

ax ` bv. Then we have the following results in turn:

xx, yyM “ xx, ax ` bvyM “ axx, xyM “ ´aK, (2.89)
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and

dKMpx, yq “
?
K arcosh p´xx, yyM{Kq (2.90)

“
?
K arcosh paq (2.91)

“
?
K arcosh

„

cosh

ˆ

}v}M
?
K

˙ȷ

“ }v}M, (2.92)

and

Projxpyq “ Projxpaxq ` Projxpbvq “ Projxpbvq “ bv. (2.93)

Hence,

logKx rys “ dKMpx, yq ¨
Projxpyq

}Projxpyq}M
(2.94)

“ }v}M
bv

}bv}M
(2.95)

“ }v}M
v

}v}M
(since b ą 0) (2.96)

“ v. (2.97)

This shows that logKx ˝ expKx is the identity map on TxHn,K .

(3) Show that expKx
“

logKx pyq
‰

“ y for all y P Hn,K . Define v :“ logKx pyq. Then we have the

following results in turn:

}v}M “

›

›

›

›

dKMpx, yq ¨
Projxpyq

}Projxpyq}M

›

›

›

›

M
(2.98)

“ dKMpx, yq (2.99)

“
?
K arcosh p´xx, yyM{Kq , (2.100)

and then

}v}M
?
K

“ arcosh p´xx, yyM{Kq , (2.101)

cosh

ˆ

}v}M
?
K

˙

“ ´xx, yyM{K, (2.102)

and

}Projxpyq}
2
M “

B

y `
1

K
xx, yyM ¨ x, y `

1

K
xx, yyM ¨ x

F

M
(2.103)

“ xy, yyM `
1

K2
xx, yy

2
M xx, xyM `

2

K
xx, yy

2
M (2.104)

“ ´K ´
1

K
xx, yy

2
M `

2

K
xx, yy

2
M (2.105)

“
1

K
xx, yy

2
M ´ K, (2.106)
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and

?
K sinh

ˆ

}v}M
?
K

˙

¨
v

}v}M
“

?
K sinh

ˆ

}v}M
?
K

˙

¨
Projxpyq

}Projxpyq}M
(2.107)

“
?
K sinh parcosh p´xx, yyM{Kqq ¨

Projxpyq

}Projxpyq}M
(2.108)

“
?
K
a

pxx, yyM{Kq2 ´ 1 ¨
Projxpyq

}Projxpyq}M
(2.109)

“ Projxpyq. (2.110)

Finally, we have

expKx rvs “ cosh

ˆ

}v}M
?
K

˙

¨ x `
?
K sinh

ˆ

}v}M
?
K

˙

¨
v

}v}M
(2.111)

“ ´xx, yyM{K ¨ x ` Projxpyq (2.112)

“ y. (2.113)

This shows that expKx ˝ logKx “ is the identity map on Hn,K .

Example 2 (Mapping from Euclidean to hyperbolic spaces [CYRL19]). Let xE P Rn denote input

Euclidean features. Let o :“ p
?
K, 0, 0, . . . , 0q denote the north pole in Hn,K , which we use as a

reference point to perform tangent space operations. We interpret
`

0, xE
˘

as a point in ToHn,K and

have

xH :“ expKo
``

0, xE
˘˘

(2.114)

“ cosh

˜

}
`

0, xE
˘

}M
?
K

¸

¨ o `
?
K sinh

˜

}
`

0, xE
˘

}M
?
K

¸

¨

`

0, xE
˘

} p0, xEq }M
(2.115)

“ cosh

˜

›

›xE
›

›

2?
K̄

¸

¨ o `
?
K sinh

˜

›

›xE
›

›

2?
K

¸

¨

`

0, xE
˘

}xE}2
(2.116)

“

˜

?
K cosh

˜

›

›xE
›

›

2?
K

¸

,
?
K sinh

˜

›

›xE
›

›

2?
K

¸

¨
xE

}xE}2

¸

. (2.117)

Foe the last equality, notice the position of the zero elements in o and
`

0, xE
˘

as vectors of Rn.

Proposition 9: Riemannian Connection ∇ of Hn,K

For all smooth vector fields V on Hn,K and all px, uq P THn,K , define the operator ∇ as

∇uV :“ ProjxpDV̄ pxqrusq (2.118)

where V̄ is any smooth extension of V to a neighborhood of Hn,K in Rn`1 and DV̄ pxqrus is the

usual directional derivative. It is an exercise to check that ∇ is the Riemannian connection for M.

It is instructive to compare this with [Bou23, Theorem 5.9] where we make the same claim under

the assumption that the embedding space is Euclidean. Here, the embedding space is not Euclidean, but

the result stands. Again, see [O’n83] for a general treatment.

25



Definition 5: Covariant Derivative D
dt of Hn,K (induced by ∇)

The covariant derivative D
dt (induced by ∇ ) for a smooth vector field Z along a smooth curve

c : I Ñ Hn,K is given by
D

dt
Zptq “ Projcptq

ˆ

d

dt
Zptq

˙

(2.119)

where d
dtZptq is the usual derivative of Z understood as a map from I to Rn`1 this makes use of

the fact that Zptq P TcptqHn,K Ă Rn`1. Compare this with [Bou23, Proposition 5.31].

We proceed to construct a formula for the Hessian of a function on Hn,K based on the gradient and

Hessian of a smooth extension.

Proposition 10

The Hessian of f is related to that of f̄ as follows:

Hess fpxqrus “ ProjxpJ ehess f̄pxqrusq ` xx, J egrad f̄pxqyM ¨ u, (2.120)

where J “ diagp´1, 1, . . . , 1q and Projx is defined by (2.34).

Proof. Let Ḡ be any smooth extension of grad f to a neighborhood of Hn,K in Rn`1. Then,

Ḡpxq “ ProjxpJ egrad f̄pxqq “ J egrad f̄pxq `
1

K
xJ egrad f̄pxq, xyM ¨ x. (2.121)

Thus, for all px, uq P TM we have

Hess fpxqrus “ ∇u grad f (2.122)

“ ProjxpDḠpxqrusq (2.123)

“ Projx
`

J ehess f̄pxqrus ` qx ` xJ egrad f̄pxq, xyM ¨ u
˘

(2.124)

“ ProjxpJ ehess f̄pxqrusq ` xJ egrad f̄pxq, xyM ¨ u, (2.125)

where q is the derivative of xJ egrad f̄pxq, xyM at x along u — and we do not need to compute it since

qx is in the normal space, hence it vanishes through the projector.

Proposition 11: Parallel Transport

If two points x and y on the hyperboloid Hd,1 are connected by a geodesic, then the parallel

transport of a tangent vector v P TxHd,1 to the tangent space TyHd,1 is:

PxÑypvq “ v ´
xlogxpyq, vyL
d1Lpx, yq2

`

logxpyq ` logypxq
˘

(2.126)

Definition 6: Projections

Finally, we recall projections to the hyperboloid manifold and its corresponding tangent spaces. A
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point x “ px0, x1:dq P Rd`1 can be projected on the hyperboloid manifold Hd,1 with:

ΠRd`1ÑHd,1pxq :“

ˆ

b

1 ` }x1:d}
2
2, x1:d

˙

. (2.127)

2.2 Geometry of Poincaré ball model

Let }.}2 be the Euclidean norm.

Definition 7: Poincaré ball model
The Poincaré ball model with unit radius and constant negative curvature -1 in d dimensions is the

Riemannian manifold
`

Dd,1, pgxqx

˘

where

Dd,1 :“
!

x P Rd : }x}2 ă 1
)

, (2.128)

and

gx “ λ2
xId (2.129)

where λx :“ 2
1´}x}22

and Id is the identity matrix. This means that Riemannian metric xu, vy :“

uT gxv.

Proposition 12

The induced distance between two points px, yq in Dd,1 can be computed as:

d1Dpx, yq “ arcosh

˜

1 ` 2
}x ´ y}22

`

1 ´ }x}22

˘ `

1 ´ }y}22

˘

¸

. (2.130)
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Figure 2.5

2.3 Connection between the Poincaré ball model and the hyperboloid
model

While the hyperboloid model tends to be more stable for optimization than the Poincaré model [30],

the Poincaré model is very interpretable and embeddings can be directly visualized on the Poincaré

disk. Fortunately, these two models are isomorphic (cf. Figure 7 ) and there exist a diffeomorphism

ΠHd,1ÑDd,1p¨q mapping one space onto the other:

ΠHd,1ÑDd,1 px0, . . . , xdq “
px1, . . . , xdq

x0 ` 1

and ΠDd,1ÑHd,1 px1, . . . , xdq “

`

1 ` }x}22, 2x1, . . . , 2xd
˘

1 ´ }x}22
.

(2.131)
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Chapter 3

Hadamard manifold

See https://en.wikipedia.org/wiki/Hadamard_manifold#cite_note-Li2102-1

Definition 8: (Cartan-)Hadamard manifold

In mathematics, a Hadamard manifold, named after Jacques Hadamard - more often called a

Cartan-Hadamard manifold, after Élie Cartan — is a Riemannian manifold pM, gq that is com-

plete and simply connected and has everywhere non-positive sectional curvature.

By Cartan–Hadamard theorem, all Cartan-Hadamard manifolds are diffeomorphic to the Euclidean

space Rn.

Furthermore it follows from the Hopf-Rinow theorem that every pairs of points in a Cartan-Hadamard

manifold may be connected by a unique geodesic segment.

Thus Cartan-Hadamard manifolds are some of the closest relatives of Rn.

Example 3. The Euclidean space Rn with its usual metric is a Cartan-Hadamard manifold with constant

sectional curvature equal to 0.

Standard n-dimensional hyperbolic space Hn is a Cartan-Hadamard manifold with constant sectional

curvature equal to -1.

Proposition 13

In Cartan-Hadamard manifolds, the map expp : TMp Ñ M is a diffeomorphism for all p P M .
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Chapter 4

hyperbolicfactory

Listing 4.1: Matlab example

function M = hyperbolicfactory(n, m, transposed)

% Factory for matrices whose columns live on the hyperbolic manifold

%

% function M = hyperbolicfactory(n)

% function M = hyperbolicfactory(n, m)

% function M = hyperbolicfactory(n, m, transposed)

%

% Returns a structure M which describes the hyperbolic manifold in

ãÑ Manopt.

% A point on the manifold is a matrix X of size (n+1)-by-m whose

ãÑ columns

% live on the hyperbolic manifold, that is, for each column x of X,

ãÑ we have

%

% -x(1)ˆ2 + x(2)ˆ2 + x(3)ˆ2 + ... + x(n+1)ˆ2 = -1.

%

% The positive branch is selected by M.rand(), that is, x(1) > 0, but

ãÑ all

% tools work on the negative branch as well.

%

% Equivalently, defining the Minkowski (semi) inner product

%

% <x, y> = -x(1)y(1) + x(2)y(2) + x(3)y(3) + ... + x(n+1)y(n+1)

%

% and the induced Minkowski (semi) norm ||x||ˆ2 = <x, x>, we can

ãÑ write

% compactly that each column of X has squared Minkowski norm equal to

ãÑ -1.

%

% The set of matrices X that satisfy this constraint is a smooth

ãÑ manifold.

% Tangent vectors at X are matrices U of the same size as X. If x and

ãÑ u are
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% the kth columns of X and U respectively, then <x, u> = 0.

%

% This manifold is turned into a Riemannian manifold by restricting

ãÑ the

% Minkowski inner product to each tangent space (a simple calculation

% confirms that this metric is indeed Riemannian and not just semi

% Riemannian, that is, it is positive definite when restricted to

ãÑ each

% tangent space). This is the hyperbolic manifold: for m = 1, all of

ãÑ its

% sectional curvatures are equal to -1. This is called the

ãÑ hyperboloid or

% the Lorentz geometry.

%

% This manifold is an embedded submanifold of Euclidean space (the

ãÑ set of

% matrices of size (n+1)-by-m equipped with the usual trace inner

ãÑ product).

% Thus, when defining the Euclidean gradient for example (problem.

ãÑ egrad),

% it should be specified as if the function were defined in Euclidean

ãÑ space

% directly. The tool M.egrad2rgrad will automatically convert that

ãÑ gradient

% to the correct Riemannian gradient, as needed to satisfy the metric

ãÑ . The

% same is true for the Euclidean Hessian and other tools that

ãÑ manipulate

% elements in the embedding space.

%

% Importantly, the resulting manifold is /not/ a Riemannian

ãÑ submanifold of

% Euclidean space, because its metric is not obtained simply by

ãÑ restricting

% the Euclidean metric to the tangent spaces. However, it is a

% semi-Riemannian submanifold of Minkowski space, that is, the set of

% matrices of size (n+1)-by-m equipped with the Minkowski inner

ãÑ product.

% Minkowski space itself can be seen as a (linear) semi-Riemannian

ãÑ manifold

% embedded in Euclidean space. This view is entirely equivalent to

ãÑ the one

% described above (the Riemannian structure of the resulting manifold

ãÑ is

% exactly the same), and it is useful to derive some of the tools

ãÑ this

% factory provides.

%
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% If transposed is set to true (it is false by default), then the

ãÑ matrices

% are transposed: a point X on the manifold is a matrix of size m-by

ãÑ -(n+1)

% and each row is an element in hyperbolic space. It is the same

ãÑ geometry,

% just a different representation.

%

%

% Resources:

%

% 1. Nickel and Kiela, "Learning Continuous Hierarchies in the

ãÑ Lorentz

% Model of Hyperbolic Geometry", ICML, 2018.

%

% 2. Wilson and Leimeister, "Gradient descent in hyperbolic space",

% arXiv preprint arXiv:1805.08207 (2018).

%

% 3. Pennec, "Hessian of the Riemannian squared distance", HAL INRIA,

ãÑ 2017.

%

% Ported primarily from the McTorch toolbox at

% https://github.com/mctorch/mctorch.

%

% See also: poincareballfactory spherefactory obliquefactory

ãÑ obliquecomplexfactory

% This file is part of Manopt: www.manopt.org.

% Original authors: Bamdev Mishra <bamdevm@gmail.com>, Mayank

ãÑ Meghwanshi,

% Pratik Jawanpuria, Anoop Kunchukuttan, and Hiroyuki Kasai Oct 28,

ãÑ 2018.

% Contributors: Nicolas Boumal

% Change log:

% May 14, 2020 (NB):

% Clarified comments about distance computation.

% July 13, 2020 (NB):

% Added pairmean function.

% Sep. 24, 2023 (NB):

% Edited out bsxfun() for improved speed.

% Design note: all functions that are defined here but not exposed

% outside work for non-transposed representations. Only the wrappers

% that eventually expose functionalities handle transposition. This

% makes it easier to compose functions internally.

if ˜exist(’m’, ’var’) || isempty(m)
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m = 1;

end

if ˜exist(’transposed’, ’var’) || isempty(transposed)

transposed = false;

end

if transposed

trnsp = @(X) X’;

trnspstr = ’, transposed’;

else

trnsp = @(X) X;

trnspstr = ’’;

end

M.name = @() sprintf(’Hyperbolic manifold H(%d, %d)%s’, n, m,

ãÑ trnspstr);

M.dim = @() n*m;

M.typicaldist = @() sqrt(n*m);

% Returns a row vector q such that q(k) is the Minkowski inner

ãÑ product

% of columns U(:, k) and V(:, k). This is defined in all of Minkowski

% space, not only on tangent spaces. In particular, if X is a point

ãÑ on

% the manifold, then inner_\mathcal{M}inkowski_columns(X, X) should

ãÑ return a

% vector of all -1’s.

function q = inner_\mathcal{M}inkowski_columns(U, V)

q = -U(1, :).*V(1, :) + sum(U(2:end, :).*V(2:end, :), 1);

end

% Riemannian metric: we sum over the m copies of the hyperbolic

% manifold, each equipped with a restriction of the Minkowski metric.

M.inner = @(X, U, V) sum(inner_\mathcal{M}inkowski_columns(trnsp(U),

ãÑ trnsp(V)));

% Mathematically, the Riemannian metric is positive definite, hence

% M.inner always returns a nonnegative number when U is tangent at X.

% Numerically, because the inner product involves a difference of

% positive numbers, round-off may result in a small negative number.

% Taking the max against 0 avoids imaginary results.

M.norm = @(X, U) sqrt(max(M.inner(X, U, U), 0));

M.dist = @(X, Y) norm(dists(trnsp(X), trnsp(Y)));

% This function returns a row vector of length m such that d(k) is
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ãÑ the

% geodesic distance between X(:, k) and Y(:, k).

function d = dists(X, Y)

% Mathematically, each column of U = X-Y has nonnegative squared

% Minkowski norm. To avoid potentially imaginary results due to

% round-off errors, we take the max against 0.

U = X-Y;

mink_sqnorms = max(0, inner_\mathcal{M}inkowski_columns(U, U));

mink_norms = sqrt(mink_sqnorms);

d = 2*asinh(.5*mink_norms);

% The formula above is equivalent to

% d = max(0, real(acosh(-inner_\mathcal{M}inkowski_columns(X, Y))));

% but is numerically more accurate when distances are small.

% When distances are large, it is better to use the acosh formula.

end

M.proj = @(X, U) trnsp(projection(trnsp(X), trnsp(U)));

function PU = projection(X, U)

inners = inner_\mathcal{M}inkowski_columns(X, U);

PU = U + X .* inners;

end

M.tangent = M.proj;

% For Riemannian submanifolds, converting the Euclidean gradient into

% the Riemannian gradient amounts to an orthogonal projection. Here

% however, the manifold is not a Riemannian submanifold of Euclidean

% space, hence extra corrections are required to account for the

ãÑ change

% of metric.

M.egrad2rgrad = @(X, egrad) trnsp(egrad2rgrad(trnsp(X), trnsp(egrad))

ãÑ );

function rgrad = egrad2rgrad(X, egrad)

egrad(1, :) = -egrad(1, :);

rgrad = projection(X, egrad);

end

M.ehess2rhess = @(X, egrad, ehess, U) ...

trnsp(ehess2rhess(trnsp(X), trnsp(egrad), trnsp(ehess), trnsp(U)));

function rhess = ehess2rhess(X, egrad, ehess, U)

egrad(1, :) = -egrad(1, :);

ehess(1, :) = -ehess(1, :);

inners = inner_\mathcal{M}inkowski_columns(X, egrad);

rhess = projection(X, ehess + U .* inners);

end

% For the exponential, we cannot separate trnsp() nicely from the

ãÑ main
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% function because the third input, t, is optional.

M.exp = @exponential;

function Y = exponential(X, U, t)

X = trnsp(X);

U = trnsp(U);

if nargin < 3

tU = U; % corresponds to t = 1

else

tU = t*U;

end

% Compute the individual Minkowski norms of the columns of U.

mink_inners = inner_\mathcal{M}inkowski_columns(tU, tU);

mink_norms = sqrt(max(0, mink_inners));

% Coefficients for the exponential. For b, note that NaN’s appear

% when an element of mink_norms is zero, in which case the correct

% convention is to define sinh(0)/0 = 1.

a = cosh(mink_norms);

b = sinh(mink_norms)./mink_norms;

b(isnan(b)) = 1;

Y = X .* a + tU .* b;

Y = trnsp(Y);

end

M.retr = M.exp;

M.log = @(X, Y) trnsp(logarithm(trnsp(X), trnsp(Y)));

function U = logarithm(X, Y)

d = dists(X, Y);

a = d./sinh(d);

a(isnan(a)) = 1;

U = projection(X, Y .* a);

end

M.hash = @(X) [’z’ hashmd5(X(:))];

M.rand = @() trnsp(myrand());

function X = myrand()

X1 = randn(n, m);

x0 = sqrt(1 + sum(X1.ˆ2, 1)); % selects positive branch

X = [x0; X1];

end

M.normalize = @(X, U) U / M.norm(X, U);

35



M.randvec = @(X) M.normalize(X, M.proj(X, randn(size(X))));

M.lincomb = @matrixlincomb;

M.zerovec = @(X) zeros(size(X));

M.transp = @(X1, X2, U) M.proj(X2, U);

M.isotransp = @(X1, X2, U) ...

trnsp(parallel_transport(trnsp(X1), trnsp(X2), trnsp(U)));

function V = parallel_transport(X1, X2, U)

V = inner_\mathcal{M}inkowski_columns(X2, U);

V = V ./ (1 - inner_\mathcal{M}inkowski_columns(X1, X2)) .* (X1 + X2)

ãÑ ;

V = U + V;

end

M.pairmean = @(x1, x2) M.exp(x1, M.log(x1, x2), .5);

% vec returns a vector representation of an input tangent vector

ãÑ which

% is represented as a matrix; mat returns the original matrix

% representation of the input vector representation of a tangent

% vector; vec and mat are thus inverse of each other.

vect = @(X) X(:);

M.vec = @(X, U_\mathcal{M}at) vect(trnsp(U_\mathcal{M}at));

M.mat = @(X, U_vec) trnsp(reshape(U_vec, [n+1, m]));

M.vecmatareisometries = @() false;

end
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