RIEMANNIAN INTERIOR POINT METHODS FOR MANIFOLD OPTIMIZATION

Year: Doctor, 2nd year Name: ZHIJIAN LAI Presentation Inquiries: s2130117@s.tsukuba.ac.jp

Affiliation: Graduate School of Systems and Information Engineering, University of Tsukuba.

A Brief Introduction to Riemannian Optimization

Problem Given $f(x) : \mathcal{M} \to \mathbb{R}$, we solve $\min_{x \in \mathcal{M}} f(x)$, where \mathcal{M} is a Riemannian manifold.

 $\mathbf{Constrained} \Rightarrow \mathbf{Unconstrained}$

Iterations on the Manifold

Moving on a manifold A retraction R yields a map $R_x: T_x \mathcal{M} \to \mathcal{M}$ for any x.

Given a tangent vector ξ at $x, \alpha \mapsto R_x(\alpha \xi)$ defines a curve in this direction.

Application

Extreme eigenvalue or singular value

For a symmetric matrix $A \in \text{Sym}(n)$, we have the smallest eigenvalue of A which is equal to

 $\min_{x \in \mathbb{S}^{n-1}} x^T A x.$

Similarly, for a matrix $M \in \mathbb{R}^{m \times n}$, we have the largest singular value of M which is equal to

$$\max_{x \in \mathbb{S}^{m-1}, y \in \mathbb{S}^{n-1}} x^T M y.$$

Unit sphere manifold,

 $\mathbb{S}^{n-1} := \{ x \in \mathbb{R}^n : ||x||_2 = 1 \}.$

 $\mathbb{S}^{m-1} \times \mathbb{S}^{n-1}$ is a product manifold.

For example, consider

minimize_{$x \in \mathbb{R}^n$} f(x) subject to $x^\top x = 1$,

or,

$$\begin{split} & \text{minimize}_{x\in\mathbb{S}^{n-1}}\,f(x),\\ & \text{where the unit sphere, } \mathbb{S}^{n-1}:=\big\{x\in\mathbb{R}^n:x^\top x=1\big\},\\ & \text{is a Riemannian manifold.} \end{split}$$

• n = 2, a circle;

• n = 3, a sphere.

Riemannian manifold is a space that can be locally linearized.

Iterations on the Euclidean Space

- x_k : current point.

- α_k : step size.

- d_k : direction vector.

Next point is computed by

 $x_{k+1} = x_k + \alpha_k d_k.$

This iteration is implemented in numerous ways, e.g., - Steepest descent: $d_k = -\nabla f(x_k)$. - Newton method: $d_k = -\left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$. **Riemannian Gradient** , grad f(x), is the tangent vector at x and is approximately perpendicular to the contour line of f on the surface.

grad f(x) is the direction of steepest descent at x;
If x* is a local minimizer, then grad f (x*) = 0.

A vector field F on \mathcal{M} is an assignment of a tangent vector to each point in \mathcal{M} . Thus, grad f is a special vector field on \mathcal{M} .

Sparse PCA

We want to to find principal eigenvectors with few nonzero elements:

$$\min_{\mathbf{Y} \in \mathbf{S}(p,n)} - \operatorname{trace} \left(X^{\top} A^{\top} A X \right) + \rho \| X \|_{1}.$$

where $||X||_1 := \sum_{ij} |X_{ij}|$ and $\rho > 0$ is a parameter. Stiefel manifold,

$$\operatorname{St}(p,n) := \left\{ X \in \mathbb{R}^{n \times p} \mid X^T X = I_p \right\}.$$

Low-Rank Matrix Completion We want to recover a low-rank matrix M by

 $\min_{X} \operatorname{rank}(X) \text{ s.t. } X_{ij} = M_{ij}, (i, j) \in \Omega.$

If $\operatorname{rank}(M) = r$ is known, an alternative model is

$$\min_{X \in \mathcal{M}_r} \sum_{(i,j) \in \Omega} \left(X_{ij} - M_{ij} \right)^2.$$

Fixed rank manifold,

$$\mathcal{M}_r := \left\{ X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r \right\}.$$

Current Research— Interior Point Methods for Manifolds

We extend the primal-dual interior point method from the Euclidean setting to the Riemannian one. Our method, named the Riemannian interior point method (RIPM), solves the Riemannian constrained optimization problems:

$$\min_{\substack{x \in \mathbb{M} \\ \text{s.t.}}} f(x)$$
s.t. $h(x) = 0$, and $g(x) \le 0$

(RCOP)

where \mathbb{M} is a *d*-dimensional Riemannian manifold, $f: \mathbb{M} \to \mathbb{R}, h: \mathbb{M} \to \mathbb{R}^{l}$, and $g: \mathbb{M} \to \mathbb{R}^{m}$ are smooth functions. Such problem has wide applications, e.g.,

1. Nonnegative PCA: $\min_{X \in \mathbb{R}^{n \times p}} - \operatorname{tr} \left(X^{\top} A A^{\top} X \right)$ s.t. $X^{\top} X = I_p, X \ge 0$;

- 2. Subproblem of K-indicators model for Data Clustering;
- 3. Minimum Balanced Cut for Graph Bisection;

Riemannian optimality conditions:

- KKT conditions; Second-order conditions [Yang et al., 2014];
- More constraint qualifications (CQ) [Bergmann and Herzog, 2019];
- Sequential optimality conditions [Yamakawa and Sato, 2022].

Riemannian algorithms:

- 1. Augmented Lagrangian Method [Liu and Boumal, 2020, Yamakawa and Sato, 2022];
- 2. Exact Penalty Method [Liu and Boumal, 2020];
- 3. Sequential Quadratic Programming Method [Schiela and Ortiz, 2020, Obara et al., 2022].4. In this talk, we consider Interior Point Method.

This work was supported by JST SPRING, Grant Number JPMJSP2124.