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Introduction
A Riemannian manifold M is a set that can be locally
linearizable, with a smooth mapping x 7→ ⟨·, ·⟩x, which is an inner
product on the tangent spaces TxM.

Figure 1: Unit sphere: M = {x ∈ Rn : ∥x∥2 = 1} and TxM = {v ∈ Rn : ⟨x, v⟩ = 0}.

Riemannian Optimization

Riemannian Optimization:
min
x∈M

f(x)

where f : M → R and M is a Riemannian manifold.

Figure 2: Iteration on unit sphere.

40+ available manifolds in solver “Manopt”[1]
• Stiefel manifold, St(n, k) = {X ∈ Rn×k : X⊤X = I}.
• Fixed rank manifold, Rm×n

r = {X ∈ Rm×n : rk(X) = r}.

Riemannian version of classical methods: steepest decent,
conjugate gradient, Newton, trust region, proximal, ADMM.
Advantages of Riemannian Optimization

1 Exploit the geometric structure of the constrained set.
2 Convergence properties of like optimization on Euclidean.
3 Transfer the constrained problem to the unconstrained one.

More Requirements in Applications
• Nonnegative PCA on Stiefel manifold

min
X∈St(n,k)

− trace(X⊤A⊤AX)

s.t. X ≥ 0

• Nonnegative matrix completion on fixed rank manifold
min

X∈Rm×n
r

∑
(i,j)∈Ω

(Xij −Aij)
2

s.t. X ≥ 0

⇝ Can we use the solver "Manopt" directly?
Some limitations of Riemannian optimization:

1 Existing manifold solvers lack flexibility, and adding even
one more constraint can make it impossible to use them
directly. E.g., x ∈ M,x ≥ 0.

2 Adding new constraints does not necessarily guarantee that
the feasible set is still a manifold.

3 Even if a feasible set is proven to be a manifold, there are
no available software packages to support it.

⇝ We aim to develop a new model to address these issues.

Riemannian Constrained Optimization
Problem

Riemannian Constrained Optimization Problem:
min
x∈M

f(x)

s.t. h(x) = 0, and g(x) ≤ 0,
(RCOP)

where f : M → R, h : M → Rl, and g : M → Rm.

Advantages of (RCOP):
1 Still using the geometric structure of M. The advantages of

Riemannian optimization are maintained.
2 Very flexible, even if h, g cannot form a new manifold.
3 Based directly on an existing solver "Manopt".

Riemannian version of classical algorithms:
• Augmented Lagrangian Method [2];
• Exact Penalty Method [2];
• Sequential Quadratic Programming Method [3].
• ⇝ In this talk, we consider Riemannian version of Interior

Point Method.

Preliminaries
Q1: How to move on manifolds? Retraction!
A retraction R maps tangent vectors back to the manifold.

Rx : TxM → M for any x.

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk(αkdk)

Q2: Where to move towards on manifolds? Riemannian
Gradient!
For embedded submanifold M, Riemannian gradient of f :

M → R is the orthogonal projection onto TxM of the Euclidean
gradient, grad f(x) = Projx(egrad f(x)).

Supplementary:
A vector field is a mapping F defined on M such that F(x) ∈
TxM for all x ∈ M. Riemannian gradient, x 7→ grad f(x), is a
vector field generated by scalar field f : M → R.

Figure 3: A vector field on a unit sphere. Source: Wikipedia.

Covariant derivative of a vector field F:
Riemannian connection

general vector field

Hess f(x) ≜ ∇ grad f(x) is called Riemannian Hessian.
Riemannian Newton method: To find singularity x∗ ∈ M

such that F(x∗) = 0x∗.

(Step 1.) Solve a linear system on TxkM ∋ vk :

∇F(xk)vk = −F(xk),

(Step 2.) xk+1 = Rxk(vk). Return to Step 1.

Our proposal: Riemannian Interior
Point Methods

KKT Vector Field
Lagrangian function of (RCOP) is

L(x, y, z) ≜ f(x) + yTh(x) + zTg(x).

x 7→ L(x, y, z) is a real-valued function on M, then we have
• gradx L(x, y, z) = grad f(x)+

∑l
i=1 yi gradhi(x)+

∑m
i=1 zi gradgi(x),

• Hessx L(x, y, z) = Hess f(x)+
∑l

i=1 yi Hesshi(x)+
∑m

i=1 zi Hessgi(x).

Riemannian KKT conditions [2] are

gradx L(x, y, z) = 0x,

h(x) = 0,

g(x) ≤ 0,

Zg(x) = 0, (Z := diag (z1, . . . , zm))
z ≥ 0.

Using s := −g(x), the above becomes

F(w) ≜



gradx L(x, y, z)
h(x)

g(x) + s

ZSe



= 0w :=



0x
0

0

0



, and (z, s) ≥ 0,

where w := (x, y, z, s) ∈ M ≜M×Rl ×Rm ×Rm. Note that
TwM ≡ TxM × Rl × Rm × Rm.

Covariant Derivative of KKT Vector Field
For each x ∈ M, we define

Hx : Rl → TxM, Hxv ≜
l∑

i=1

vi gradhi(x).

Hence, the adjoint operator is
H∗

x : TxM → Rl, H∗
xξ = [⟨gradh1(x), ξ⟩x , · · · , ⟨gradhl(x), ξ⟩x]

T .

The linear operator ∇F(w) : TwM → TwM is given by

∇F(w)∆w =



Hessx L(w)∆x+Hx∆y+Gx∆z

H∗
x∆x

G∗
x∆x+ ∆s

Z∆s+ S∆z



,

where ∆w = (∆x,∆y,∆s, ∆z) ∈ TxM×Rl×Rm×Rm ≡ TwM .

Riemannian Interior Point Method (RIPM)
Basic RIPM Algorithm:
Step 0. Initial w0 with (z0, s0) > 0.
Step 1. Solve

∇F(wk)∆wk = −F(wk) + µkê,

where ê ≜ (0x, 0, 0, e).
Step 2. Compute the step sizes αk such that (zk+1, sk+1) > 0.
Step 3. Update:

wk+1 = R̄wk
(αk∆wk).

Step 4. Let µk → 0. Return to Step 1.

Local Convergence: Under some standard assumptions.
If µk = o(∥F(wk)∥), αk → 1, then {wk} locally, superlinearly
converges to w∗.
If µk = O(∥F(wk)∥2), 1−αk = O(∥F(wk)∥), then {wk} locally,
quadratically converges to w∗.
Global Line Search RIPM Algorithm:
Merit function: Choose φ(w) ≜ ∥F(w)∥2.
Backtracking for step size αk: With a slight abuse of notation,
we also let

φ(α) ≜ φ(R̄wk
(α∆wk)︸ ︷︷ ︸

new iterate
) for fixed wk and ∆wk,

then φ(0) = φ(wk) =: φk and φ′(0) = ⟨gradφ(wk), ∆wk⟩.
Sufficient decreasing condition asks

φ(αk) −φ(0) ≤ αkβφ
′(0).

Descent direction: Let ∆wk be the solution of ∇F(wk)∆wk =

−F(wk) + ρkσkê, then φ′(0) < 0 if we set ρk := sTkzk/m, σk ∈
(0, 1). Then, {φk} is monotonically decreasing.
Global Convergence: Under some standard assumptions.
For any limit point w∗ = (x∗, y∗, z∗, s∗) of {wk} , x

∗ is a Rieman-
nian KKT point of problem (RCOP).

Conclusion
Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

1 RIPM inherits the advantages of Riemannian optimization
and can exploit the geometric structure of the constraints.

2 EIPM is a special case of RIPM when M = Rn.
3 RIPM solves Newton equation of smaller order on

TxM × Rl :

T (∆x,∆y) :=


Aw∆x+Hx∆y

H∗
x∆x

 =

c

q

 .

4 RIPM can solve some problems that EIPM cannot. E.g.,
rk(X) = r is not continuous, we can not apply EIPM.

Our contributions:
1 Propose a Riemannian version of the interior point method.
2 Prove the local superlinear/quadratic and global

convergence.
3 Establish some foundational concepts, such as the KKT

vector field and its covariant derivative.

Future work: The more sophisticated and robust global strate-
gies are often based on the trust region or filter line-search method.
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