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Background: Basic Concepts

Definition 1.1 c.f. [Abraham and Naomi, 2003]
1 A matrix A ∈ Sn is called completely positive if there exists an entrywise nonnegative matrix

B ∈ Rn×r such that A = BBT . Such B is called a CP factorization of A.

2 CPn :=
{
BB> ∈ Sn | B is a nonnegative matrix

}
denotes the completely positive cone.

Consider the matrix A ∈ CP3 where A = B1B
T
1 = B2B

T
2 = B3B

T
3 .

A =

 18 9 9
9 18 9
9 9 18

 .

Generally, one can have many CP factorizations, even those numbers of columns differ.

B1 =

 4 1 1
1 4 1
1 1 4

 , B2 =

 3 3 0
3 0 3
0 3 3

 , B3 =

 3 3 0 0
3 0 3 0
3 0 0 3

 .

Definition 1.2 c.f. [Abraham and Naomi, 2003]

The minimum of the number of columns among CP factorizations of A ∈ CPn is called cp-rank of A,
written as cp(A).
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Background: Application of CPn

Many nonconvex NP-hard quadratic and combinatorial optimizations have a linear program
over completely positive cone, CPn.

For example, standard quadratic optimization:

min
{
xTMx | eT x = 1, x ∈ Rn

+

}
,

can equivalently be written as

Standard quadratic optimization via CPn [Bomze et al., 2000]

min
{
〈M,X 〉 |

〈
eeT ,X

〉
= 1,X ∈ CPn

}
,

where M ∈ Sn possibly indefinite, and e is the all ones vector.

An application of above is

Independence number α of a graph G [De Klerk and Pasechnik, 2002]

α(G ) = max
{
〈eeT ,X 〉 | 〈A + I ,X 〉 = 1,X ∈ CPn

}
,

where A is the adjacency matrix of G .
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Background: Open Problem — Finding a CP factorization

Open Problem of CPn

There are many fundamental open problems in completely positive cone, CPn.

Here is a list of these open problems [Berman et al., 2015]:

1 Checking membership in CPn.

2 Determining geometry of CPn.

3 Finding a factorization of a matrix in CPn. (Our goal)
−→ Given A ∈ CPn, find a nonnegative B such that A = BBT .

4 Computing the cp-rank.

5 Finding cutting planes for completely positive optimization problems.
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CP factorization as a Feasibility Problem: Lemma 2.1

Lemma 2.1
Suppose that A ∈ Sn, r ∈ N. Then

r ≥ cp(A)⇐⇒ A has a CP factorization B with r columns.

Consider the matrix A ∈ CP3,

A =

 18 9 9
9 18 9
9 9 18

 .

Given A = B1B
T
1 , we can easily construct B̂1 such that B̂1B̂

>
1 = A.

B1 =

 4 1 1
1 4 1
1 1 4

 ≥ 0, −→ B̂1 :=

 4 1 1 0
1 4 1 0
1 1 4 0

 ≥ 0, or

 4 1 1 0 0
1 4 1 0 0
1 1 4 0 0

 ≥ 0.

Thus, if we have had a CP-factorization B with r columns, then we can easily get another
CP-factorization B̂ with r ′ columns for every positive integer r ′ ≥ r .
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CP factorization as a Feasibility Problem: Lemma 2.2

Lemma 2.2 [Xu, 2004, Lemma 1.]

Let Or denote the set of r × r orthogonal matrices. Suppose that B,C ∈ Rn×r . Then

BBT = CCT ⇐⇒ ∃X ∈ Or such that BX = C .

We have known that A = B1B
T
1 = B2B

T
2 .

A =

 18 9 9
9 18 9
9 9 18

 , and B1 =

 4 1 1
1 4 1
1 1 4

 , B2 =

 3 3 0
3 0 3
0 3 3

 .

In fact, there is an orthogonal matrix X such that B1X = B2.

X =
1

3

 2 2 −1
2 −1 2
−1 2 2

 ∈ O3.
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CP factorization as a Feasibility Problem

1 From a “bad” factorization B0 � 0. Using spectral decomposition A = VDV T , we define

B0 := V
√
D, then A = B0B

T
0 .

A =

 18 9 9
9 18 9
9 9 18

 ,B0 =


3√
2

√
6

2 2
√

3

− 3√
2

√
6

2 2
√

3

0 −
√

6 2
√

3

 � 0.

2 To a “good” factorization B0X ≥ 0. If we find a suitable orthogonal matrix X , e.g.,

X =


√

2
2 −

√
2

2 0√
6

6

√
6

6 −
√

6
3√

3
3

√
3

3

√
3

3

 ∈ O3,B0X =

 4 1 1
1 4 1
1 1 4

 = B1 ≥ 0.

CP factorization as a feasibility problem [Groetzner and Dür, 2020]

find X
s.t. BX ≥ 0

X ∈ Or

(1)

where r ≥ cp(A), B ∈ Rn×r is an arbitrary initial factorization A = BBT (need not nonnegative). From
Lemma 2.1 and 2.2, we have A ∈ CPn ⇐⇒ (1) is feasible.
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Our Approach to feasibility problem

1 We first establish the connection between (1) and (2):

find X
s.t. BX ≥ 0

X ∈ Or

(1)
−→ max min (BX )ij

s.t. X ∈ Or

−→ min max (−BX )ij
s.t. X ∈ Or

(2)

2 Introducing a differentiable approximation for the sake of adapting the method below:

max (−BX )ij
approximate−→ LSEµ (−BX ) .

3 Adopting a state-of-the-art curvilinear search method, which aims to solve the general optimization
with orthogonality constrains:

min
X∈Rn×p

F(X ), s.t. XTX = I ,

where F(X ) : Rn×p → R is C 1.
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LogSumExp: Smooth Approximation to Max Function

The LogSumExp (LSE ) function is given by LSEµ(x) : Rn → R,

LSEµ(x) = µ log
(∑n

i=1 exp(xi/µ)
)
.

The gradient of LSE function is the well-known softmax function, which is given by σ : Rn → Rn,

σµ(x) :=
1∑n

j=1 exp (xj/µ)

 exp (x1/µ)
...

exp (xn/µ)

 .
Let x = (2, 5,−1, 3).

n = 4 µ = 1 µ = 1/2 µ = 1/4 µ = 1/8
LSEµ(x) 5.1719 5.0103 5.0001 5.0000

Table: Example of approximation effect with different parameters µ.
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LogSumExp: Smooth Approximation to Max Function

The LogSumExp (LSE ) function is given by LSEµ(x) : Rn → R,

LSEµ(x) = µ log
(∑n

i=1 exp(xi/µ)
)
.

Theorem 3.1 — Approximation theorem of LogSumExp [Lai, 2020]

Suppose that µ > 0, and max xi denotes the maximum entry of x. For all x ∈ Rn, we have

1 max xi < LSEµ(x) ≤ max xi + µ log(n), hence |max xi − LSEµ(x)| ≤ µ log(n).

2 if 0 < µ2 < µ1, then LSEµ2 (x) < LSEµ1 (x).

Figure: Graph of max(x , y). Figure: Graph of log(ex + ey ).
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LogSumExp: Smooth Approximation to Max Function

Approximate the problem (2) by problem (3):

min max (−BX )ij
s.t. X ∈ Or

(2)
min LSEµ (−BX )
s.t. X ∈ Or

(3)

Proposition 3.2 — Approximation between two minimum [Lai, 2020]

Let t resp. tµ denote global minimum of problem (2) resp. (3). We have

0 < tµ − t ≤ µ log(nr).

Proposition 3.3 [Lai, 2020]

If problem (3) has a feasible solution X such that LSEµ (−BX ) ≤ 0, then we find a CP factorization
A = (BX )(BX )T with BX > 0.
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CP Factorization via Orthogonality Constrained Problem

1 Background

2 CP factorization as a Feasibility Problem — Groetzner and Dür

3 Our Approach
Our Approach to feasibility problem
LogSumExp: Smooth Approximation to Max Function
A Curvilinear Search Method — Wen and Yin

4 Numerical Results
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A Curvilinear Search Method [Wen and Yin, 2013]

Consider
min

X∈Mp
n

F(X ), (StOp)

where F(X ) : Rn×p → R is C 1, and Mp
n :=

{
X ∈ Rn×p : XTX = I

}
is called Stiefel manifold.

Figure: Illustration of unit sphere M1
3.

Gradient Descent (Linear Search) Method on Rn.
extend−→ Curvilinear Search Method on Manifold.

1 At a point X on Mp
n, we construct a smooth

curve Y (τ) : R→Mp
n such that Y (0) = X .

2 If X is not a local minimizer of (StOp), then
∃τ̄ ∈ R,F (Y (τ̄)) < F (Y (0)) . It is true if
dF(Y (τ))

dτ

∣∣∣
τ=0

< 0 for F (Y (τ)) : R→ R.

3 Get a better point X := Y (τ̄). Return to the
first step until it is close to local minimizer.
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A Curvilinear Search Method [Wen and Yin, 2013]

Suppose X ∈Mp
n. Let gradient G := DF(X ). Define

∇F(X ) := G − XGTX and A := GXT − XGT .

Then ∇F(X ) = AX . Note that ∇F(X ) = 0 if and only if A = 0.

Lemma 3.3 — First-order Optimality Condition [Wen and Yin, 2013, Lemma 1.]

If a feasible point X is a local minimizer of (StOp). Then X satisfies ∇F(X ) = 0.

Lemma 3.4 — Update Scheme [Wen and Yin, 2013, Lemma 3.]

1 X is a feasible point. Given any skew-symmetric matrix W ∈ Rn×n ( i.e. W T = −W ), the matrix

Y (τ) :=
(
I +

τ

2
W
)−1 (

I − τ

2
W
)
X

is a smooth curve Y (τ) : R→Mp
n such that Y (0) = X .

2 If set W = A := GXT − XGT . Then dF(Y (τ))
dτ

∣∣∣
τ=0

= − 1
2‖A‖

2
F .
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A Curvilinear Search Method

Algorithm 1: A New Method for Completely Positive Matrix Factorization

Data: Given A ∈ CPn, r ≥ cp(A).
Result: An n × r CP factorization of A.
Initialization: Choose an initial decomposition B ∈ Rn×r and starting point X0 ∈ Or . Set

0 < θ1 < θ2 < 1, µ < 0, ε > 0, k ← 0 ;
while ‖∇F(Xk)‖ > ε do

Generate Gk ← −BT ∂LSEµ(BXk )
∂(BXk ) ,Ak ← GkX

T
k − XkG

T
k ,Wk ← Ak ;

Find a step size τk > 0 that satisfies the Armijo-Wolfe conditions:

F (Yk (τk)) ≤ F (Yk(0)) + θ1τkF ′τ (Yk(0))

F ′τ (Yk (τk)) ≥ θ2F ′τ (Yk(0)) ;

Set Xk+1 ← Yk (τk), k ← k + 1;

end

Global convergence of local minimizer of (3) [Wen and Yin, 2013, Theorem 2]

The global convergence of local minimizer is guaranteed, that is limk→∞ ‖∇F (Xk)‖F = 0.
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CP Factorization via Orthogonality Constrained Problem

1 Background

2 CP factorization as a Feasibility Problem — Groetzner and Dür

3 Our Approach
Our Approach to feasibility problem
LogSumExp: Smooth Approximation to Max Function
A Curvilinear Search Method — Wen and Yin

4 Numerical Results
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Numerical Results

Let A := HHT , where H ∈ Rn×n with entries randomly generated in {1, 2, . . . , 10}. We use Algorithm 1
and Groetzner’s method to factorize A for finding other CP factorization of A.

Intel Core i7-4770 3.40 GHz and 16GB Ram, and MatlabR2020a.

We take n ∈ {10, 15, 20, 25, 30} and r = t ∗ n for t ∈ {1, 1.5, 2, 3}.
For each pair of n and r , we generated 100 instances to examine.

For each instance, both methods have up to 100 initial point opportunities. If it is not successful
after 5000 iterations, then the next initial point will be tried.

As long as one succeeds, no other initial points are tried. The time for a single instance is
calculated from the first initial point to the last successful one.
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Numerical Results

Table: A direct comparison of Algorithm 1 and Groetzner’s method.

N = 100 Algorithm 1 Groetzner’s method

n r = n
no. of

successful cases
av. time (sec.)

for successful cases
no. of

successful cases
av. time (sec.)

for successful cases
10 10 100 0.0010 95 3.17
15 15 100 0.0016 77 13.98
20 20 100 0.0025 2 26.76
25 25 100 0.0043 0 -
30 30 100 0.0056 0 -

n r ≈ 1.5n
no. of

successful cases
av. time (sec.)

for successful cases
no. of

successful cases
av. time (sec.)

for successful cases
10 15 100 0.0014 100 0.39
15 23 100 0.0027 100 3.78
20 30 100 0.0044 93 18.33
25 38 100 0.0089 65 55.10
30 45 100 0.0121 36 122.37

n r = 2n
no. of

successful cases
av. time (sec.)

for successful cases
no. of

successful cases
av. time (sec.)

for successful cases
10 20 100 0.0031 100 0.41
15 30 100 0.0041 100 1.94
20 40 100 0.0076 99 9.56
25 50 100 0.0127 82 40.82
30 60 100 0.0166 50 64.87
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Summary: Why so fast is our approach?

Table: Dominant computation of some CP factorization algorithms.

CP factorization Methods Dominant Computation at Each Iteration
Our approach matrix inverse (only!)
Groetzner’s method Second Order Cone Problem
[Jarre and Schmallowsky, 2009] Second Order Cone Problem
[Nie, 2014] Semidefinite Optimization Problem
[Sponsel and Dür, 2014] Second Order Cone problem

Why so fast is our approach?

Only the inversion of an n × n matrix dominates the computation at each iteration, not other
subproblems like SOCP. Although solving an SOCP can be done in polynomial time, it is still very
costly overall. Clearly, if subproblems have to be solved in each iteration, algorithm will always be slow.
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A New Method for Completely Positive Matrix Factorization

Thank you for listening.
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Appendix: Copositive program (primal and dual problem)

Consider the so-called copositive program (primal problem)

min {〈C ,X 〉 | 〈Ai ,X 〉 = bi (i = 1, . . . ,m),X ∈ COPn} , (4)

where
COPn ,

{
A ∈ Sn|xTAx ≥ 0 for all x ∈ Rn

+

}
is the cone of so-called copositive matrices. The dual problem of (4) is

max
{∑m

i=1 biyi | C −
∑m

i=1 yiAi ∈ CPn, yi ∈ R
}
, (5)

where CPn denotes the set of n × n completely positive matrices.

Dual cones, cf. [Abraham and Naomi, 2003]

CPn and COPn are mutually dual to each other.
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Appendix: Relationship with other matrix cones

1 The cone of so-called copositive matrices: COPn :=
{
A ∈ Sn|xTAx ≥ 0 for all x ∈ Rn

+

}
.

2 The cone of symmetric entrywise nonnegative matrices:
Nn := {A ∈ Sn | Aij ≥ 0 for all i , j = 1, . . . , n} .

3 The cone of symmetric positive semidefinite matrices: S+
n :=

{
A ∈ Sn | xTAx ≥ 0 for all x ∈ Rn

}
.

4 The cone of doubly nonnegative matrices: DNN n := S+
n ∩Nn.

5 The Minkowski sum of S+
n and Nn: S+

n +Nn := {A + B ∈ Sn | A ∈ S+
n ,B ∈ Nn}.

Relationship with other matrix cones

CPn ⊆ S+
n ∩Nn ⊆ S+

n ⊆ S+
n +Nn ⊆ COPn (6)
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Appendix: Existing methods

Many different methods to CP-factorization problem have studied before.

1 Some work well for the matrices with specific property.
—special sparse matrices [Dickinson and Dür, 2012], rational CP-factorization [Sikirić et al., 2020].

2 Some work for all matrices but are numerically expensive.
—[Nie, 2014], [Jarre and Schmallowsky, 2009], [Sponsel and Dür, 2014].
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Appendix: Upper bound of cp-rank

Lemma-Upper bound of cp-rank [Bomze et al., 2015, Theorem 4.1]

For all A ∈ CPn, we have cp(A) ≤ cpn :=

{
n for n ∈ {2, 3, 4}
1
2n(n + 1)− 4 for n ≥ 5
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Appendix: cp-plus-rank and int (CPn)

The cp-rank and the cp-plus-rank

We define cp-rank of A ∈ Sn as the minimum of the number of columns for all CP-factor of A, that is

cp(A) := min
B

{
r ∈ N|∃B ∈ Rn×r ,B ≥ 0,A = BBT

}
.

Notice that cp(A) :=∞ if A /∈ CPn. We also define cp-plus-rank of A ∈ Sn as

cp+(A) := min
B

{
r ∈ N|∃B ∈ Rn×r ,B > 0,A = BBT

}
.

Theorem 2.2 Interior of CPn [Dickinson, 2010, Theorem 3.8]

int (CPn) = {A ∈ Sn | cp+(A) <∞ and rank(A) = n}
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Appendix: Approximation Lemma for LSE of matrix form

Lemma 3.3 — Approximation Lemma for LSE of matrix form [L, 2020]

Suppose that µ > 0,B ∈ Rn×r , and max(−BX )ij denotes the minimum entry of −BX . For all
X ∈ Rr×r , we have

1 max(−BX )ij < LSEµ (−BX ) ≤ max(−BX )ij + µ log(nr).

2 if 0 < µ2 < µ1, then LSEµ2 (−BX ) < LSEµ1 (−BX ).
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