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Background: Basic Concepts

Definition 1.1 [Abraham and Naomi, 2003]

1 A matrix A ∈ Sn is called completely positive (CP matrix) if there exists an entrywise nonnegative
matrix B ∈ Rn×r such that A = BB>. Such B is called a CP factorization of A.

2 CPn :=
{
BB> ∈ Sn | B is a nonnegative matrix

}
denotes the completely positive cone (CP cone).

For example, consider the matrix A ∈ CP3 where A = B1B
>
1 = B2B

>
2 = B3B

>
3 .

A =

 18 9 9
9 18 9
9 9 18

 .

B1 =

 4 1 1
1 4 1
1 1 4

 , B2 =

 3 3 0
3 0 3
0 3 3

 , B3 =

 3 3 0 0
3 0 3 0
3 0 0 3

 .

Definition 1.2 [Abraham and Naomi, 2003]

The minimum of the number of columns among CP factorizations of A ∈ CPn is called cp-rank of A,
written as cp(A).
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Background: Application of CPn

Many nonconvex NP-hard quadratic and combinatorial optimizations have a linear program over
completely positive cone, CPn.

Example (Standard quadratic optimization via CPn [Bomze et al., 2000])

For example, standard quadratic optimization:

min
{
x>Mx | e>x = 1, x ∈ Rn

+

}
,

can equivalently be written as

min
{
〈M,X 〉 |

〈
ee>,X

〉
= 1,X ∈ CPn

}
,

where M ∈ Sn possibly indefinite, and e is the all ones vector.

An application of above is

Example (Independence number α of a graph G [De Klerk and Pasechnik, 2002])

α(G ) = max
{
〈ee>,X 〉 | 〈A + I ,X 〉 = 1,X ∈ CPn

}
,

where A is the adjacency matrix of G .
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Background: Open Problems — Finding a CP factorization

There are many fundamental open problems in completely positive cone, CPn:

A list of open problems about CPn [Berman et al., 2015]
1 Checking membership in CPn.

2 Determining geometry of CPn.

3 Finding a factorization of a matrix in CPn, i.e., the “CP factorization problem” (Our goal):

Find B ∈ Rn×r s.t. A = BB> and B ≥ 0. (CPfact)

4 Computing the cp-rank.

5 Finding cutting planes for completely positive optimization problems.
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Reformulation of CP factorization problem: Lemma 2.1

Lemma 2.1
Suppose that A ∈ Sn, r ∈ N. Then

r ≥ cp(A)⇐⇒ A has a CP factorization B with r columns.

Proof.
If we have had a CP-factorization B with r columns, then we can easily get another CP-factorization
with r ′ columns for every positive integer r ′ ≥ r .

For example, consider

A =

 18 9 9
9 18 9
9 9 18

 ∈ CP3.

Given A = B1B
>
1 , we can easily construct B2 such that B2B

>
2 = A.

B1 =

 4 1 1
1 4 1
1 1 4

 ≥ 0, −→ B2 :=

 4 1 1 0
1 4 1 0
1 1 4 0

 ≥ 0, or

 4 1 1 0 0
1 4 1 0 0
1 1 4 0 0

 ≥ 0.
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Reformulation of CP factorization problem: Lemma 2.2

Lemma 2.2 [Xu, 2004, Lemma 1.]

Let Or , {X ∈ Rr×r | X>X = I}. Suppose that B,C ∈ Rn×r . Then

BB> = CC> ⇐⇒ ∃X ∈ Or such that BX = C .

For example, we have known that A = B1B
>
1 = B2B

>
2 .

A =

 18 9 9
9 18 9
9 9 18

 , and B1 =

 4 1 1
1 4 1
1 1 4

 , B2 =

 3 3 0
3 0 3
0 3 3

 .

In fact, there is an orthogonal matrix X such that B1X = B2.

X =
1

3

 2 2 −1
2 −1 2
−1 2 2

 ∈ O3.
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Reformulation of CP factorization problem

From a “bad” factorization B � 0. Using spectral decomposition A = VDV>, we define B := V
√
D,

then A = BBT .

A =

 18 9 9
9 18 9
9 9 18

 , B =


3√
2

√
6

2 2
√

3

− 3√
2

√
6

2 2
√

3

0 −
√

6 2
√

3

 � 0.

To a “good” factorization BX ≥ 0. We find a suitable orthogonal matrix X , e.g.,

X =


√

2
2 −

√
2

2 0√
6

6

√
6

6 −
√

6
3√

3
3

√
3

3

√
3

3

 ∈ O3, BX =

 4 1 1
1 4 1
1 1 4

 ≥ 0.

Reformulation of CP factorization problem[Groetzner and Dür, 2020]

Find X s.t. BX ≥ 0 and X ∈ Or , (FeasCP)

where r ≥ cp(A), B ∈ Rn×r is an arbitrary initial factorization A = BB> (need not nonnegative).
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Reformulation of CP factorization problem

Reformulation of CP factorization problem [Groetzner and Dür, 2020]

Find X s.t. BX ≥ 0 and X ∈ Or , (FeasCP)

where r ≥ cp(A), B ∈ Rn×r is an arbitrary initial factorization A = BB> (need not nonnegative).

Approaches to feasibility problem (FeasCP)

[Groetzner and Dür, 2020] By P := {X |BX ≥ 0}, they applied the alternating projections method to

Find X s.t. X ∈ P ∩ Or .

ProjP(X )→ second-order cone problem; ProjOr
(X )→ singular value decomposition.

[Chen et al., 2020] Suppose that ProjC (x),ProjD(x) can be computed efficiently for two closed sets C
and D. A difference-of-convex functions approach for solving the split feasibility problem,

Find x s.t. Ax ∈ D and x ∈ C , (SFP)

can be directly applied for (FeasCP) if C = Or , D = Rn×r
≥0 and ProjD(X ) = max{X , 0}.
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Reformulation of CP factorization problem

Reformulation of CP factorization problem [Groetzner and Dür, 2020]

Find X s.t. BX ≥ 0 and X ∈ Or , (FeasCP)

where r ≥ cp(A), B ∈ Rn×r is an arbitrary initial factorization A = BB> (need not nonnegative).

Approaches to feasibility problem (FeasCP) [L. and Y. 2021]

[Our approach] We associate (FeasCP) with the following nonsmooth orthogonality optimization:

max
X∈Or

{min (BX )} ≡ min
X∈Or

{max (−BX )}. (OptCP)
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CP Factorization in Orthogonality Optimization via Smoothing Method
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Smoothing method: original version for nonsmooth unconstrained problem

Nonsmooth unconstrained optimization

Consider
min
x∈Rn

f (x), (UnOpt)

where f : Rn 7→ R is locally Lipschitz continuous on Rn.

Recall that

1 The Clarke subdifferential is characterized by

∂f (x) = conv{v | ∇f (xk)→ v for xk → x , f is differentiable at xk}.

2 The first-order optimality condition of (UnOpt) is Clarke stationary point:

∂f (x) = 0.

3 Moreover, we call (UnOpt) smooth if f (·) is smooth, i.e., continuously differentiable.
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2 The first-order optimality condition of (UnOpt) is Clarke stationary point:

∂f (x) = 0.

3 Moreover, we call (UnOpt) smooth if f (·) is smooth, i.e., continuously differentiable.
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Smoothing method: original version for nonsmooth unconstrained problem

Definition 3.1 [Chen, 2012]

We call f̃ : Rn × (0,∞) 7→ R a smoothing function of f , if

1 f̃ (·, µ) is continuously differentiable on Rn for any fixed µ > 0;

2 for any x ∈ Rn

lim
z→x,µ↓0

f̃ (z , µ) = f (x);

3 the gradient consistency holds, i.e., for any x

∂f (x) = Gf̃ (x) , conv{v | ∇x f̃ (xk , µk)→ v for xk → x , µk ↓ 0},

where Gf̃ (x) is called subdifferential associated with f̃ .

For instance,

s(t, µ) =

{
|t| if |t| > µ

2
t2

µ + µ
4 if |t| ≤ µ

2

is a smoothing function of |t|.
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Smoothing method: original version for nonsmooth unconstrained problem

Algorithm 1: Smoothing Method for (UnOpt)

Initial step:
1 Find a smoothing function f̃ of f .

2 Select a sub-algorithm simply satisfying the weak global convergence condition,

lim inf
k→∞

‖∇f (xk)‖ = 0 (1)

for smooth (UnOpt).

3 Choose constants σ ∈ (0, 1), γ, µ0 > 0 and x0 ∈ Rn. Set k = 0.

Inner iteration: Generate xk+1 from xk by using the above algorithm to solve

min
x∈Rn

f̃ (x , µk) (2)

with a fixed µk > 0.
Outer iteration: If

‖∇x f̃ (xk+1, µk)‖ < γµk , (3)

then set µk+1 = σµk ; otherwise, set µk+1 = µk .
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Smoothing method: original version for nonsmooth unconstrained problem

Theorem 3.2 – Convergence of smoothing method for (UnOpt) [Chen, 2012, Theorem 3]

Any accumulation point generated by the smoothing method for (UnOpt) is a Clarke stationary point of
(UnOpt).

Proof.

Suppose that the sub-algorithm in the inner iteration has the convergence property (1). In combination
with the update scheme (3), we eventually obtain

lim inf
k→∞

‖∇x f̃ (xk+1, µk)‖ = 0. (4)

If x̄ is an accumulation point of {xk}, then by

∂f (x) = Gf̃ (x) , conv{v | ∇x f̃ (xk , µk)→ v for xk → x , µk ↓ 0},

we have 0 ∈ ∂f (x̄).
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CP Factorization in Orthogonality Optimization via Smoothing Method

1 Background

2 Reformulation of CP factorization problem – Groetzner and Dür

3 Smoothing Method for Nonsmooth Orthogonality Optimization – Zhang et al.
Original Version for Nonsmooth Unconstrained Problem
Extension to Nonsmooth Orthogonality Optimization

4 Application for CP factorization
A Curvilinear Search Method — Wen and Yin
LogSumExp: Smooth Approximation to Max Function

5 Numerical Results
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Smoothing method: extend to nonsmooth orthogonality optimization

Nonsmooth orthogonality optimization

Now let us consider
min

X∈St(n,p)
f (X ), (StOpt)

where the feasible set
St(n, p) = {X ∈ Rn×p | X>X = I}

is the Stiefel manifold (i.e., orthogonality constraint).

For convenience, we call (StOpt) smooth if f (·) is continuously differentiable on Rn×p.

Lemma 3.3 – An optimality condition of (StOpt) [L. and Y. 2021]

Suppose that X is a local minimizer of (StOpt). Then X satisfies the first-order optimality condition,

0 ∈ ∂f (X )− X∂f (X )>X , (5)

and we call such X a Clarke stationary point of (StOpt). In particular, if (StOpt) is smooth, it reduces to

0 = ∇F (X ) , ∇f (X )− X∇f (X )>X .
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Smoothing method: extend to nonsmooth orthogonality optimization

Algorithm 2: Smoothing Method for (StOpt)

Initial step:
1 Find a smoothing function f̃ of f .

2 Select a sub-algorithm simply satisfying the weak global convergence condition,

lim inf
k→∞

‖∇F (X k)‖ = 0 (6)

for smooth (StOpt).

3 Choose constants σ ∈ (0, 1), γ, µ0 > 0 and X 0 ∈ St(n, p). Set k = 0.

Inner iteration: Generate X k+1 from X k by using the above algorithm to solve

min
X∈St(n,p)

f̃ (X , µk) (7)

with a fixed µk > 0.
Outer iteration: If

‖∇X F̃ (X k+1, µk)‖ < γµk , (8)

then set µk+1 = σµk ; otherwise, set µk+1 = µk .
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Smoothing method: extend to nonsmooth orthogonality optimization

Theorem 3.4 – Convergence of smoothing method for (StOpt) [L. and Y. 2021]

Any accumulation point generated by the smoothing method for (StOpt) is a Clarke stationary point of
(StOpt).

This theorem is proved in a similar way as Theorem 3.2.

The remaining problems

Now, return back to our approach of CP factorization problem:

min
X∈Or

{max (−BX )}. (OptCP)

1 How do we select a sub-algorithm for smooth (StOpt)?

2 How do we select a smoothing function of the maximum function?
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CP Factorization via Orthogonality Constrained Problem

1 Background

2 Reformulation of CP factorization problem – Groetzner and Dür

3 Smoothing Method for Nonsmooth Orthogonality Optimization – Zhang et al.
Original Version for Nonsmooth Unconstrained Problem
Extension to Nonsmooth Orthogonality Optimization

4 Application for CP factorization
A Curvilinear Search Method — Wen and Yin
LogSumExp: Smooth Approximation to Max Function

5 Numerical Results
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A Curvilinear Search Method [Wen and Yin, 2013]

Smooth orthogonality optimization

Consider smooth orthogonality optimization:

min
X∈St(n,p)

f (X ). (smooth-StOpt)

Figure 1: Illustration of unit sphere M1
3.

Gradient Descent (Linear Search) Method on Rn.
extend−→ Curvilinear Search Method on Manifold.

1 At a point X on St(n, p), we construct a
smooth curve Y (τ) : R→ St(n, p) such that
Y (0) = X .

2 If X is not a local minimizer, then
∃τ̄ ∈ R, f (Y (τ̄)) < f (Y (0)) . It is true if
df (Y (τ))

dτ

∣∣∣
τ=0

< 0 for f (Y (τ)) : R→ R.

3 Get a better point X := Y (τ̄). Return to the
first step until it is close to local minimizer.
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A Curvilinear Search Method [Wen and Yin, 2013]

Lemma 3.3 has indicated that optimality condition of smooth (StOpt) is

0 = ∇F (X ) , ∇f (X )− X∇f (X )>X .

Lemma 4.1 — Update Scheme [Wen and Yin, 2013, Lemma 3.]

1 X is a feasible point. Given any skew-symmetric matrix W ∈ Rn×n ( i.e. W> = −W ), the matrix

Y (τ) :=
(
I +

τ

2
W
)−1 (

I − τ

2
W
)
X

is a smooth curve Y (τ) : R→ St(n, p) such that Y (0) = X .

2 If set W = A := ∇f (X )X> − X∇f (X )>. Then

(f ◦ Y )′(0) =
df (Y (τ))

dτ

∣∣∣∣
τ=0

= −1

2
‖A‖2.

Note that ∇F (X ) = AX and ∇F (X ) = 0 if and only if A = 0.
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A Curvilinear Search Method

Algorithm 3: Curvilinear Search for (smooth-StOpt)

Set 0 < c1 < c2 < 1, ε > 0,X 0 ∈ Or , k ← 0. ;

while ‖∇F (X k)‖ > ε do
Generate Ak ← ∇f (X k)X k> − X k∇f (X k)>,Wk ← Ak ;
Find a step size τk > 0 that satisfies the Armijo-Wolfe conditions:

(f ◦ Yk)(τk) ≤ (f ◦ Yk)(0) + c1τk(f ◦ Yk)′(0), (9a)

(f ◦ Yk)′(τk) ≥ c2(f ◦ Yk)′(0); (9b)

Set Xk+1 ← Yk(τk), k ← k + 1 and continue;

end

Theorem 4.2 – Convergence of Algorithm 5 [Wen and Yin, 2013, Theorem 2]

lim
k→∞

‖∇F (Xk)‖ = 0.
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CP Factorization in Orthogonality Optimization via Smoothing Method

1 Background

2 Reformulation of CP factorization problem – Groetzner and Dür

3 Smoothing Method for Nonsmooth Orthogonality Optimization – Zhang et al.
Original Version for Nonsmooth Unconstrained Problem
Extension to Nonsmooth Orthogonality Optimization

4 Application for CP factorization
A Curvilinear Search Method — Wen and Yin
LogSumExp: Smooth Approximation to Max Function

5 Numerical Results
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LogSumExp: Smooth Approximation to Max Function

Example (LogSumExp is a smoothing function of maximum function)

The LogSumExp function, lse(x , µ) : Rn × (0,∞) 7→ R, is given by

lse(x , µ) = µ log(
∑n

i=1 exp(xi/µ)).

Propostion 4.3 – Properties of LogSumExp 1 [L. and Y. 2021]

lse(·, µ) is continuously differentiable on Rn for any fixed µ > 0. In particular, ∇x lse(x , µ) is the
so-called softmax function, given by σ(·, µ) : Rn 7→ ∆n−1,

∇x lse(x , µ) = σ(x , µ) :=
1∑n

l=1 exp(xl/µ)

 exp(x1/µ)
...

exp(xn/µ)

 , (10)

where ∆n−1 := {x ∈ Rn |
∑

i=1 xi = 1, xi ≥ 0} is the unit simplex.
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LogSumExp: Smooth Approximation to Max Function

Example (LogSumExp is a smoothing function of maximum function)

The LogSumExp function, lse(x , µ) : Rn × (0,∞) 7→ R, is given by

lse(x , µ) = µ log(
∑n

i=1 exp(xi/µ)).

Propostion 4.3 – Properties of LogSumExp 2 [L. and Y. 2021]

For all x ∈ Rn and µ > 0, we have

max(x) < lse(x , µ) ≤ max(x) + µ log(n).

The above inequalities imply that for any x ∈ Rn, limz→x,µ↓0 lse(z , µ) = max(x).

For instance, let x = (2, 5,−1, 3).

n = 4 µ = 1 µ = 1/2 µ = 1/4 µ = 1/8
lse(x , µ) 5.1719 5.0103 5.0001 5.0000

Table 1: Example of approximation effect with different parameters µ.
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LogSumExp: Smooth Approximation to Max Function

Example (LogSumExp is a smoothing function of maximum function)

The LogSumExp function, lse(x , µ) : Rn × (0,∞) 7→ R, is given by

lse(x , µ) = µ log(
∑n

i=1 exp(xi/µ)).

Figure 2: Graph of max(x , y). Figure 3: Graph of log(ex + ey ).
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LogSumExp: Smooth Approximation to Max Function

Example (LogSumExp is a smoothing function of maximum function)

The LogSumExp function, lse(x , µ) : Rn × (0,∞) 7→ R, is given by

lse(x , µ) = µ log(
∑n

i=1 exp(xi/µ)).

Propostion 4.3 – Properties of LogSumExp 3 [L. and Y. 2021]

The gradient consistency
∂max(x) = Glse(x)

holds for any x ∈ Rn. In other words,

conv{ei | i ∈ I(x)} = conv{ lim
xk→x,µk↓0

σ(xk , µk)},

where ei is a standard unit vector and I(x) = {i | i ∈ {1, · · · , n}, xi = max(x)}.
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CP Factorization via Orthogonality Constrained Problem

1 Background

2 Reformulation of CP factorization problem – Groetzner and Dür

3 Smoothing Method for Nonsmooth Orthogonality Optimization – Zhang et al.
Original Version for Nonsmooth Unconstrained Problem
Extension to Nonsmooth Orthogonality Optimization

4 Application for CP factorization
A Curvilinear Search Method — Wen and Yin
LogSumExp: Smooth Approximation to Max Function

5 Numerical Results
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Numerical Results – Experiment 1

Example (Experiment 1 – Randomly generated instances)

We computed C by setting Cij := |Bij | for all i , j , where B is a random n × 2n matrix based on the
Matlab command – randn, and we took A = CC> to be factorized.

Intel Core i7-10700 @ 2.90GHz 2.90GHz and 16GB RAM, and MatlabR2021a.

We take n ∈ {20, 30, 40, 100, 200, 400, 600, 800} and r = t ∗ n for t ∈ {1.5, 3}.
For each pair of n and r , we generated 50 instances if n ≤ 100 and 10 instances otherwise.

For each instance, we initialized all the algorithms at the same random starting point X 0 and initial
decomposition B, except for [Boţ and Nguyen, 2021].
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Table 2: Experiment 1 – CP factorization of random completely positive matrices.

Method Our method [Chen et al., 2020] [Boţ and Nguyen, 2021] [Groetzner and Dür, 2020]
n r = 1.5n Rate Times Iters Rate Times Iters Rate Times Iters Rate Times Iters
20 30 1.00 0.0139 60 1.00 0.0027 24 1.00 0.0081 1229 0.32 0.3502 2318
30 45 1.00 0.0425 72 1.00 0.0075 24 1.00 0.0231 1481 0.04 1.0075 2467
40 60 1.00 0.0641 75 1.00 0.0216 46 1.00 0.0574 1990 0.00 - -
100 150 1.00 0.4087 92 1.00 0.2831 109 1.00 0.8169 4912 0.00 - -
200 300 1.00 1.7768 116 1.00 2.2504 212 1.00 5.2908 9616 0.00 - -
400 600 1.00 15.7512 147 1.00 36.9650 636 1.00 90.6752 17987 0.00 - -
600 900 1.00 50.3576 177 1.00 140.0720 882 1.00 344.7035 26146 0.00 - -
800 1200 1.00 114.5538 190 1.00 413.3798 1225 1.00 891.1210 34022 0.00 - -
Method Our method [Chen et al., 2020] [Boţ and Nguyen, 2021] [Groetzner and Dür, 2020]
n r = 3n Rate Times Iters Rate Times Iters Rate Times Iters Rate Times Iters
20 60 1.00 0.0399 64 1.00 0.0057 15 1.00 0.0105 1062 0.30 0.7267 2198
30 90 1.00 0.0853 69 1.00 0.0128 17 1.00 0.0336 1127 0.00 - -
40 120 1.00 0.1518 74 1.00 0.0256 19 1.00 0.0822 1460 0.00 - -
100 300 1.00 1.1297 87 1.00 0.8115 86 1.00 1.1909 4753 0.00 - -
200 600 1.00 8.0160 110 1.00 8.1517 184 1.00 9.2248 9402 0.00 - -
400 1200 1.00 64.1486 149 1.00 124.3410 453 1.00 156.6019 17563 0.00 - -
600 1800 1.00 260.2481 187 1.00 981.8537 795 1.00 616.7851 25336 0.00 - -
800 2400 1.00 574.6292 216 1.00 4027.4278 1070 1.00 1289.3736 26820 0.00 - -

(Rate) success rate relative to the total number of instances.

(Times) average time in seconds among successful instances.

(Iters) average number of iterations among successful instances.
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Numerical Results – Experiment 2

Example (Experiment 2 – A specically structured instance)

Let en denote the all-ones vector in Rn and consider the matrix,

An =

(
0 e>n−1

en−1 In−1

)>(
0 e>n−1

en−1 In−1

)
∈ CPn.

By construction, cp(An) = n.

Intel Core i7-10700 @ 2.90GHz 2.90GHz and 16GB RAM, and MatlabR2021a.

We tried to factorize An for n ∈ {10, 20, 50, 75, 100, 150} using r = cp(An) = n.

For each An, and the same initial decomposition B, we tested all the algorithms on the same 50
randomly generated starting points, except for [Boţ and Nguyen, 2021].
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Table 3: Experiment 2 – CP factorization of a family of specifically structured instances.

Method Our method [Chen et al., 2020] [Boţ and Nguyen, 2021] [Groetzner and Dür, 2020]
n = r Rate Times Iters Rate Times Iters Rate Times Iters Rate Times Iters
10 1.00 0.0052 69 1.00 0.0043 149 1.00 0.0074 2085 0.80 0.0174 616
20 1.00 0.0168 107 0.98 0.0139 201 0.74 0.0212 3478 0.90 0.0591 864
50 1.00 0.1090 125 0.98 0.3389 770 0.00 - - 0.76 0.6948 1416
75 1.00 0.2314 139 0.98 1.0706 1186 0.00 - - 0.64 1.4809 1510
100 1.00 0.5118 185 0.80 1.6653 1083 0.00 - - 0.60 2.8150 1690
150 1.00 1.5551 265 0.70 3.7652 1170 0.00 - - 0.35 9.9930 2959

(Rate) success rate relative to the total number of instances.

(Times) average time in seconds among successful instances.

(Iters) average number of iterations among successful instances.

Zhijian Lai; Akiko Yoshise (University of Tsukuba, Japan) CP Factorization in Orthogonality Optimization July 22, 2021 SIAM Conference on Optimization 37 / 42



Conclusions and Future work

Given A ∈ CPn, CP factorization problem is

Find B s.t. A = BB> and B ≥ 0. (CPfact)

1 Reformulation of [Groetzner and Dür, 2020]:

Find X s.t. BX ≥ 0 and X ∈ Or , (FeasCP)

where B ∈ Rn×r is an initial factorization A = BB>.
2 Treat it as nonsmooth orthogonality optimization [L. and Y. 2021]:

min
X∈Or

{max (−BX )}, (OptCP)

and use extended smoothing method where curvilinear search method → the sub-algorithm;
lse(·, µ) → the smoothing function of max(·).

3 Numerical experiments show the efficiency of our method especially for large-scale factorizations.

Future work
1 Other sub-algorithms;

2 Other techniques of nonsmooth Riemannian optimization for (OptCP).
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CP Factorization via Orthogonality Constrained Problem

Thank you for listening.
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Appendix: Copositive program (primal and dual problem)

Consider the so-called copositive program (primal problem)

min {〈C ,X 〉 | 〈Ai ,X 〉 = bi (i = 1, . . . ,m),X ∈ COPn} , (11)

where
COPn ,

{
A ∈ Sn|xTAx ≥ 0 for all x ∈ Rn

+

}
is the cone of so-called copositive matrices. The dual problem of (11) is

max
{∑m

i=1 biyi | C −
∑m

i=1 yiAi ∈ CPn, yi ∈ R
}
, (12)

where CPn denotes the set of n × n completely positive matrices.

Dual cones, cf. [Abraham and Naomi, 2003]

CPn and COPn are mutually dual to each other.
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Appendix: Relationship with other matrix cones

1 The cone of so-called copositive matrices: COPn :=
{
A ∈ Sn|xTAx ≥ 0 for all x ∈ Rn

+

}
.

2 The cone of symmetric entrywise nonnegative matrices:
Nn := {A ∈ Sn | Aij ≥ 0 for all i , j = 1, . . . , n} .

3 The cone of symmetric positive semidefinite matrices: S+
n :=

{
A ∈ Sn | x>Ax ≥ 0 for all x ∈ Rn

}
.

4 The cone of doubly nonnegative matrices: DNN n := S+
n ∩Nn.

5 The Minkowski sum of S+
n and Nn: S+

n +Nn := {A + B ∈ Sn | A ∈ S+
n ,B ∈ Nn}.

Relationship with other matrix cones

CPn ⊆ S+
n ∩Nn ⊆ S+

n ⊆ S+
n +Nn ⊆ COPn (13)
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Appendix: cp-plus-rank and int (CPn)

Definition – cp-rank and the cp-plus-rank

We define cp-rank of A ∈ Sn as the minimum of the number of columns for all CP-factor of A, that is

cp(A) := min
B

{
r ∈ N|∃B ∈ Rn×r ,B ≥ 0,A = BB>

}
.

Notice that cp(A) :=∞ if A /∈ CPn. We also define cp-plus-rank of A ∈ Sn as

cp+(A) := min
B

{
r ∈ N|∃B ∈ Rn×r ,B > 0,A = BB>

}
.

Theorem – Interior of CPn [Dickinson, 2010, Theorem 3.8]

int (CPn) = {A ∈ Sn | cp+(A) <∞ and rank(A) = n}

Lemma – Upper bound of cp-rank [Bomze et al., 2015, Theorem 4.1]

For all A ∈ CPn, we have cp(A) ≤ cpn :=

{
n for n ∈ {2, 3, 4}
1
2n(n + 1)− 4 for n ≥ 5
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Bot’s method [Boţ and Nguyen, 2021]

Constrained minimization problem
min

x∈Q⊂Rn
f (x).

Starting from an initial point x0 ∈ Q, Projected Gradient Method iterates

xk+1 = PQ (xk − tk∇f (xk)) ,

where PrQ(.) is the projection operator:

PrQ (x0) = arg min
x∈Q

1

2
‖x − x0‖2

2 .
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Bot’s method [Boţ and Nguyen, 2021]

Recall the CP factorization problem:

Find B ∈ Rn×r s.t. A = BB> and B ≥ 0. (CPfact)

Another approach to the CP factorization problem

[Boţ and Nguyen, 2021] proposed a projected gradient method with relaxation and inertia parameters
for (CPfact), aimed at solving

min
X
{‖A− XX>‖2 | X ∈ Rn×r

+ ∩ B(0,
√

trace(A))},

where B(0, ε) := {X ∈ Rn×r | ‖X‖ ≤ ε} is the closed ball centered at 0.

Indeed, if X satisfies A = XXT , then
‖X‖ ≤

√
trace(A).

The authors argued that its optimal value is zero if and only if A ∈ CPn.
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Bot’s method [Boţ and Nguyen, 2021]

For a given nonzero completely positive matrix A ∈ Rn×n,

min
X∈Rn×r

E(X ) :=
1

2

∥∥A− XXT
∥∥2

F

s.t. X ∈ D := Rn×r
+ ∩ BF (0,

√
trace(A))

(Pmod)

Remark: E(X ) is a nonconvex smooth function.

Proposition 1.

Let A ∈ CPn. The set D is nonempty convex and closed, and for any X ∈ Rn×r it holds

PrD(X ) =

√
trace(A)

max
{
‖[X ]+‖F ,

√
trace(A)

} [X ]+

where [X ]+ := max{X , 0} and the max operator is understood entrywise.
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Bot’s method [Boţ and Nguyen, 2021]

Example 1. For every X ∈ Rn×r ,
1. if D := Rn×r

+ , then it holds
PrD(X ) = [X ]+ := max{X , 0}

where the max operator is understood entrywise;
2. if D := BF (0; ε) for ε > 0, we have

PrD(X ) =
ε

max {‖X‖F, ε}
X

Example 2. Let ε > 0 and K be a nonempty closed convex cone in Rn×r . Then the projection onto the
intersection K ∩ BF (0, ε) is given by

PrK∩BF (0,ε)(X ) = PrBF (0,ε) ◦PrK (X ) =
ε

max {‖PrK (X )‖F , ε}
PrK (X ) ∀X ∈ Rn×r

Notice that in general PrBF (0,ε) ◦PrK (X ) 6= PrK (X ) ◦ PrBF (0,ε).
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A projected gradient algorithm with relaxation and inertial parameters

Initialization: given starting points X1 := X0 ∈ D and; a sequence of inertial parameters
{αk}k≥1 ⊆ [0, 1], for which we set α+ := supk≥0 αk and

LF (α+) := 2
[(

3 + 8α+ + 6α2
+

)
trace(A)− λmin(A)

]
> 0;

a relaxation parameter ρ ∈ (0, 1] chosen such that

0 <

√
LF (α+) + 2‖A‖2√

LF (α+) + 2‖A‖2 +
√
LF (α+)

< ρ <

√
LF (α+) + 2‖A‖2

(1 + α+)
√

LF (α+) + 2‖A‖2 −
√

LF (α+)
.

Main iterate: Set k := 1. step 1: Compute

Yk := Xk + αk (Xk − Xk−1)

Zk+1 := PrD

(
Yk −

1

LF (α+)
∇E (Yk)

)
,

Xk+1 := (1− ρ)Xk + ρZk+1

Step 2 : If a stopping criterion is not met, then set k := k + 1 and go to step 1.
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