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Riemannian manifold = manifold + Riemannian metric.
▶ A manifoldM is a set that can be locally linearized.

tangent vector

tangent space

Figure: Manifold of unit sphere,M = {x ∈ Rn : ∥x∥2 = 1}.

▶ Riemannian metric is the family of inner products on each tangent space.
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Riemannian (Unconstrained) Optimization

Problem: Given f (x) :M → R, solve

min
x∈M

f (x) (RUO)

whereM is a Riemannian manifold.

Figure: Iteration on manifold

Euclidean constrained problem⇒ Unconstrained problem on manifoldM.
1. Stiefel manifold,M = {X ∈ Rn×p : X⊤X = I}.
2. Fixed rank manifold,M = {X ∈ Rm×n : rank(X) = r}.
3. And more.

Riemannian version of classical methods: steepest decent, conjugate gradient, trust
region, Quasi-Newton (BFGS), proximal gradient, and more.
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Riemannian Constrained Optimization
We consider

min
x∈M

f (x)
s.t. h(x) = 0,

g(x) ⩾ 0,
(RCO)

where f :M → R, h :M → Rl , and g :M → Rm.

Applications:
1. Nonnegative PCA:

min
X∈Rn×p

− tr
(
X⊤AA⊤X

)
s.t. X⊤X = I,X ⩾ 0. (1)

2. Subproblem of K-indicators model for Data Clustering;
3. Minimum Balanced Cut for Graph Bisection.
4. And more.
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Riemannian Constrained Optimization
We consider

min
x∈M

f (x)
s.t. h(x) = 0,

g(x) ⩾ 0,
(RCO)

where f :M → R, h :M → Rl , and g :M → Rm.

Riemannian version of optimality conditions:
KKT conditions; second-order necessary and sufficient conditions [YZS14]; More
constraint qualifications [BH19]; Sequential optimality conditions [YS22].

Only 3 Riemannian algorithms exist! (2019∼)
Augmented Lagrangian Method [LB19, YS22]; Exact Penalty Method [LB19]; Sequential
Quadratic Method [SO20, OOT20].
Why not Interior Point Method?
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Moving on a manifold — retractions
A retraction R yields a map Rx : TxM →M for any x.

Figure: A retraction onM = {x ∈ Rn : ∥x∥2 = 1}.

Euclidean Riemannian
xk+1 = xk + 𝛼kdk xk+1 = Rxk (𝛼k𝜉k)
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Riemannian gradient — a special vector field
Riemannian gradient at x, grad f (x), is the direction (=tangent vector) of steepest ascent:
grad f (x )
∥ grad f (x ) ∥ = argmax

𝜉 ∈TxM:∥ 𝜉 ∥=1

(
lim𝛼→0

f (Rx (𝛼𝜉 ) )−f (x )
𝛼

)
.

Figure: grad f (x) is perpendicular to the contour line of f onM = {x ∈ Rn : ∥x∥2 = 1}.

grad f is a special vector field onM .
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Riemannian Newton method
Covariant derivative:

Riemannian connection

general vector field

When F = grad f , Hess f (x) := ∇ grad f (x) is called Riemannian Hessian at x.

Riemannian Newton method: Consider

F (x) = 0. (2)

Solve a linear system on Txk M ∋ vk : ∇F (xk)vk = −F (xk); then xk+1 = Rxk (vk).

Standard Newton assumptions & Local Convergence Results:
(N1)There exists x∗ : F (x∗) = 0.
(N2)∇F (x∗) is nonsingular operator.

}
⇒ superlinear[FFY17]

(N3)∇F is locally Lipschitz cont. at x∗.

 ⇒ quadratic[FS12] .
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Our proposal: Riemannian Interior Point Method

We try to extend interior point methods to

min
x∈M

f (x)
s.t. h(x) = 0,

g(x) ⩾ 0,
(RCO)

where f :M → R, h :M → Rl , and g :M → Rm.

Lagrangian function is
L(x, y, z) = f (x) − y⊤h(x) − z⊤g(x). (3)

L(·, y, z) is a real function onM, so we have

▶ gradx L(x, y, z) = grad f (x) −∑l
i=1 yi grad hi (x) −

∑m
i=1 zi grad gi (x),

▶ Hessx L(x, y, z) = Hess f (x) −∑l
i=1 yi Hess hi (x) −

∑m
i=1 zi Hess gi (x).
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KKT Vector Field
Riemannian KKT conditions [LB19, Definition 2.3] for problem (RCO) are

gradx L(x, y, z) = 0,
h(x) = 0,
g(x) ⩾ 0,

Zg(x) = 0,
z ⩾ 0.

(4)

With a slack variable s = g(x), the above can be written

F (w) :=
©­­­«
gradx L(x, y, z)
h(x)
g(x) − s
ZSe

ª®®®¬ = 0, and (s, z) ⩾ 0, (5)

where w := (x, y, s, z) ∈M :=M × Rl × Rm × Rm. Note that TwM ≡ TxM × Rl × Rm × Rm.

Definition 2.1 (L. 2022)
F is a vector field on the product Riemannian manifold M , named KKT vector field.
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Formulation of ∇F (w)
Lemma 2.2 (L. 2022)
The linear operator ∇F (w) : TwM → TwM is given by

∇F (w)Δw =

©­­­«
Hessx L(w)Δx −∑l

i=1 Δyi grad hi (x) −
∑m

i=1 Δzi grad gi (x)
⟨grad hi (x),Δx⟩ , for i = 1, . . . , l
⟨grad gi (x),Δx⟩ − Δsi , for i = 1, . . . ,m
ZΔs + SΔz

ª®®®¬ , (6)

where Δw = (Δx,Δy,Δs,Δz) ∈ TxM × Rl × Rm × Rm ≡ TwM , and Hessx L(w) denotes the
Riemannian Hessian of Lagrangian L(·, y, z).

Remark
In Euclidean case, it reduces to the matrix multiplication:

F ′ (w)Δw =


∇2

xL(w) −∇h(x) −∇g(x) 0
∇h(x)T 0 0 0
∇g(x)T 0 0 −I
0 0 Z S



Δx
Δy
Δs
Δz

 . (7)
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Implication of Riemannian assumptions for problem (RCO)

(R1) Existence. There exists w∗ satisfying the KKT conditions.

(R2) Smoothness. The functions f , g, h are smooth onM.

(R3) Regularity. The set {grad hi (x∗) : i = 1, · · · , l} ∪ {grad gi (x∗) : i ∈ A(x)} is linearly
independent in Tx∗M.

(R4) Strict Complementarity. (z∗)i > 0 if gi (x∗) = 0 for all i = 1, · · · ,m.

(R5) Second-Order Sufficiency. ⟨Hessx L(w∗ ) 𝜉 , 𝜉 ⟩ > 0 for all nonzero 𝜉 ∈ Tx∗M satisfying
⟨ 𝜉 , grad hi (x∗ ) ⟩ = 0 for i = 1, · · · , l, and ⟨ 𝜉 , grad gi (x∗ ) ⟩ = 0 for i ∈ A(x∗ ) .

Proposition 2.3 (L. 2022)
If assumptions (R1)-(R5) hold, then standard Newton assumptions (N1)-(N3) hold for F (w) = 0.
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Riemannian Interior Point Method (RIPM) (L. 2022)
Step 0. Choose an initial w0 with (s0, z0) > 0.
Step 1. Solve the following system for Δwk = (Δxk ,Δyk ,Δsk ,Δzk):

∇F (wk)Δwk = −F (wk) + 𝜇k ê, (8)

where ê := ê(w) := (0x , 0, 0, e).
Step 2. Compute the step sizes 𝛼k such that (sk+1, zk+1) > 0.
Step 3. Update:

wk+1 = R̄wk (𝛼kΔwk), i .e., (9)

(xk+1, yk+1, sk+1, zk+1) = (Rxk (𝛼kΔxk), yk + 𝛼kΔyk , sk + 𝛼kΔsk , zk + 𝛼kΔzk).
Step 4. Shrink 𝜇k → 0. Return to step 1.

Theorem 2.4 Local Convergence of RIPM (L. 2022)

(1) If 𝜇k = o(∥F (wk)∥), 𝛼k → 1, then {wk} locally, superlinearly converges to w∗.

(2) If 𝜇k = O(∥F (wk)∥2), 1−𝛼k = O(∥F (wk)∥), then {wk} locally, quadratically converges to w∗.
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An example of Riemannian assumptions (R1)-(R5) (without s = g(x))
min

x∈M={x∈R3:∥x ∥2=1}
a⊤x s.t. x ≥ 0. (10)

a = [−1, 2, 1]⊤, x∗ = [1, 0, 0]⊤. Check KKT condition:

grad f (x∗) = (I − x∗x∗⊤)a = [0, 2, 1]⊤. (11)

x ≥ 0 implies gi (x) = e⊤i x for i = 1, 2, 3;A(x∗) = {2, 3}.

grad g1 (x∗) = (I − x∗x∗⊤)e1 = [0, 0, 0]⊤.
grad g2 (x∗) = (I − x∗x∗⊤)e2 = [0, 1, 0]⊤.
grad g3 (x∗) = (I − x∗x∗⊤)e3 = [0, 0, 1]⊤.

Regularity and strict complementarity hold at x∗ with z∗ = [0, 2, 1]⊤.

Hessx L(x∗, z∗) [u] = (z∗ − a)⊤x∗ · u = u, (12)

thus, second order sufficiency holds.
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Simple Implement of RIPM

min
x∈M={x∈R3:∥x ∥2=1}

a⊤x s.t. x ≥ 0. (13)

a = [−1, 2, 1]⊤, x∗ = [1, 0, 0]⊤, n = 3.

x0 = M.rand (); Random point on manifold.
s0 = ones(n, 1) ∗ (0.5); z0 = ones(n, 1) ∗ (0.5);

Fk := ∥F (wk)∥ ;
𝜇k = min(𝜇k/1.5, 0.5 ∗ F2

k );
𝛾k = 0.5 ∗ (1 +max (0, 1 − Fk));

A result as shown on the right.
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Simple Implement of RIPM

min
x∈M={x∈Rn:∥x ∥2=1}

a⊤x s.t. x ≥ 0. (14)

a = [−1; abs(rand (n − 1, 1))]⊤,
x∗ = [1; zeros(n − 1, 1)]⊤, n = 1000.

x0 = M.rand (); Random point on manifold.
s0 = ones(n, 1) ∗ (0.5); z0 = ones(n, 1) ∗ (0.5);

Fk := ∥F (wk)∥ ;
𝜇k = min(𝜇k/1.5, 0.5 ∗ F2

k );
𝛾k = 0.5 ∗ (1 +max (0, 1 − Fk));

A result as shown on the right.
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Future Work — Global algorithm of RIPM
The most classic global algorithm for Euclidean IPM is provided by [EBTTZ96].
▶ Merit function: A simple one is

𝜑(w) = ∥F (w)∥2.

▶ Step size selection:
1. Centrality conditions: 𝛼̄k = min

(
𝛼I , 𝛼II ) .

2. Sufficient decreasing: Let 𝛼k = 𝜃t 𝛼̄k , where t is the smallest nonnegative integer such
that 𝛼k satisfies

𝜑
(
R̄wk (𝛼kΔwk)

)
− 𝜑 (wk) ⩽ 𝛼k𝛽 ⟨grad 𝜑k ,Δwk⟩ . (15)

Future works:
1. Global Convergence to be proved.
2. Other merit functions; linear search→ trust region.
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Riemannian Interior Point Methods

END.
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Perturbed KKT Conditions and Damped Step Size
On the other hand, to keep (sk , zk) ≥ 0:
▶ Introducing the perturbed complementary equation,

ZΔs + SΔz = −ZSe + 𝜇e, (16)

so that we are able to keep the iterates far from the boundary.
▶ Compute the damped step sizes 𝛼k , e.g., choose 𝛾k ∈ (0, 1) and compute

𝛼k := min

{
1, 𝛾k min

i

{
− (sk)i
(Δsk)i

| (Δsk)i < 0
}
, 𝛾k min

i

{
− (zk)i
(Δzk)i

| (Δzk)i < 0
}}

,

(17)
such that (sk+1, zk+1) > 0.

The relation of 𝛼k and 𝛾k: [YY96]
1. If 𝛾k → 1, then 𝛼k → 1.
2. If 1 − 𝛾k = O (∥F (wk)∥), then 1 − 𝛼k = O (∥F (wk)∥).
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History of Euclidean Interior Point Method

Interior Point (IP) Method for NONLINEAR, NONCONVEX (1990-)

Early phase (1990-1995)
▶ Local algorithms with superlinear/ quadratic convergence

by El-Bakry, Tapia, Tsuchiya, and Zhang[EBTTZ96], Yamashita and Yabe [YY96].
▶ Global algorithms

by El-Bakry, Tapia, Tsuchiya, and Zhang[EBTTZ96]
Variations (1995-2010)
▶ Inexact Newton/ Quasi Newton IP Method
▶ Global strategy: many merit functions; linear search, or trust region, etc.
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Comparison with Constrained Optimization

1. All iterates on the manifold
2. Convergence properties of unconstrained optimization algorithms
3. No need to consider Lagrange multipliers or penalty functions
4. Exploit the structure of the constrained set

from https://www.math.fsu.edu/˜whuang2/pdf/NanjingUniversity_2019-10-23.pdf
3 / 17
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Riemannian submanifold

The letter E always denotes a linear space.

Embedded submanifold = manifold + subset of E;
▶ Sphere Sn−1 = {x ∈ Rn : ∥x∥ = 1} .

Riemannian submanifold = Embedded submanifold + inherited metric;
▶ Let

⟨u, v⟩x := u⊤v (18)

for all u, v ∈ TxS
n−1 = {y ∈ Rn : x⊤y = 0}.

▶ We have

TxM = {𝛾′(0) ∈ E | 𝛾 : I →M is smooth curve around 0, 𝛾(0) = x} (19)
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Riemannian gradient for Riemannian submanifold
Proposition
With

Projx : E → TxM ⊆ E (20)

we denote the orthogonal projector from E to TxM, then

grad f (x) = Projx (∇f (x)). (21)

▶ For f (x) = x⊤Ax on Sn−1, we have ∇f (x) = 2Ax, and

Projx (u) = (In − xx⊤)u. (22)

Then, Riemannian gradient of f on Sn−1 is

grad f (x) = 2(In − xx⊤)Ax. (23)
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Distance, metric space

Given a smooth curve segment c : [a, b] → M, we define the length of c as

L(c) :=
∫ b

a
∥c′(t)∥c (t ) dt . (24)

A natural notion of distance onM, called the Riemannian distance:

dist(x, y) := inf
c

L(c) (10.2)

where the infimum is taken over all curve segments which connect x to y.
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Riemannian Optimization Libraries I
Other manifolds:
▶ Oblique manifold,{

X ∈ Rm×n : diag(X⊤X) = In
}
.

(25)
▶ Generalized Stiefel manifold,{

X ∈ Rn×p : X⊤BX = Ip
}

for some B ≻ 0.
(26)

▶ Manifold of symmetric positive
semidefinite, fixed-rank with unit
diagonal,{

X ∈ Rn×n : X = X⊤ ⪰ 0, rank(X) = k,
diag(X) = 1} .

▶ And many more.

List of Riemannian methods (2002∼):
▶ Steepest decent
▶ Newton
▶ trust region
▶ adaptive cubic overestimation
▶ conjugate gradient
▶ Quasi-Newton (BFGS)
▶ ADMM
▶ proximal gradient
▶ stochastic algorithms
▶ and many more.
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Riemannian Optimization Libraries II
Monographs:
▶ Optimization algorithms on matrix manifolds [AMS09]
▶ An introduction to optimization on smooth manifolds [Bou20]
▶ Riemannian Optimization and Its Applications [Sat21]

Survey:
▶ A brief introduction to manifold optimization [HLWY20]
▶ History of Riemannian Optimization
https://www.math.fsu.edu/˜whuang2/pdf/NanjingUniversity_2019-10-23.pdf

Available solvers:
▶ Manopt (for Matlab, Python, Julia)
▶ McTorch (Riemannian optimization for deep learning)
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Euclidean KKT Conditions

Minimize f (x), x ∈ Rn

subject to h(x) = 0, g(x) ⩾ 0. (27)

The Lagrangian function is

L(x, y, z) = f (x) − y⊤h(x) − z⊤g(x). (28)

The KKT conditions in slack variable form is

F (x, y, s, z) ≡


∇xL(x, y, z)
h(x)
g(x) − s
ZSe

 = 0, (s, z) ≥ 0. (29)

Let w = (x, y, s, z), then our goal just is

F (w) = 0, (s, z) ≥ 0. (30)

9 / 17



Euclidean Interior Point Method (EIP)
To solve F (w) = 0, but (s, z) ≥ 0. Note that w = (x, y, s, z).

Standard assumptions of (27):
(C1) Existence. There exists (x∗, y∗, z∗) satisfying the KKT conditions.
(C2) Smoothness. The functions f , g, h are smooth.
(C3) Regularity. Linear independence constraint qualification at x∗.
(C4) Strict Complementarity. z∗i > 0 if gi (x∗) = 0.
(C5) Second-Order Sufficiency.

Standard assumptions of (27) imply Newton assumptions of F:
If conditions (C1)-(C5) hold, then the standard assumptions (A1)-(A3) hold for F (w) = 0.
[EBTTZ96]

10 / 17



Euclidean Interior Point Method (EIP)
To solve F (w) = 0, but (s, z) ≥ 0. Note that w = (x, y, s, z).

Algorithm (Euclidean Interior Point Method)
Step 0. Choose an initial w0 with (s0, z0) > 0.
Step 1. Solve the following system for Δwk :

∇F (wk) Δwk = −F (wk) + 𝜇k ê, (31)

where ê = (0, 0, 0, e⊤)⊤.
Step 2. Compute the step sizes 𝛼k such that (sk+1, zk+1) > 0.
Step 3. Update:

wk+1 = wk + 𝛼kΔwk . (32)

Step 4. Shrink the parameter 𝜇k > 0. Return to step 1.
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Euclidean Interior Point Method (EIP)

Interior Point Method as Perturbed damped Newton iterates:

wk+1 = wk − 𝛼k∇F (wk)−1 (F (wk) − 𝜇k ê) , k = 0, 1, · · · . (33)

Theorem (Local Convergence Theory of EIP [EBTTZ96])
1. If 𝛼k → 1 and 𝜇k = o (∥F (wk)∥), then local superlinear convergence holds.
2. If 1 − 𝛼k = O (∥F (wk)∥) and 𝜇k = O(∥F (wk)∥2), then local quadratic convergence

holds.

12 / 17



Examples of Manifolds and Applications

1. Manifold of unit sphere, Sn−1 = {x ∈ Rn : ∥x∥2 = 1} .

Smallest eigenvalue of symmetric matrix A = min
x∈Sn−1

x⊤Ax. (34)

2. Stiefel manifold, St(p, n) = {X ∈ Rn×p | X⊤X = Ip}.

Spare PCA: min
X∈St(p,n)

− tr
(
X⊤A⊤AX

)
+ 𝜌∥X ∥1. (35)

3. Fixed rank manifold, Fr(m, n, r) = {X ∈ Rm×n : rank(X) = r}.

Low-rank matrix completion: min
X∈Fr(m,n,r )

∑︁
(i ,j ) ∈Ω

(Xij −Mij)2. (36)
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Riemannian gradient — a special vector field
A vector field F onM is an assignment of a tangent vector to each point in M.

union of all
tangent spaces

Riemannian gradient, grad f — a special vector field onM .
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An illustrative example by barrier approach

Consider only inequalities:

min
x∈M

f (x) s.t. g(x) ≥ 0. (RCO-I)

The logarithmic barrier function of (RCO-I) is

B(x; 𝜇) := f (x) − 𝜇

m∑︁
i=1

ln gi (x), and 𝜇 > 0. (37)

B(·, 𝜇) is defined on {x ∈ M : g(x) > 0}— an open subset ofM.

Algorithm (Basic Barrier Method (L. 2022))
Step 1. Compute an unconstrained minimizer x (𝜇k) of B(x, 𝜇k).
Step 2. xk+1 ← x (𝜇k); choose 𝜇k+1 < 𝜇k ; k ← k + 1; return to the Step 1.
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An illustrative example by barrier approach
Consider a simple problem (SP):

min
x∈S2

aT x s.t. x ≥ 0. (SP)

where a = [−1, 2, 1]T . We observe that x∗ = [1, 0, 0]T is a solution.

(a) (b) (c) (d)

Figure: For (SP), the contour plots of logarithmic barrier function B(·, 𝜇) with (a) 𝜇 = 10; (b)
𝜇 = 1; (c) 𝜇 = 0.5; (d) 𝜇 = 0.1.
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Riemannian gradient of B(x; 𝜇) is

gradB(x; 𝜇) = grad f (x) −
m∑︁

i=1

𝜇

gi (x)
grad gi (x).

An unconstrained minimizer of B(x, 𝜇) will be denoted by either x𝜇 or x (𝜇), then
1. gradB(x𝜇, 𝜇) = 0.
2. x (𝜇) is a smooth curve onM, and lim𝜇→0+ x (𝜇) = x∗.

Figure: For (SP), we plot the positive solutions (x1 (𝜇), x2 (𝜇), x3 (𝜇)) for different 𝜇→ 0.
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