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Riemannian manifold = manifold + Riemannian metric.

> A manifold M is a set that can be locally linearized.

TXM X 5
tangent space

|

EeT M

}

tangent vector

Figure: Manifold of unit sphere, M = {x € R" : ||[x]l2 = 1}.

» Riemannian metric is the family of inner products on each tangent space.
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Riemannian (Unconstrained) Optimization

Problem: Given f(x) : M — R, solve

min f(x) (RUO)

where M is a Riemannian manifold.

Figure: Iteration on manifold

Euclidean constrained problem = Unconstrained problem on manifold M.

1. Stiefel manifold, M = {X € R™P : XTX = [}.

2. Fixed rank manifold, M = {X € R™" : rank(X) =r}.

3. And more.
Riemannian version of classical methods: steepest decent, conjugate gradient, trust
region, Quasi-Newton (BFGS), proximal gradient, and more.

5/26



Riemannian Constrained Optimization

We consider

min  f(x)

xeM

st. h(x)=0,
g(x) >0,

where f : M - R,h: M —» R/ andg : M — R™.

Applications:
1. Nonnegative PCA:

min —tr (XTAATX) s.t. X' X =1,X > 0.

XeRMP

2. Subproblem of K-indicators model for Data Clustering;
3. Minimum Balanced Cut for Graph Bisection.

4. And more.

(RCO)

)
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Riemannian Constrained Optimization

We consider

mi/C( f(x)
s.t.  h(x) =0, (RCO)
9(x) >0,

where f : M - R,h: M —» R/ andg : M — R™.

Riemannian version of optimality conditions:
KKT conditions; second-order necessary and sufficient conditions [YZS14]; More
constraint qualifications [BH19]; Sequential optimality conditions [YS22].

Only 3 Riemannian algorithms exist! (2019~)

Augmented Lagrangian Method [LB19, YS22]; Exact Penalty Method [LB19]; Sequential
Quadratic Method [SO20, OOT20].

Why not Interior Point Method?
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Moving on a manifold — retractions

A retraction R yields a map Ry : TyM — M for any x.

TxM X Lf R

x+¢
[l + €l

N Ry(©) =

Figure: A retractionon M = {x e R" : ||x||> = 1}.

Euclidean Riemannian
Xk+1 = Xk + a0k | Xkt = Ry, (akék)
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Riemannian gradient — a special vector field

Riemannian gradient at x, grad f(x), is the direction (=tangent vector) of steepest ascent:
0 f(Fi’x(af))—f(X))
= :

grad f(x)

TeradfC] = . 2rgmax (Ilma_>

LeTM:£]=1

Figure: grad f(x) is perpendicular to the contour line of f on M = {x e R" : ||x]]2 = 1}.

gradf is a special vector field on M.
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Riemannian Newton method

Covariant derivative:
Riemannian connection

VF(x):T,M — T,M, linear operator.

general vector field

When F = grad f, Hess f(x) := V grad f(x) is called Riemannian Hessian at x.
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Riemannian Newton method

Covariant derivative:
Riemannian connection

|

VF(x):T,M — T,M, linear operator.

general vector field

When F = grad f, Hess f(x) := V grad f(x) is called Riemannian Hessian at x.

Riemannian Newton method: Consider
F(x)=0. 2

Solve a linear system on Ty, M 3 vk : VF (xx) vk = —F (Xk); then Xx1 = Ry, (k).

Standard Newton assumptions & Local Convergence Results:

(N1)There exists x* : F(x*) = 0.
(N2)VF (x*) is nonsingular operator.
(N3)VF is locally Lipschitz cont. at x™*.

} = superlinear[FFY 17] = quadratic[FS12]
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Our proposal: Riemannian Interior Point Method

We try to extend interior point methods to

min  f(x)
xeM
st.  h(x) =0, (RCO)

9(x) >0,
where f : M > R,h: M —> R/ andg: M — R™.

Lagrangian function is
L(x,y,2) =f(x) =yTh(x) —z7g(x). 3)
L(-,y,Zz) is areal function on M, so we have
> grad, L(x,y,2) = grad f(x) - X_, yigrad h;(x) - £T, z; grad g; (%),
» Hessy L(x,y,z) = Hessf(x) — Zﬁﬂ yi Hess h;j(x) — Z,’.’:’1 zi Hess gj(x).
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KKT Vector Field
Riemannian KKT conditions [LB19, Definition 2.3] for problem (RCO) are

grad, L(x,y,2) =0,
h(x) =0,
g(x) >0, “
Z9(x) =0,
z > 0.

14/26



KKT Vector Field
Riemannian KKT conditions [LB19, Definition 2.3] for problem (RCO) are

grad, L(x,y,z) =0,
h(x) =0,
g(x) >0, “
Zg(x) =0,
z>0.
With a slack variable s = g(x), the above can be written
grad, L(x,y,2)
h(x)

gx)—s
ZSe

F(w) = =0, and (s,2) > 0, (5)

where w := (x,y,8,2) € 4 = M xR xR™ xR™. Note that Tyy.# = TyM xR x R™ x R™.
Definition 2.1 (L. 2022)

F is a vector field on the product Riemannian manifold .#, named KKT vector field.
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Formulation of VF (w)
Lemma 2.2 (L. 2022)
The linear operator VF(w) : Ty .# — Ty.# is given by

Hessy L(w)Ax — Z§=1 Ay;grad hj(x) — 21, Az; grad gi(x)
(grad hj(x),Ax) ,fori=1,...,I

VE(w)Aw = (grad gi(x), Ax) — As;, fori=1,...,m ’ ©)
ZAs + SAz
where Aw = (Ax, Ay, As,Az) € IM xR/ x R™ x R™ = T,,.#, and Hess, £ (w) denotes the
Riemannian Hessian of Lagrangian £(-,y, 2).
Remark
In Euclidean case, it reduces to the matrix multiplication:
V2L(w) -Vh(x) -Vg(x) 0 Ax
, | vh)T 0o 0 0 Ay
Fr(w)hw = Vg(x)T 0 0 -l As )
0 0 V4 S Az
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Implication of Riemannian assumptions for problem (RCO)

(R1) Existence. There exists w* satisfying the KKT conditions.
(R2) Smoothness. The functions f, g, h are smooth on M.

(R3) Regularity. The set {grad h;(x*) :i=1,--- I} U{gradg;(x*) : i € A(x)} is linearly
independent in Ty M.

(R4) Strict Complementarity. (z*); > 0if g;(x*) =0 foralli=1,--- ,m.
(R5) Second-Order Sufficiency. (Hessy L(w*)&, &) > 0 for all nonzero & € Ty« M satisfying
(&,gradhj(x*))y=0fori=1,---,/,and (&, gradg;(x*)) =0fori € A(x*).

Proposition 2.3 (L. 2022)
If assumptions (R1)-(R5) hold, then standard Newton assumptions (N1)-(N3) hold for F(w) = 0.
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Riemannian Interior Point Method (RIPM) (L. 2022)

Step 0. Choose an initial wy with (sg,2g) > 0.
Step 1. Solve the following system for Awy = (Axk, Ayk, Ask, Azk):

VF (wk)Awy = —F (wx) + 11x8, (8

where & := é(w) := (04,0,0,e).
Step 2. Compute the step sizes ay such that (Sk+1,Zk+1) > 0.
Step 3. Update:
Wik+1 = R, (axAwg),i.e., )

(X415 Yia15 Ska15 Zke1) = (R (akAXk), Vi + @k Ak, Sk + axASk, Zk + agAzk).
Step 4. Shrink yx — 0. Return to step 1.

Theorem 2.4 Local Convergence of RIPM (L. 2022)

(1) If ux = o(||F (wi)|l), ax — 1, then {wy} locally, superlinearly converges to w*.

(2) If pux = O(||F (wi)||?). 1 — ax = O(||F (wk)||), then {wy} locally, quadratically converges to w*.
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An example of Riemannian assumptions (R1)-(R5) (without s = g(x))

min a'x st x=>0. (10)
xe M={xeR3:||x|l>=1}

a=[-1,2,1]",x* =[1,0,0]". Check KKT condition:
gradf(x*) = (I - x*x*Na=[0,2,1]". (11)
x > 0 implies gi(x) = e/ x fori = 1,2,3; A(x*) = {2,3}.

gradgy (x*) = (I =x"x"")ey = [0,0,0] .
gradgs(x*) = (I = x*x*T)ep = [0,1,0] .
gradgs(x*) = (I = x*x*")ez = [0,0,1]".

Regularity and strict complementarity hold at x* with z* = [0,2,1]7.

Hessy L(x*,z*)[u] = (z* —a)"™x* - u = u, (12)

thus, second order sufficiency holds.
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Simple Implement of RIPM

min a'x st x>=0. (13)
xe M={x€eR3:||x|l»=1} 10°
a=[-1,2,1]",x*=[1,0,0]",n=3.
- ]0—10,
Xo = M.rand(); Random point on manifold. %
So = ones(n, 1) « (0.5); 2o = ones(n, 1) = (0.5); 3
© 10—20
Fic = IF (Wl
ux = min(u,/1.5,0.5 = F,f);
vk =0.5% (1 +max(0,1 - Fy)); 10‘300 ;

A result as shown on the right.
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Simple Implement of RIPM

min a'x st x>0, (14)
xe M={xeR":||x]l2=1}
a=[-1;abs(rand(n-1,1))],
x* =[1;zeros(n-1,1)]",n = 1000.

Xo = M.rand(); Random point on manifold.
So = ones(n, 1) = (0.5); zg = ones(n, 1) = (0.5);

Fic:= IF (wi)ll;
pk = min(uk/1.5,0.5 % F2);
vk = 0.5 % (1 +max(0,1 - Fg));

A result as shown on the right.

dist(x, X )

10

15
Iter. k

20

25

30
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Future Work — Global algorithm of RIPM
The most classic global algorithm for Euclidean IPM is provided by [EBTTZ96].

> Merit function: A simple one is

e(w) = IF(w)]1%.

> Step size selection:
1. Centrality conditions: @ = min (a/, ).
2. Sufficient decreasing: Let ax = 6'@, where t is the smallest nonnegative integer such
that oy satisfies

@ (Rw, (axAwk)) — ¢ (wi) < axf (grad g, Awi) . (15)

Future works:
1. Global Convergence to be proved.

2. Other merit functions; linear search — trust region.
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Riemannian Interior Point Methods

END.
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Perturbed KKT Conditions and Damped Step Size
On the other hand, to keep (s, zx) = O:

> Introducing the perturbed complementary equation,
ZAs + SAz = -ZSe + ue, (16)

so that we are able to keep the iterates far from the boundary.

» Compute the damped step sizes ay, €.g., choose yx € (0, 1) and compute

(8K
(As);

(2k)i
(Azy);

| (Ask)i < 0} , Yk min {— | (Azk)i < 0}}

a7

QK = min {1,yk min {—
1

such that (Ski1,Zk+1) > 0.
The relation of ax and y,: [YY96]
1. If yx — 1, then ax — 1.
2. If1 =y = O (IIF (wi)ll), then 1 — ax = O (I|F (wi)l]).
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History of Euclidean Interior Point Method

Interior Point (IP) Method for NONLINEAR, NONCONVEX (1990-)

Early phase (1990-1995)

» Local algorithms with superlinear/ quadratic convergence

by El-Bakry, Tapia, Tsuchiya, and Zhang[EBTTZ96], Yamashita and Yabe [YY96].

» Global algorithms
by El-Bakry, Tapia, Tsuchiya, and Zhang[EBTTZ96]

Variations (1995-2010)
> Inexact Newton/ Quasi Newton IP Method

> Global strategy: many merit functions; linear search, or trust region, etc.
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Comparison with Constrained Optimization

1. All iterates on the manifold

2. Convergence properties of unconstrained optimization algorithms
3. No need to consider Lagrange multipliers or penalty functions

4. Exploit the structure of the constrained set

from https://www.math. fsu.edu/~whuang2/pdf/NanjingUniversity_2019-10-23.pdf
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Riemannian submanifold

The letter & always denotes a linear space.

Embedded submanifold = manifold + subset of &;
> Sphere S ' = {x e R" : ||x|| = 1} .

Riemannian submanifold = Embedded submanifold + inherited metric;

> Let
(U, vy =u'v (18)
forallu,v e T,S" ' ={y e R" : xTy = 0}.
> We have

TyM ={y'(0) e E|y: 1 — Mis smooth curve around 0, y(0) = x} (19)
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Riemannian gradient for Riemannian submanifold

Proposition
With
Proj, : E > TAIMC &

we denote the orthogonal projector from & to Ty M, then

grad f(x) = Proj,(Vf(x)).

» For f(x) = xTAx on "', we have Vf(x) = 2Ax, and
Proj, (u) = (I — xx")u.

Then, Riemannian gradient of f on $"~' is

grad f(x) = 2(I, — xx ") Ax.

(20)

2D

(22)

(23)
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Distance, metric space

Given a smooth curve segment ¢ : [a,b] — M, we define the length of ¢ as

b
@)= [ e Ol . 24)
a
A natural notion of distance on M, called the Riemannian distance:
dist(x,y) := irgfL(c) (10.2)

where the infimum is taken over all curve segments which connect x to y.
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Riemannian Optimization Libraries |

Other manifolds:
> Oblique manifold,
{X e R™" : diag(XTX) = In} .
(25)
» Generalized Stiefel manifold,
{X e R™P . XTBX = Ip} for some B > 0.
(26)
» Manifold of symmetric positive
semidefinite, fixed-rank with unit
diagonal,
{X eR™": X =XT > 0,rank(X) =k,
diag(X) =1}.

» And many more.

List of Riemannian methods (2002~):
> Steepest decent
> Newton

trust region

adaptive cubic overestimation

conjugate gradient

Quasi-Newton (BFGS)

ADMM

proximal gradient

stochastic algorithms

vV VvV vV vV VvV VY

and many more.
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Riemannian Optimization Libraries II

Monographs:
» Optimization algorithms on matrix manifolds [AMS09]
» An introduction to optimization on smooth manifolds [Bou20]
» Riemannian Optimization and Its Applications [Sat21]
Survey:
» A brief introduction to manifold optimization [HLW Y20]

» History of Riemannian Optimization
https://www.math. fsu.edu/~whuang2/pdf/NanjingUniversity_2019-10-23.pdf

Available solvers:
» Manopt (for Matlab, Python, Julia)

» McTorch (Riemannian optimization for deep learning)
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Euclidean KKT Conditions

Minimize f(x), x e€R”

subjectto  h(x) =0, g(x) > 0. @7
The Lagrangian function is
L(x,y,z) =f(x) =y h(x) —z"g(x). (28)
The KKT conditions in slack variable form is
ViL(x,y,2)
F(x,y,8,2) = 283 . |70 2z=0 (29)
ZSe
Letw = (x,Y, S, Z), then our goal just is
F(w)=0, (s,z)>0. (30)
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Euclidean Interior Point Method (EIP)

To solve F(w) = 0, but (s,z) > 0. Note that w = (x, y, s, 2).

Standard assumptions of (27):

(C1) Existence. There exists (x*, y*, z*) satisfying the KKT conditions.
(C2) Smoothness. The functions f, g, h are smooth.

(C3) Regularity. Linear independence constraint qualification at x™.
(C4) Strict Complementarity. z;' > 01if g; (x*) = 0.

(C5) Second-Order Sufficiency.

Standard assumptions of (27) imply Newton assumptions of F:
If conditions (C1)-(C5) hold, then the standard assumptions (A1)-(A3) hold for F(w) = 0.
[EBTTZ96]
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Euclidean Interior Point Method (EIP)

To solve F(w) = 0, but (s,z) > 0. Note that w = (x, y, s, 2).

Algorithm (Euclidean Interior Point Method)

Step 0. Choose an initial wg with (sg, zg) > 0.
Step 1. Solve the following system for Awy:

VF (wk) Awg = —F (wk) + 18, (€29)

where & = (0,0,0,e7)".
Step 2. Compute the step sizes ay such that (Sk41,Zk+1) > 0.
Step 3. Update:
Wki1 = Wk + a'kAWk. (32)

Step 4. Shrink the parameter yx > 0. Return to step 1.
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Euclidean Interior Point Method (EIP)

Interior Point Method as Perturbed damped Newton iterates:
Wit = Wi — aVF (i)™ (F (Wi) =), k=0,1,---. (33)

Theorem (Local Convergence Theory of EIP [EBTTZ96])

1. If ax — 1 and ux = o (||F (wk)||), then local superlinear convergence holds.

2. If1 —ax = O (|IF (wi)|)) and px = O(JIF (Wi)|I?), then local quadratic convergence
holds.
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Examples of Manifolds and Applications

1. Manifold of unit sphere, $"~" = {x e R" : ||x|l2 = 1}.

Smallest eigenvalue of symmetric matrix A = min x'AXx.

xesn-1
2. Stiefel manifold, St(p,n) = {X € R™P | XTX = ,}.

Spare PCA: _ min —tr (XTATAX) + p||X]|1.
XeSt(p,n)

3. Fixed rank manifold, Fr(m, n,r) = {X € R™" : rank(X) =r}.

Low-rank matrix completion: min Z (Xjj — M,-/-)Z.

XeFr(m,n,r) (ineQ

(34)

(33)

(36)
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Riemannian gradient — a special vector field

A vector field F on M is an assignment of a tangent vector to each point in M.

F(x) T
1 F(x)
T ol
F:M—TM = union of all rF-R2 - R2

tangent spaces

Riemannian gradient, grad f — a special vector field on M.
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An illustrative example by barrier approach

Consider only inequalities:

min  f(x) st g(x)>0. (RCO-I)

xeM

The logarithmic barrier function of (RCO-I) is

B(x; u) := f(x) — Z Ing;i(x), and u > O. (37)
i=1

B(-, p) is defined on {x € M : g(x) > 0} — an open subset of M.
Algorithm (Basic Barrier Method (L. 2022))

Step 1. Compute an unconstrained minimizer X (uy) of B(X, pk).
Step 2. Xk+1 < X(uk); choose px+1 < pk; kK < k +1; return to the Step 1.
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An illustrative example by barrier approach
Consider a simple problem (SP):

min a'x st x>0.
xeS2

where a = [-1,2,1]7. We observe that x* = [1,0, 0] is a solution.

(a) (b) (© ()

Figure: For (SP), the contour plots of logarithmic barrier function B(-, i) with (a) u = 10; (b)
=1 p=05(d)pu=0.1.

(SP)



Riemannian gradient of B(x; u) is

m

grad B(x; u) = grad f(x) — Z g-l?x)
i=1 7!

An unconstrained minimizer of B(x, ) will be denoted by either x,, or x(u), then
1. grad B(x,, u) = 0.
2. x(u) is a smooth curve on M, and lim,_,o, x(u) = x*.

grad gi(x).

Figure: For (SP), we plot the positive solutions (x1 (), x2(u), x3(u)) for different u — 0.
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