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Riemannian manifold

A Riemannian manifold M is a smooth (locally linearized) set equipped with a smoothly-varying
inner product ⟨·, ·⟩x on the tangent spaces.

Zhijian Lai, Akiko Yoshise (UT) Riemannian Interior Point Methods September 8, 2022 4 / 38



Riemannian Optimization

Given f : M → R, solve

min
x∈M

f (x) (1)

where M is a Riemannian manifold.

Unconstrained problem on manifold.
1 Stiefel manifold, St(n, k) = {X ∈ Rn×k : X⊤X = I}.
2 Fixed rank manifold, Rm×n

r = {X ∈ Rm×n : rank(X) = r}.
Riemannian version of classical methods (2002-)
steepest decent, conjugate gradient, trust region, BFGS, proximal gradient, ADMM and more.
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Examples of Applications

1 Stiefel manifold, St(n, k) = {X ∈ Rn×k : X⊤X = I}.

PCA: min
X∈St(n,k)

− trace(X⊤A⊤AX). (2)

2 Fixed rank manifold, Rm×n
r = {X ∈ Rm×n : rank(X) = r}.

Low-rank matrix completion: min
X∈Rm×n

r

∑
(i,j)∈Ω

(Xij −Mij)
2. (3)

3 And many more.
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More Requirements in Applications

1 Stiefel manifold, St(n, k) = {X ∈ Rn×k : X⊤X = I}.

Nonnegative PCA: min
X∈St(n,k)

− trace(X⊤A⊤AX) s.t. X ≥ 0. (4)

2 Fixed rank manifold, Rm×n
r = {X ∈ Rm×n : rank(X) = r}.

Nonnegative Low-rank matrix completion: min
X∈Rm×n

r

∑
(i,j)∈Ω

(Xij −Mij)
2 s.t. X ≥ 0. (5)

3 And many more.
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New Topic — Riemannian Constrained Optimization

We consider
min
x∈M

f (x)

s.t. h(x) = 0, and g(x) ≤ 0,
(RCOP)

where f : M→ R, h : M→ Rl, and g : M→ Rm.

Riemannian version of optimality conditions:
KKT conditions; second-order necessary and sufficient conditions [YZS14]; More constraint
qualifications [BH19]; Sequential optimality conditions [YS22].

Very little research (2019-)
Augmented Lagrangian Method [LB19, YS22]; Exact Penalty Method [LB19]; Sequential
Quadratic Method [SO20, OOT20].
How about Interior Point Method?
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Retraction — moving on a manifold

A retraction R yields a map Rx : TxM → M for any x.

Euclidean Riemannian
xk+1 = xk + αkξk xk+1 = Rxk(αkξk)

Zhijian Lai, Akiko Yoshise (UT) Riemannian Interior Point Methods September 8, 2022 9 / 38



Riemannian gradient — a special vector field

Riemannian gradient at x, grad f (x), is the direction of steepest ascent in tangent space:

grad f (x)
∥ grad f (x)∥

= argmax
ξ∈TxM:∥ξ∥=1

(
lim
α→0

f (Rx(αξ))− f (x)
α

)
.

Note that x 7→ grad f (x) is a special vector field on M.
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Riemannian Hessian — linear operators on tangent spaces

Covariant derivative of a vector field F:

Riemannian connection

general vector field

Specially, if F = grad f , then Hess f (x) := ∇ grad f (x) is called Riemannian Hessian.

Riemannian Newton method: To find x∗ ∈ M such that F(x∗) = 0x∗ .
Solve a linear system on Txk M ∋ vk :

∇F(xk)vk = −F(xk), (6)

then xk+1 = Rxk(vk).
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Formulation of Riemannian Interior Point Method (RIPM)

We consider
min
x∈M

f (x)

s.t. h(x) = 0, and g(x) ≤ 0,
(RCOP)

where f : M→ R, h : M→ Rl, and g : M→ Rm.

Lagrangian function is
L(x, y, z) := f (x) + yTh(x) + zTg(x). (7)

x 7→ L(x, y, z) is a real-valued function on M, so we have

• gradx L(x, y, z) = grad f (x) +
∑l

i=1 yi grad hi(x) +
∑m

i=1 zi grad gi(x),

• Hessx L(x, y, z) = Hess f (x) +
∑l

i=1 yi Hess hi(x) +
∑m

i=1 zi Hess gi(x).
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KKT Vector Field: F

Riemannian KKT conditions [LB19] are 

gradx L(x, y, z) = 0x,

h(x) = 0,
g(x) ≤ 0,

Zg(x) = 0,
z ≥ 0.

(8)

Definition (KKT Vector Field, L.2022)
With s := −g(x), the above becomes

F(w) :=


gradx L(x, y, z)
h(x)
g(x) + s
ZSe

 = 0w :=


0x

0
0
0

 , and (z, s) ≥ 0, (9)

where w := (x, y, z, s) ∈ M := M× Rl × Rm × Rm. Note that TwM ≡ TxM× Rl × Rm × Rm.
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Formulation of∇F(w)
For each x ∈M, we define

Hx : Rl → TxM, Hxv :=

l∑
i=1

vi grad hi(x). (10)

Hence, the adjoint operator of H is

H∗
x : TxM→ Rl, H∗

x ξ =
[
⟨grad h1(x), ξ⟩x , · · · , ⟨grad hl(x), ξ⟩x

]T
. (11)

Lemma (L. 2022)
The linear operator ∇F(w) : TwM → TwM is given by

∇F(w)∆w =


Hessx L(w)∆x + Hx∆y + Gx∆z
H∗

x ∆x
G∗

x∆x +∆s
Z∆s + S∆z

 . (12)

where ∆w = (∆x,∆y,∆s,∆z) ∈ TxM× Rl × Rm × Rm ≡ TwM .
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Prototype — Riemannian Interior Point Method (RIPM)

Step 0. Initial w0 with (z0, s0) > 0.
Step 1. Solve

∇F(wk)∆wk = −F(wk) + ρkê, (13)

where ê := (0x, 0, 0, e).
Step 2. Compute the step sizes αk such that (zk+1, sk+1) > 0.
Step 3. Update:

wk+1 = R̄wk(αk∆wk). (14)

Step 4. Shrink ρk → 0. Return to 1.

Theorem (Local Convergence, L. 2022)
Under some standard assumptions.

(1) If ρk = o(∥F(wk)∥), αk → 1, then {wk} locally, superlinearly converges to w∗.

(2) If ρk = O(∥F(wk)∥2), 1− αk = O(∥F(wk)∥), then {wk} locally, quadratically converges to w∗.

Zhijian Lai, Akiko Yoshise (UT) Riemannian Interior Point Methods September 8, 2022 16 / 38



Sketch — Global Line Search of RIPM

The most classic global algorithm for Euclidean IPM is [EBTTZ96]
• Merit function:

φ(w) := ∥F(w)∥2 ⇒ gradφ(w) = 2∇F(w)∗F(w). (15)

Goal:
Keep (zk, sk) > 0 and let ∥F(wk)∥2 → 0. (16)

• Step size selection: Given ∆w, we obtain αk by
1 Two Centrality conditions.
2 Sufficient decreasing:

Choose θ ∈ (0, 1), and β ∈ (0, 1/2]. Let αk = θtᾱk, where t is the smallest nonnegative integer
such that αk satisfies

φ(R̄wk(αk∆wk))− φ(wk) ≤ αkβ⟨gradφk,∆wk⟩. (17)
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Sufficient decreasing

We denote a real to real function α 7→ φ(α) by

φ(α) := φ(R̄w(α∆w)), (18)

then
φ′(0) = Dφ(R̄w(0)) [DR̄w(0)[∆w]] = Dφ(w)[∆w] = ⟨gradφ(w),∆w⟩w. (19)

Armijo condition
Hence, Armijo condition:

φ(R̄wk(αk∆wk))− φ(wk) ≤ αkβ⟨gradφk,∆wk⟩ (20)

is to say
φk(αk)− φk(0) ≤ αkβφ

′
k(0). (21)
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Descent Direction

If direction ∆w is given as the solution of

∇F(w)∆w = −F(w) + σµê,

then
φ′(0) = ⟨gradφ(w),∆w⟩ = 2(−∥F(w)∥2 + σµzTs). (22)

Lemma (L. 2022)

1 ∆wk is a descent direction, i.e., ⟨gradφ(wk),∆wk⟩ < 0, for merit function φ at wk if

µk := sT
k zk/m, σk ∈ (0, 1).

2 if Armijo condition is satisfied, then the sequence {φk} is monotonically decreasing.
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Global Convergence Theorem
Given ϵ ≥ 0, let us define the set

Ω(ϵ) :=
{

w ∈M : ϵ ≤ φ(w) ≤ φ0,min(ZSe)/(zTs/m) ≥ τ1/2, zTs/∥F(w)∥ ≥ τ2/2
}
.

Assumptions

1 in the set Ω(0), the functions f (x), h(x), g(x) are smooth; the set {grad hi(x)}l
i=1 is linearly

independent in TxM for all x; and w 7→ ∇F(w) is Lipschitz continuous;

2 the sequences {xk} and {zk} are bounded;

3 in any compact subset of Ω(0) where s is bounded away from zero, the operator∇F(w) is nonsingular.

Theorem (Global Convergence, L. 2022)
Let {σk} ⊂ (0, 1) bounded away from zero and one. If Assumptions 1∼3 hold, then {F(wk)} converges to
zero; and for any limit point w∗ = (x∗, y∗, z∗, s∗) of {wk} , x∗ is a Riemannian KKT point of problem
(RCOP).
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Dominant cost

Dominant cost is to solve
∇F(w)∆w = −F(w) + ρê, (23)

where

F(w) =


Fx := gradx L(x, y, z)
Fy := h(x)
Fz := g(x) + s
Fs := ZSe

 , ê :=


0x
0
0
e

 . (24)

Thus, we need to solve the following linear system on TxM× Rl × Rm × Rm:
Hessx L(w)∆x + Hx∆y + Gx∆z
H∗

x∆x
G∗

x∆x +∆s
Z∆s + S∆z

 =


−Fx
−Fy
−Fz
−Fs + ρe

 . (25)
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Condensed form of perturbed Newton Equation

By two substitutions:

∆s = Z−1 (ρe− Fs − S∆z) , (26)
∆z = S−1 [Z (G∗

x∆x + Fz) + ρe− Fs] , (27)

it suffices to focus on condensed form on TxM× Rl:

T (∆x,∆y) :=
(
Aw∆x + Hx∆y
H∗

x∆x

)
=

(
c
q

)
, (28)

where
Aw := Hessx L(w) + GxS−1ZG∗

x ,

c := −Fx − GxS−1 (ZFz + ρe− Fs) ,

q := −Fy.

(29)
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Condensed form of perturbed Newton Equation

T (∆x,∆y) :=
(
Aw∆x + Hx∆y
H∗

x∆x

)
=

(
c
q

)
. (30)

Lemma (L. 2022)
Equivalence:

1 If (z, s) > 0 holds, then∇F(w) is nonsingular if and only if T is nonsingular.
Symmetric linear system:

1 Aw := Hessx L(w) + GxS−1ZG∗
x is self-adjoint (i.e., Aw = A∗

w) on TxM.
2 T is self-adjoint (i.e., T = T ∗) on product space TxM× Rl.

If only the inequality constraint is present, then

T (∆x) := Aw∆x = c. (31)
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General solver — RIPM.m

Problem on Matrix Submanifold
We consider

min
X∈M

f (X)

s.t. h(X) = Op×q, and g(X) ≤ On×k,
(RCOP)

where M ⊆ Rr×s is a submanifold; f : M→ R, h : M→ Rp×q, and g : M→ Rn×k.

We established a general RIPM solver based on Manopt1.

RIPM.m (L. 2022)
% function [x, cost, info, options] = RIPM(problem)

% function [x, cost, info, options] = RIPM(problem, x0)

% function [x, cost, info, options] = RIPM(problem, x0, options)

% function [x, cost, info, options] = RIPM(problem, [], options)

1Manopt, a matlab toolbox for optimization on manifolds.
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Problem I — Computing projection onto St(n, k)+

Example (Problem I)
Given C ∈ Rn×k, we consider

min
X∈St(n,k)+

∥X − C∥2
F, (Model St)

which can be equivalently [JMWC22, Lemma 2.1] reformulated into

min
X∈OB(n,k)+

∥X − C∥2
F s.t. ∥XV∥F = 1. (Model OB)

Here,
• Stiefel manifold, St(n, k) := {X ∈ Rn×k : X⊤X = I}.
• Oblique manifold, OB(n, k) := {X ∈ Rn×k : all columns have unit norm}.
• V is a constant matrix satisfying ∥V∥F = 1 and VV⊤ > 0 (irrelevant to X,C).
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Problem I — Computing projection onto St(n, k)+

Example (Problem I)
Given C ∈ Rn×k, we consider

min
X∈St(n,k)+

∥X − C∥2
F, (Model St)

which can be equivalently [JMWC22, Lemma 2.1] reformulated into

min
X∈OB(n,k)+

∥X − C∥2
F s.t. ∥XV∥F = 1. (Model OB)

Experiment setting:
• [JMWC22, Proposition 1] By choosing X∗ ∈ St(n, k)+, we can construct a special C such that

the solution is unique and equals to X∗.
• Define gap := ∥Xk−C∥F

∥X∗−C∥F
− 1. We test both (Model St) and (Model OB).

Zhijian Lai, Akiko Yoshise (UT) Riemannian Interior Point Methods September 8, 2022 27 / 38



Problem I — Computing projection onto St(n, k)+

Figure: For n = 10, k = 5.

Zhijian Lai, Akiko Yoshise (UT) Riemannian Interior Point Methods September 8, 2022 28 / 38



Problem I — Computing projection onto St(n, k)+
Problem I — Computing projection onto St(n, k)+

Table: For each (n, k), we test 5 instances. “gap” and “iter” are average values.

Model_St Model_OB
n k = 0.1n gap iter gap iter
30 3 5.03E-09 19 7.28E-09 23
50 5 3.38E-09 19 7.30E-09 22
70 7 4.19E-09 24 6.04E-09 21
90 9 6.98E-09 27 3.09E-09 20
110 11 8.71E-09 27 2.32E-09 22
130 13 8.18E-09 25 6.78E-09 21
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Problem II — nonnegative low rank matrix approximation

Example (Problem II)
[SN20] proposed the nonnegative low-rank matrix approximation:

min
X∈Rm×n

r

∥A− X∥2
F s.t. X ≥ 0, (NLRM)

where Rm×n
r = {X ∈ Rm×n : rank(X) = r} .

Experiment setting:
• B = rand(m, r); C = rand(r, n); A = B*C; % original data
Gaussian Noise = sigma*randn(m,n); % zero mean and standard deviation σ
A test = A+Gaussian Noise;

• Define relative residual def
= ∥A−Xk∥F

∥A∥F
.
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Problem II — nonnegative low rank matrix approximation

Figure: For m = 10, n = 8, r = 3 and σ = 0.001. It is as good as the results in [SN20].
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Future Work — Practical Algorithm.

If no equality h(x) = 0, we only need to solve

T ∆x = c, (32)

where T is a self-adjoint operator on TxM (say, dimTxM =: d).
1 The basic approach to obtain d × d symmetric matrix Tmat (Tools in Manopt).
2 The features of the manifold itself should be utilized. [AS17]

3 Krylov Subspace Methods (Iterative Solver) for symmetric system T ′′∆x′′ = c′′.
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The End
Questions? Comments?



Appendix.
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Riemannian Newton method

Riemannian Newton method: Consider

F(x) = 0. (33)

Solve a linear system on Txk M ∋ vk :

∇F(xk)vk = −F(xk),

then xk+1 = Rxk(vk).

Standard Newton assumptions & Local Convergence Results:

(N1)There exists x∗ : F(x∗) = 0.
(N2)∇F(x∗) is nonsingular operator.

}
⇒ superlinear[FFY17]

(N3)∇F is locally Lipschitz cont. at x∗.

⇒ quadratic[FS12].
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Riemannian Interior Point Methods
Superlinear and Quadratic Convergence

1 Existence. There exists w∗ satisfying the KKT conditions.
2 Smoothness. The functions f , g, h are smooth onM.
3 Regularity. The set {grad hi(x∗) : i = 1, · · · , l} ∪ {grad gi(x∗) : i ∈ A(x)} is linearly

independent in Tx∗M.
4 Strict Complementarity. (z∗)i > 0 if gi(x∗) = 0 for all i = 1, · · · ,m.
5 Second-Order Sufficiency. ⟨Hessx L(w∗)ξ, ξ⟩ > 0 for all nonzero ξ ∈ Tx∗M satisfying ⟨ξ, grad hi(x∗)⟩ = 0 for

i = 1, · · · , l, and ⟨ξ, grad gi(x∗)⟩ = 0 for i ∈ A(x∗).

Proposition (L. 2022)

If assumptions (1)-(5) hold, then standard Newton assumptions (N1)-(N3) hold for KKT vector
field F.
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Riemannian Interior Point Methods
Superlinear and Quadratic Convergence

On the other hand, to keep (sk, zk) ≥ 0:
• Introducing the perturbed complementary equation,

Z∆s + S∆z = −ZSe + µe, (34)

so that we are able to keep the iterates far from the boundary.
• Compute the damped step sizes αk, e.g., choose γk ∈ (0, 1) and compute

αk := min

{
1, γk min

i

{
− (sk)i

(∆sk)i
| (∆sk)i < 0

}
, γk min

i

{
− (zk)i

(∆zk)i
| (∆zk)i < 0

}}
, (35)

such that (sk+1, zk+1) > 0.
The relation of αk and γk: [YY96]

1 If γk → 1, then αk → 1.
2 If 1− γk = O (∥F (wk)∥), then 1− αk = O (∥F (wk)∥).
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History of Euclidean Interior Point Method

Interior Point (IP) Method for NONLINEAR, NONCONVEX (1990-)

Early phase (1990-1995)
• Local algorithms with superlinear/ quadratic convergence

by El-Bakry, Tapia, Tsuchiya, and Zhang[EBTTZ96], Yamashita and Yabe [YY96].
• Global algorithms

by El-Bakry, Tapia, Tsuchiya, and Zhang[EBTTZ96]
Variations (1995-2010)
• Inexact Newton/ Quasi Newton IP Method
• Global strategy: many merit functions; linear search, or trust region, etc.
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Update by Retraction

At a current point w = (x, y, z, s) and direction ∆w = (∆x,∆y,∆z,∆s), the next iterate is
calculated along a curve on M , i.e.,

w(α) := R̄w(α∆w), (36)

for some step length α > 0.

By introducing
w(α) = (x(α), y(α), z(α), s(α)), (37)

we have
x(α) = Rx(α∆x),

and y(α) = y + α∆y, z(α) = z + α∆z, s(α) = s + α∆s.
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Centrality conditions

Given w0 = (x0, y0, z0, s0) with (z0, s0) > 0, let τ1 := min(Z0S0e)
zT

0 s0/m , τ2 :=
zT

0 s0
∥F(w0)∥ .

Let γ ∈ (0, 1) be a constant. Define centrality functions:

f I(α) := min(Z(α)S(α)e)− γτ1
z(α)Ts(α)

m
, (38)

f II(α) := z(α)Ts(α)− γτ2∥F(w(α))∥. (39)

For i = I, II, let
αi := max

α∈(0,1]

{
α : f i(t) ≥ 0, for all t ∈ (0, α]

}
. (40)

• Widely used?
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Global RIP Algorithm
1 Choose σk ∈ (0, 1); for wk, compute the perturbed Newton direction ∆wk with

µk = zT
k sk/m (41)

and by
∇F(w)∆w = −F(w) + σkµkê. (42)

2 Step length selection.
1 Centrality conditions: Choose 1/2 < γk < γk−1 < 1; compute αi, i = I, II, from (40); and let

ᾱk = min(αI , αII). (43)

2 Sufficient decreasing: Choose θ ∈ (0, 1), and β ∈ (0, 1/2]. Let αk = θtᾱk, where t is the
smallest nonnegative integer such that αk satisfies

φ(R̄wk(αk∆wk))− φ(wk) ≤ αkβ⟨gradφk,∆wk⟩. (44)

3 Let wk+1 = R̄wk(αk∆wk) and k← k + 1.
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Auxiliary Results I: Boundedness of the sequences

If ϵ > 0 and wk ∈ Ω(ϵ) for all k, then

Lemma (Boundedness of the sequences I, L. 2022)

1 the sequence {zT
k sk} and {(zk)i(sk)i} , i = 1, 2, . . . ,m, are all bounded above and below away

from zero.
2 the sequence {zk} and {sk} are bounded above and component-wise bounded away from zero;
3 the sequence {wk} is bounded;
4 the sequence {∥∇F(wk)

−1∥} is bounded;
5 the sequence {∆wk} is bounded.

Lemma (Boundedness of the sequences II, L. 2022)

If {σk} is bounded away from zero. Then, {ᾱk} is bounded away from zero.
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Auxiliary Results II: Continuity of Some Special Scalar Fields

Lemma (L. 2022)

Let x ∈M and Ax be a linear operator on TxM. Then, the values ∥Âx∥2 and ∥Âx∥F are invariant
under a change of orthonormal basis; moreover,

∥Ax∥ = ∥Âx∥2 ≤ ∥Âx∥F. (45)

Lemma (L. 2022)

x 7→ ∥ ̂Hess f (x)∥ (46)

is a continuous scalar field on M. It is true for all hi, gi.

x 7→ ∥Hx∥ and x 7→ ∥Gx∥ (47)

are continuous scalar field on M.
Zhijian Lai, Akiko Yoshise (UT) Riemannian Interior Point Methods September 8, 2022 10 / 17



Global Convergence Theorem

This theorem, now, is only proved under exponential map exp.

Lemma (Gauss [DCFF92, Lemma 3.5])

Let p ∈M and let v ∈ TpM such that expp(v) is well defined. Let w ∈ TpM≈ Tv (TpM). Then〈
D expp(v)[v],D expp(v)[w]

〉
= ⟨v,w⟩. (48)
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Manopt, a matlab toolbox for optimization on manifolds

• Manifolds in Manopt are represented as structures and are obtained by calling a factory.

M = euclideanfactory(m,n);

M = symmetricfactory(n);

M = skewsymmetricfactory(n);

M = spherefactory(n);

M = obliquefactory(n,m);

M = stiefelfactory(n,k);

M = fixedrankembeddedfactory(m,n);
...
• M = Ma x Mb x Mc...
M = productmanifold(Ma,Mb,Mc...);
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Manopt — Manifold structure

• A manifold structure has a number of fields, most of which contain function handles.

Table: Part I — Basic

Field usage Functionality
M.name() Returns the name of M.
M.rand() Computes a random point on M.
M.dist(x,y) Computes the Riemannian distance.
M.proj(x,u) Computes Projx u.
M.exp(x,u,t) Computes exponential map, Expx(tu).
M.retr(x,u,t) Computes retraction, Retrx(tu).
M.egrad2rgrad(x,egrad) Euclidean to Riemannian gradient.
M.ehess2rhess(x,egrad,ehess,u) Euclidean to Riemannian Hessian.
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Manopt — Manifold structure

• A manifold structure has a number of fields, most of which contain function handles.

Table: Part II — Tangent space

Field usage Functionality
M.dim() Returns the dimension of M.
M.zerovec(x) Returns the zero tangent vector at x.
M.randvec(x) Computes a random tangent vector at x.

M.lincomb(x,a1,u1,a2,u2)
Computes the linear combination a1u1 + a2u2,
where a1, a2 scalars and u1, u2 tangent vectors at x.

M.inner(x,u,v) Computes the Riemannian metric ⟨u, v⟩x.
M.norm(x,u) Computes the Riemannian norm ∥u∥x =

√
⟨u, u⟩x.
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Manopt — Other tools

• A number of generically useful tools in Manopt.

Table: Linear operator

Function usage Functionality

Bx = tangentorthobasis(M, x)
Returns an orthonormal basis of
tangent space at x.

matT = operator2matrix(M,x,x,T,Bx,Bx)
Forms a matrix representing a linear
operator between two tangent spaces.

c vec = tangent2vec(M,x,Bx,c)
Expands tangent vector c by
an orthonormal basis Bx.

vec = lincomb(M,x,vecs,coeffs)
Computes a linear combination of vec =
coeffs(1)*vecs1 + ... + coeffs(n)*vecsn
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General solver — RIPM.m

RIPM.m

% function [x, cost, info, options] = RIPM(problem)

% function [x, cost, info, options] = RIPM(problem, x0)

% function [x, cost, info, options] = RIPM(problem, x0, options)

% function [x, cost, info, options] = RIPM(problem, [], options)

This function calls:
• RIPM getNTdirection.m % Solve NT equation.
• RIPM linesearch.m
• RIPM stoppingcriterion.m % Allow the user defined stop criterion.
• RIPM applyStatsfun.m % Allow the user defined stats function.
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Riemannian IPM vs. Euclidean IPM

1 Euclidean IPM is a special case when M is Euclidean space.
2 If the equality constraints are considered as M, dim T can become smaller.

Manifold M h(X) codomain of h dim T
Rn×n XT − X = O Skew(n) n2 + n(n− 1)/2
Sym(n) - - n(n + 1)/2
Rn ∥x∥2 − 1 = 0 R n + 1
sphere(n) - - n− 1
Rn×k XTX − Ik = O Sym(k) nk + k(k + 1)/2
stiefel(n,k) - - nk − k(k + 1)/2
Rm×n rank(X) = r is not continuous - -
fixedrank(m,n,r) - - r(m + n− r)

3 Not all manifolds are equivalent to the smooth equality constraints.
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