Riemannian Interior Point Methods On the Global Convergence

*Zhijian Lai Akiko Yoshise

University of Tsukuba s2130117@s.tsukuba.ac.jp

JSIAM Annual Meeting 2022 September 8, 2022

Presentation Overview

1 Introduction

Background Preliminaries

Our proposal: Riemannian Interior Point Methods Formulation of RIPM Global Algorithms Implements

3 Numerical experiments

Problem I Problem II

4 Future work

Riemannian Interior Point Methods

Introduction Background

Preliminaries

Our proposal: Riemannian Interior Point Methods Formulation of RIPM Global Algorithms Implements

3 Numerical experiments

Problem I Problem II

4 Future work

Riemannian manifold

A **Riemannian manifold** *M* is a smooth (locally linearized) set equipped with a smoothly-varying inner product $\langle \cdot, \cdot \rangle_x$ on the tangent spaces.

Riemannian Optimization

Given $f: M \to \mathbb{R}$, solve $\min_{x \in M} f(x) \tag{1}$ where *M* is a Riemannian manifold.

Unconstrained problem on manifold.

- **1** Stiefel manifold, $St(n,k) = \{X \in \mathbb{R}^{n \times k} : X^{\top}X = I\}.$
- **2** Fixed rank manifold, $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r\}.$

Riemannian version of classical methods (2002-)

steepest decent, conjugate gradient, trust region, BFGS, proximal gradient, ADMM and more.

Examples of Applications

• Stiefel manifold, $St(n,k) = \{X \in \mathbb{R}^{n \times k} : X^{\top}X = I\}.$

PCA:
$$\min_{X \in \operatorname{St}(n,k)} - \operatorname{trace}(X^{\top}A^{\top}AX).$$
 (2)

2 Fixed rank manifold, $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r\}.$

Low-rank matrix completion:
$$\min_{X \in \mathbb{R}_r^{m \times n}} \sum_{(i,j) \in \Omega} (X_{ij} - M_{ij})^2.$$
 (3)

3 And many more.

1 Stiefel manifold, $St(n,k) = \{X \in \mathbb{R}^{n \times k} : X^{\top}X = I\}.$

Nonnegative PCA:
$$\min_{X \in \operatorname{St}(n,k)} - \operatorname{trace}(X^{\top}A^{\top}AX)$$
 s.t. $X \ge 0.$ (4)

2 Fixed rank manifold, $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r\}.$

Nonnegative Low-rank matrix completion: $\min_{X \in \mathbb{R}_r^{m \times n}} \sum_{(i,j) \in \Omega} (X_{ij} - M_{ij})^2$ s.t. $X \ge 0.$ (5)

3 And many more.

New Topic — Riemannian Constrained Optimization

We consider

$$\begin{array}{ll} \min_{x\in\mathbb{M}} & f(x)\\ \text{s.t.} & h(x)=0, \text{ and } g(x)\leq 0, \end{array}$$

where $f : \mathbb{M} \to \mathbb{R}, h : \mathbb{M} \to \mathbb{R}^l$, and $g : \mathbb{M} \to \mathbb{R}^m$.

Riemannian version of optimality conditions:

KKT conditions; second-order necessary and sufficient conditions [YZS14]; More constraint qualifications [BH19]; Sequential optimality conditions [YS22].

Very little research (2019-)

Augmented Lagrangian Method [LB19, YS22]; Exact Penalty Method [LB19]; Sequential Quadratic Method [SO20, OOT20].

How about Interior Point Method?

(RCOF

Retraction — moving on a manifold

A **retraction** *R* yields a map $R_x : T_x M \to M$ for any *x*.

Euclidean	Riemannian			
$x_{k+1} = x_k + \alpha_k \xi_k$	$x_{k+1} = R_{x_k}(\alpha_k \xi_k)$			

Riemannian gradient — a special vector field

Riemannian gradient at x, $\operatorname{grad} f(x)$, is the direction of steepest ascent in tangent space:

$$\frac{\operatorname{grad} f(x)}{\|\operatorname{grad} f(x)\|} = \underset{\xi \in T_x M: \|\xi\|=1}{\operatorname{arg\,max}} \left(\lim_{\alpha \to 0} \frac{f\left(R_x(\alpha\xi)\right) - f(x)}{\alpha} \right).$$

Note that $x \mapsto \operatorname{grad} f(x)$ is a special vector field on *M*.

Zhijian Lai, Akiko Yoshise (UT)

Riemannian Hessian — linear operators on tangent spaces

Covariant derivative of a vector field *F*:

Specially, if $F = \operatorname{grad} f$, then $\operatorname{Hess} f(x) := \nabla \operatorname{grad} f(x)$ is called **Riemannian Hessian**.

Riemannian Hessian — linear operators on tangent spaces

Covariant derivative of a vector field *F*:

Specially, if $F = \operatorname{grad} f$, then $\operatorname{Hess} f(x) := \nabla \operatorname{grad} f(x)$ is called **Riemannian Hessian**.

Riemannian Newton method: To find $x^* \in M$ such that $F(x^*) = 0_{x^*}$. Solve a linear system on $T_{x_k}M \ni v_k$:

$$\nabla F(x_k)v_k = -F(x_k),\tag{6}$$

then $x_{k+1} = R_{x_k}(v_k)$.

Riemannian Interior Point Methods

Introduction

Background Preliminaries

Our proposal: Riemannian Interior Point Methods Formulation of RIPM Global Algorithms Implements

③ Numerical experiments

Problem I Problem II

4 Future work

Formulation of Riemannian Interior Point Method (RIPM)

We consider

$$\begin{array}{ll} \min_{x\in\mathbb{M}} & f(x)\\ \text{s.t.} & h(x)=0, \text{ and } g(x)\leq 0, \end{array}$$

where $f : \mathbb{M} \to \mathbb{R}, h : \mathbb{M} \to \mathbb{R}^l$, and $g : \mathbb{M} \to \mathbb{R}^m$.

Lagrangian function is

$$\mathcal{L}(x, y, z) := f(x) + y^T h(x) + z^T g(x).$$
(7)

 $x \mapsto \mathcal{L}(x, y, z)$ is a real-valued function on \mathbb{M} , so we have

- $\operatorname{grad}_{x} \mathcal{L}(x, y, z) = \operatorname{grad} f(x) + \sum_{i=1}^{l} y_{i} \operatorname{grad} h_{i}(x) + \sum_{i=1}^{m} z_{i} \operatorname{grad} g_{i}(x),$
- Hess_x $\mathcal{L}(x, y, z)$ = Hess $f(x) + \sum_{i=1}^{l} y_i$ Hess $h_i(x) + \sum_{i=1}^{m} z_i$ Hess $g_i(x)$.

(RCOP)

KKT Vector Field: F

Riemannian KKT conditions [LB19] are

$$egin{aligned} \operatorname{grad}_x \mathcal{L}(x,y,z) &= 0_x, \ h(x) &= 0, \ g(x) \leq 0, \ Zg(x) &= 0, \ z \geq 0. \end{aligned}$$

Definition (KKT Vector Field, L.2022)

With s := -g(x), the above becomes

$$F(w) := \begin{pmatrix} \operatorname{grad}_{x} \mathcal{L}(x, y, z) \\ h(x) \\ g(x) + s \\ ZSe \end{pmatrix} = 0_{w} := \begin{pmatrix} 0_{x} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \text{ and } (z, s) \ge 0,$$
(9)

where $w := (x, y, z, s) \in \mathscr{M} := \mathbb{M} \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m$. Note that $T_w \mathscr{M} \equiv T_x \mathbb{M} \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m$.

(8)

Formulation of $\nabla F(w)$

For each $x \in \mathbb{M}$, we define

$$H_x: \mathbb{R}^l \to T_x \mathbb{M}, \qquad H_x v := \sum_{i=1}^l v_i \operatorname{grad} h_i(x).$$
 (10)

Hence, the adjoint operator of H is

$$H_x^*: T_x \mathbb{M} \to \mathbb{R}^l, \qquad H_x^* \xi = \left[\langle \operatorname{grad} h_1(x), \xi \rangle_x, \cdots, \langle \operatorname{grad} h_l(x), \xi \rangle_x \right]^T.$$
(11)

Lemma (L. 2022)

The linear operator $\nabla F(w) : T_w \mathscr{M} \to T_w \mathscr{M}$ is given by

$$\nabla F(w)\Delta w = \begin{pmatrix} \operatorname{Hess}_{x} \mathcal{L}(w)\Delta x + H_{x}\Delta y + G_{x}\Delta z \\ H_{x}^{*}\Delta x \\ G_{x}^{*}\Delta x + \Delta s \\ Z\Delta s + S\Delta z \end{pmatrix}.$$

(12)

where $\Delta w = (\Delta x, \Delta y, \Delta s, \Delta z) \in T_x \mathbb{M} \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m \equiv T_w \mathcal{M}.$

Prototype — Riemannian Interior Point Method (RIPM)

Step 0. Initial w_0 with $(z_0, s_0) > 0$. Step 1. Solve

$$\nabla F(w_k) \Delta w_k = -F(w_k) + \frac{\rho_k \hat{e}}{\rho_k}, \tag{13}$$

where $\hat{e} := (0_x, 0, 0, e)$. Step 2. Compute the step sizes α_k such that $(z_{k+1}, s_{k+1}) > 0$. Step 3. Update:

۲

$$w_{k+1} = \bar{R}_{w_k}(\alpha_k \Delta w_k). \tag{14}$$

Step 4. Shrink $\rho_k \rightarrow 0$. Return to 1.

Theorem (Local Convergence, L. 2022)

Under some standard assumptions.

1 If
$$\rho_k = o(||F(w_k)||), \alpha_k \to 1$$
, then $\{w_k\}$ locally, superlinearly converges to w^* .

2 If $\rho_k = O(||F(w_k)||^2)$, $1 - \alpha_k = O(||F(w_k)||)$, then $\{w_k\}$ locally, quadratically converges to w^* .

Sketch — Global Line Search of RIPM

The most classic global algorithm for Euclidean IPM is [EBTTZ96]

• Merit function:

$$\varphi(w) := \|F(w)\|^2 \quad \Rightarrow \quad \operatorname{grad} \varphi(w) = 2\nabla F(w)^* F(w). \tag{15}$$

Goal:

Keep
$$(z_k, s_k) > 0$$
 and let $||F(w_k)||^2 \to 0.$ (16)

• Step size selection: Given Δw , we obtain α_k by

- **1** *Two Centrality conditions.*
- **2** Sufficient decreasing:

Choose $\theta \in (0, 1)$, and $\beta \in (0, 1/2]$. Let $\alpha_k = \theta' \bar{\alpha}_k$, where *t* is the smallest nonnegative integer such that α_k satisfies

$$\varphi(\bar{R}_{w_k}(\alpha_k \Delta w_k)) - \varphi(w_k) \le \alpha_k \beta \langle \operatorname{grad} \varphi_k, \Delta w_k \rangle.$$
(17)

Sufficient decreasing

We denote a real to real function $\alpha \mapsto \varphi(\alpha)$ by

$$\varphi(\boldsymbol{\alpha}) := \varphi(\bar{R}_w(\boldsymbol{\alpha} \Delta w)), \tag{18}$$

then

$$\varphi'(0) = \mathcal{D}\varphi(\bar{R}_w(0)) \left[\mathcal{D}\bar{R}_w(0)[\Delta w]\right] = \mathcal{D}\varphi(w)[\Delta w] = \langle \operatorname{grad}\varphi(w), \Delta w \rangle_w.$$
(19)

Armijo condition

Hence, Armijo condition:

$$\varphi(\bar{R}_{w_k}(\alpha_k \Delta w_k)) - \varphi(w_k) \le \alpha_k \beta \langle \operatorname{grad} \varphi_k, \Delta w_k \rangle$$

is to say

$$\varphi_k(\alpha_k) - \varphi_k(0) \le \alpha_k \beta \varphi'_k(0).$$
 (21)

Zhijian Lai, Akiko Yoshise (UT)

Riemannian Interior Point Methods

(20)

Descent Direction

If direction Δw is given as the solution of

$$\nabla F(w)\Delta w = -F(w) + \sigma \mu \hat{e},$$

then

$$\varphi'(0) = \langle \operatorname{grad} \varphi(w), \Delta w \rangle = 2(-\|F(w)\|^2 + \sigma \mu z^T s).$$
(22)

Lemma (L. 2022)

1 Δw_k is a descent direction, i.e., $\langle \operatorname{grad} \varphi(w_k), \Delta w_k \rangle < 0$, for merit function φ at w_k if

$$\mu_k := s_k^T z_k / m, \quad \sigma_k \in (0, 1).$$

2 if Armijo condition is satisfied, then the sequence $\{\varphi_k\}$ is monotonically decreasing.

Global Convergence Theorem

Given $\epsilon \geq 0$, let us define the set

 $\Omega(\epsilon) := \left\{ w \in \mathscr{M} : \epsilon \leq \varphi(w) \leq \varphi_0, \min(ZSe) / (z^T s/m) \geq \tau_1/2, z^T s / \|F(w)\| \geq \tau_2/2 \right\}.$

Assumptions

- 1 in the set $\Omega(0)$, the functions f(x), h(x), g(x) are smooth; the set $\{\operatorname{grad} h_i(x)\}_{i=1}^l$ is linearly independent in $T_x \mathbb{M}$ for all x; and $w \mapsto \nabla F(w)$ is Lipschitz continuous;
- 2 the sequences $\{x_k\}$ and $\{z_k\}$ are bounded;

3 in any compact subset of $\Omega(0)$ where s is bounded away from zero, the operator $\nabla F(w)$ is nonsingular.

Theorem (Global Convergence, L. 2022)

Let $\{\sigma_k\} \subset (0,1)$ bounded away from zero and one. If Assumptions $1 \sim 3$ hold, then $\{F(w_k)\}$ converges to zero; and for any limit point $w^* = (x^*, y^*, z^*, s^*)$ of $\{w_k\}, x^*$ is a Riemannian KKT point of problem (RCOP).

Dominant cost

Dominant cost is to solve

$$\nabla F(w)\Delta w = -F(w) + \rho \hat{e}, \qquad (23)$$

where

$$F(w) = \begin{pmatrix} F_x := \operatorname{grad}_x \mathcal{L}(x, y, z) \\ F_y := h(x) \\ F_z := g(x) + s \\ F_s := ZSe \end{pmatrix}, \quad \hat{e} := \begin{pmatrix} 0_x \\ 0 \\ 0 \\ e \end{pmatrix}.$$

Thus, we need to solve the following linear system on $T_x \mathbb{M} \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m$:

$$\begin{pmatrix} \operatorname{Hess}_{x} \mathcal{L}(w) \Delta x + H_{x} \Delta y + G_{x} \Delta z \\ H_{x}^{*} \Delta x \\ G_{x}^{*} \Delta x + \Delta s \\ Z \Delta s + S \Delta z \end{pmatrix} = \begin{pmatrix} -F_{x} \\ -F_{y} \\ -F_{z} \\ -F_{z} \\ -F_{s} + \rho e \end{pmatrix}.$$
(25)

(24)

Condensed form of perturbed Newton Equation

By two substitutions:

$$\Delta s = Z^{-1} \left(\rho e - F_s - S \Delta z \right), \tag{26}$$

$$\Delta z = S^{-1} \left[Z \left(G_x^* \Delta x + F_z \right) + \rho e - F_s \right], \tag{27}$$

it suffices to focus on **condensed form** on $T_x \mathbb{M} \times \mathbb{R}^l$:

$$\mathcal{T}(\Delta x, \Delta y) := \begin{pmatrix} \mathcal{A}_w \Delta x + H_x \Delta y \\ H_x^* \Delta x \end{pmatrix} = \begin{pmatrix} c \\ q \end{pmatrix},$$
(28)

where

$$\mathcal{A}_{w} := \operatorname{Hess}_{x} \mathcal{L}(w) + G_{x} S^{-1} Z G_{x}^{*},$$

$$c := -F_{x} - G_{x} S^{-1} \left(Z F_{z} + \rho e - F_{s} \right),$$

$$q := -F_{y}.$$
(29)

Condensed form of perturbed Newton Equation

$$\mathcal{T}(\Delta x, \Delta y) := \begin{pmatrix} \mathcal{A}_w \Delta x + H_x \Delta y \\ H_x^* \Delta x \end{pmatrix} = \begin{pmatrix} c \\ q \end{pmatrix}.$$
 (30)

Lemma (L. 2022)

Equivalence:

1 If (z,s) > 0 holds, then $\nabla F(w)$ is nonsingular if and only if \mathcal{T} is nonsingular.

Symmetric linear system:

2 \mathcal{T} is self-adjoint (i.e., $\mathcal{T} = \mathcal{T}^*$) on product space $T_x \mathbb{M} \times \mathbb{R}^l$.

If only the inequality constraint is present, then

$$\mathcal{T}(\Delta x) := \mathcal{A}_w \Delta x = c. \tag{31}$$

General solver — RIPM.m

Problem on Matrix Submanifold

We consider

$$\min_{\substack{X \in \mathbb{M} \\ \text{s.t.}}} f(X)$$
 (RCOP)
s.t. $h(X) = O_{p \times q}$, and $g(X) \le O_{n \times k}$,

where $\mathbb{M} \subseteq \mathbb{R}^{r \times s}$ is a submanifold; $f : \mathbb{M} \to \mathbb{R}, h : \mathbb{M} \to \mathbb{R}^{p \times q}$, and $g : \mathbb{M} \to \mathbb{R}^{n \times k}$.

We established a general RIPM solver based on Manopt¹.

RIPM.m (L. 2022)									
%	function	[x,	cost,	info,	options]	=	RIPM(problem)		
%	function	[x,	cost,	info,	options]	=	RIPM(problem,	x0)	
%	function	[x,	cost,	info,	options]	=	RIPM(problem,	x0,	options)
%	function	[x,	cost,	info,	options]	=	RIPM(problem,	[],	options)

¹Manopt, a matlab toolbox for optimization on manifolds.

Zhijian Lai, Akiko Yoshise (UT)

Riemannian Interior Point Methods

Introduction

Background Preliminaries

 Our proposal: Riemannian Interior Point Methods Formulation of RIPM Global Algorithms Implements

3 Numerical experiments Problem I Problem II

4 Future work

Example (Problem I)

Given $C \in \mathbb{R}^{n \times k}$, we consider

$$\min_{\in \operatorname{St}(n,k)_+} \|X - C\|_F^2,$$
 (Model_St

which can be equivalently [JMWC22, Lemma 2.1] reformulated into

X

$$\min_{X \in OB(n,k)_+} \|X - C\|_F^2 \quad \text{s.t. } \|XV\|_F = 1.$$
 (Model_OB)

Here,

- Stiefel manifold, $St(n,k) := \{X \in \mathbb{R}^{n \times k} : X^{\top}X = I\}.$
- Oblique manifold, $OB(n,k) := \{X \in \mathbb{R}^{n \times k} : \text{ all columns have unit norm}\}.$
- *V* is a constant matrix satisfying $||V||_F = 1$ and $VV^{\top} > 0$ (irrelevant to *X*, *C*).

Example (Problem I)

Given $C \in \mathbb{R}^{n \times k}$, we consider

$$\min_{Y \in \operatorname{St}(n,k)_+} \|X - C\|_F^2,$$
 (Model_St)

which can be equivalently [JMWC22, Lemma 2.1] reformulated into

Х

$$\min_{X \in OB(n,k)_+} \|X - C\|_F^2 \quad \text{s.t. } \|XV\|_F = 1.$$
 (Model_OB)

Experiment setting:

• [JMWC22, Proposition 1] By choosing $X^* \in \text{St}(n,k)_+$, we can construct a special *C* such that the solution is unique and equals to X^* .

• Define
$$gap := \frac{\|X^k - C\|_F}{\|X^* - C\|_F} - 1$$
. We test both (Model_St) and (Model_OB).

Figure: For n = 10, k = 5.

Table: For each (n, k), we test 5 instances. "gap" and "iter" are average values.

		Model_S	St	Model_C	B
n	k = 0.1n	gap	iter	gap	iter
30	3	5.03E-09	19	7.28E-09	23
50	5	3.38E-09	19	7.30E-09	22
70	7	4.19E-09	24	6.04E-09	21
90	9	6.98E-09	27	3.09E-09	20
110	11	8.71E-09	27	2.32E-09	22
130	13	8.18E-09	25	6.78E-09	21

Problem II — nonnegative low rank matrix approximation

Example (Problem II)

[SN20] proposed the nonnegative low-rank matrix approximation:

$$\min_{X \in \mathbb{R}_r^{m \times n}} \|A - X\|_F^2 \quad \text{s.t. } X \ge 0,$$
 (NLRM)

where
$$\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r\}$$
.

Experiment setting:

- B = rand(m, r); C = rand(r, n); A = B*C; % original data Gaussian_Noise = sigma*randn(m,n); % zero mean and standard deviation σ A_test = A+Gaussian_Noise;
- Define *relative_residual* $\stackrel{\text{def}}{=} \frac{||A-X^k||_F}{||A||_F}$.

Problem II — nonnegative low rank matrix approximation

Figure: For m = 10, n = 8, r = 3 and $\sigma = 0.001$. It is as good as the results in [SN20].

Riemannian Interior Point Methods

Introduction

Background Preliminaries

2 Our proposal: Riemannian Interior Point Methods

Formulation of RIPM Global Algorithms Implements

3 Numerical experiments

Problem I Problem II

4 Future work

Future Work — Practical Algorithm.

If no equality h(x) = 0, we only need to solve

$$\mathcal{T}\Delta x = c, \tag{32}$$

where \mathcal{T} is a self-adjoint operator on $T_x \mathbb{M}$ (say, dim $T_x \mathbb{M} =: d$).

- **1** The basic approach to obtain $d \times d$ symmetric matrix \mathcal{T}_{mat} (Tools in Manopt).
- 2 The features of the manifold itself should be utilized. [AS17]

$$T_{x}St(n,k) \xrightarrow{S_{1}} Skew(k) \times Mat(n-k,k) \xrightarrow{S_{2}} \mathbb{R}^{N}$$

$$\uparrow T \qquad \uparrow T' \qquad \uparrow T'$$

$$T_{x}St(n,k) \xleftarrow{S_{1}^{-1}} Skew(k) \times Mat(n-k,k) \xleftarrow{S_{2}^{-1}} \mathbb{R}^{N}$$

3 Krylov Subspace Methods (Iterative Solver) for symmetric system $\mathcal{T}'' \Delta x'' = c''$.

Reference I

[AS17] Kensuke Aihara and Hiroyuki Sato.

A matrix-free implementation of riemannian newton's method on the stiefel manifold. *Optimization Letters*, 11(8):1729–1741, 2017.

[BH19] Ronny Bergmann and Roland Herzog. Intrinsic formulation of kkt conditions and constraint qualifications on smooth manifolds. SIAM Journal on Optimization, 29(4):2423–2444, 2019.

[DCFF92] Manfredo Perdigao Do Carmo and J Flaherty Francis. *Riemannian geometry*, volume 6. Springer, 1992.

[EBTTZ96] AS El-Bakry, Richard A Tapia, T Tsuchiya, and Yin Zhang.

On the formulation and theory of the newton interior-point method for nonlinear programming. *Journal of Optimization theory and Applications*, 89(3):507–541, 1996.

Reference II

 [FFY17] Teles A Fernandes, Orizon P Ferreira, and Jinyun Yuan.
 On the superlinear convergence of newton's method on riemannian manifolds. Journal of Optimization Theory and Applications, 173(3):828–843, 2017.

- [FS12] Orizon P Ferreira and Roberto CM Silva.
 Local convergence of newton's method under a majorant condition in riemannian manifolds.
 IMA Journal of Numerical Analysis, 32(4):1696–1713, 2012.
- [JMWC22] Bo Jiang, Xiang Meng, Zaiwen Wen, and Xiaojun Chen. An exact penalty approach for optimization with nonnegative orthogonality constraints. *Mathematical Programming*, pages 1–43, 2022.
- [LB19]Changshuo Liu and Nicolas Boumal.Simple algorithms for optimization on riemannian manifolds with constraints.arXiv preprint arXiv:1901.10000, 2019.

Reference III

[OOT20] Mitsuaki Obara, Takayuki Okuno, and Akiko Takeda. Sequential quadratic optimization for nonlinear optimization problems on riemannian manifolds. arXiv preprint arXiv:2009.07153, 2020.

[SN20] Guang-Jing Song and Michael K Ng. Nonnegative low rank matrix approximation for nonnegative matrices. Applied Mathematics Letters, 105:106300, 2020.

[SO20] Anton Schiela and Julian Ortiz.

An sqp method for equality constrained optimization on manifolds. *arXiv preprint arXiv:2005.06844*, 2020.

[YS22] Yuya Yamakawa and Hiroyuki Sato.

Sequential optimality conditions for nonlinear optimization on riemannian manifolds and a globally convergent augmented lagrangian method.

Computational Optimization and Applications, pages 1–25, 2022.

Reference IV

[YY96] Hiroshi Yamashita and Hiroshi Yabe.

Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimization.

Mathematical Programming, 75(3):377–397, 1996.

[YZS14] Wei Hong Yang, Lei-Hong Zhang, and Ruyi Song.
 Optimality conditions for the nonlinear programming problems on riemannian manifolds.
 Pacific Journal of Optimization, 10(2):415–434, 2014.

The End

Questions? Comments?

Appendix.

Riemannian Newton method

Riemannian Newton method: Consider

$$F(x) = 0. \tag{33}$$

Solve a linear system on $T_{x_k}M \ni v_k$:

 $\nabla F(x_k)v_k = -F(x_k),$

then $x_{k+1} = R_{x_k}(v_k)$.

Standard Newton assumptions & Local Convergence Results:

 $\begin{array}{l} \text{(N1)There exists } x^* : F(x^*) = 0. \\ \text{(N2)} \nabla F(x^*) \text{ is nonsingular operator.} \\ \text{(N3)} \nabla F \text{ is locally Lipschitz cont. at } x^*. \end{array} \right\} \Rightarrow \text{superlinear}[\text{FFY17}] \\ \end{array} \right\} \Rightarrow \text{quadratic}[\text{FS12}].$

Riemannian Interior Point Methods

Superlinear and Quadratic Convergence

- **①** Existence. There exists w^* satisfying the KKT conditions.
- **2** Smoothness. The functions f, g, h are smooth on \mathcal{M} .
- **3** Regularity. The set $\{\operatorname{grad} h_i(x^*) : i = 1, \dots, l\} \cup \{\operatorname{grad} g_i(x^*) : i \in \mathcal{A}(x)\}$ is linearly independent in $T_{x^*}\mathcal{M}$.
- 4 Strict Complementarity. $(z^*)_i > 0$ if $g_i(x^*) = 0$ for all $i = 1, \dots, m$.
- **5** Second-Order Sufficiency. $\langle \text{Hess}_x \mathcal{L}(w^*)\xi, \xi \rangle > 0$ for all nonzero $\xi \in T_{x^*} \mathbb{M}$ satisfying $\langle \xi, \text{grad } h_i(x^*) \rangle = 0$ for $i = 1, \dots, l$, and $\langle \xi, \text{grad } g_i(x^*) \rangle = 0$ for $i \in \mathcal{A}(x^*)$.

Proposition (L. 2022)

If assumptions (1)-(5) hold, then standard Newton assumptions (N1)-(N3) hold for KKT vector field F.

Riemannian Interior Point Methods

Superlinear and Quadratic Convergence

On the other hand, to keep $(s_k, z_k) \ge 0$:

• Introducing the **perturbed** complementary equation,

$$Z\Delta s + S\Delta z = -ZSe + \mu e, \tag{34}$$

so that we are able to keep the iterates far from the boundary.

• Compute the **damped** step sizes α_k , e.g., choose $\gamma_k \in (0, 1)$ and compute

$$\boldsymbol{\alpha_k} := \min\left\{1, \boldsymbol{\gamma_k}\min_i\left\{-\frac{(s_k)_i}{(\Delta s_k)_i} \mid (\Delta s_k)_i < 0\right\}, \boldsymbol{\gamma_k}\min_i\left\{-\frac{(z_k)_i}{(\Delta z_k)_i} \mid (\Delta z_k)_i < 0\right\}\right\}, \quad (35)$$

such that $(s_{k+1}, z_{k+1}) > 0$.

The relation of α_k and γ_k : [YY96]

1) If
$$\gamma_k \to 1$$
, then $\alpha_k \to 1$.

2 If
$$1 - \gamma_k = O(||F(w_k)||)$$
, then $1 - \alpha_k = O(||F(w_k)||)$.

History of Euclidean Interior Point Method

Interior Point (IP) Method for NONLINEAR, NONCONVEX (1990-)

Early phase (1990-1995)

- Local algorithms with superlinear/ quadratic convergence by El-Bakry, Tapia, Tsuchiya, and Zhang[EBTTZ96], Yamashita and Yabe [YY96].
- Global algorithms by El-Bakry, Tapia, Tsuchiya, and Zhang[EBTTZ96]

Variations (1995-2010)

- Inexact Newton/ Quasi Newton IP Method
- Global strategy: *many* merit functions; linear search, or trust region, etc.

Update by Retraction

At a current point w = (x, y, z, s) and direction $\Delta w = (\Delta x, \Delta y, \Delta z, \Delta s)$, the next iterate is calculated along a curve on \mathcal{M} , i.e.,

$$w(\alpha) := \bar{R}_w(\alpha \Delta w), \tag{36}$$

for some step length $\alpha > 0$.

By introducing

$$w(\alpha) = (x(\alpha), y(\alpha), z(\alpha), s(\alpha)), \tag{37}$$

we have

 $x(\alpha) = R_x(\alpha \Delta x),$

and $y(\alpha) = y + \alpha \Delta y, z(\alpha) = z + \alpha \Delta z, s(\alpha) = s + \alpha \Delta s.$

Centrality conditions

Given $w_0 = (x_0, y_0, z_0, s_0)$ with $(z_0, s_0) > 0$, let $\tau_1 := \frac{\min(Z_0 S_0 e)}{z_0^T s_0/m}$, $\tau_2 := \frac{z_0^T s_0}{\|F(w_0)\|}$. Let $\gamma \in (0, 1)$ be a constant. Define centrality functions:

$$f^{I}(\alpha) := \min(Z(\alpha)S(\alpha)e) - \gamma\tau_{1}\frac{z(\alpha)^{T}s(\alpha)}{m},$$
(38)

$$f^{II}(\alpha) := z(\alpha)^T s(\alpha) - \gamma \tau_2 \|F(w(\alpha))\|.$$
(39)

For i = I, II, let $\alpha^{i} := \max_{\alpha \in (0,1]} \left\{ \alpha : \boldsymbol{f}^{i}(t) \ge \boldsymbol{0}, \text{ for all } t \in (0,\alpha] \right\}.$ (40)

• Widely used?

Global RIP Algorithm

() Choose $\sigma_k \in (0, 1)$; for w_k , compute the perturbed Newton direction Δw_k with

$$\mu_k = z_k^T s_k / m \tag{41}$$

and by

$$\nabla F(w)\Delta w = -F(w) + \sigma_k \mu_k \hat{e}.$$
(42)

2 Step length selection.

1 Centrality conditions: Choose $1/2 < \gamma_k < \gamma_{k-1} < 1$; compute α^i , i = I, II, from (40); and let

$$\bar{\alpha}_k = \min(\alpha^I, \alpha^{II}). \tag{43}$$

2 Sufficient decreasing: Choose $\theta \in (0, 1)$, and $\beta \in (0, 1/2]$. Let $\alpha_k = \theta^t \bar{\alpha}_k$, where *t* is the smallest nonnegative integer such that α_k satisfies

$$\varphi(\bar{R}_{w_k}(\alpha_k \Delta w_k)) - \varphi(w_k) \le \alpha_k \beta \langle \operatorname{grad} \varphi_k, \Delta w_k \rangle.$$
(44)

3 Let $w_{k+1} = \overline{R}_{w_k}(\alpha_k \Delta w_k)$ and $k \leftarrow k+1$.

Auxiliary Results I: Boundedness of the sequences

If $\epsilon > 0$ and $w_k \in \Omega(\epsilon)$ for all k, then

Lemma (Boundedness of the sequences I, L. 2022)

- **1** the sequence $\{z_k^T s_k\}$ and $\{(z_k)_i(s_k)_i\}$, i = 1, 2, ..., m, are all bounded above and below away from zero.
- **2** the sequence $\{z_k\}$ and $\{s_k\}$ are bounded above and component-wise bounded away from zero;
- **3** the sequence $\{w_k\}$ is bounded;
- 4 the sequence $\{\|\nabla F(w_k)^{-1}\|\}$ is bounded;
- **5** the sequence $\{\Delta w_k\}$ is bounded.

Lemma (Boundedness of the sequences II, L. 2022)

If $\{\sigma_k\}$ is bounded away from zero. Then, $\{\bar{\alpha}_k\}$ is bounded away from zero.

Auxiliary Results II: Continuity of Some Special Scalar Fields

Lemma (L. 2022)

Let $x \in \mathcal{M}$ and A_x be a linear operator on $T_x\mathcal{M}$. Then, the values $\|\widehat{A}_x\|_2$ and $\|\widehat{A}_x\|_F$ are invariant under a change of orthonormal basis; moreover,

$$\|A_x\| = \|\hat{A}_x\|_2 \le \|\hat{A}_x\|_F.$$
(45)

Lemma (L. 2022)

$$x \mapsto \|\widehat{\operatorname{Hess} f(x)}\|$$

is a continuous scalar field on \mathbb{M} . It is true for all h_i , g_i .

$$x \mapsto ||H_x|| \text{ and } x \mapsto ||G_x|$$

are continuous scalar field on M.

Zhijian Lai, Akiko Yoshise (UT)

(46)

(47)

Global Convergence Theorem

This theorem, now, is only proved under exponential map exp.

Lemma (Gauss [DCFF92, Lemma 3.5])

Let $p \in \mathcal{M}$ and let $v \in T_p\mathcal{M}$ such that $\exp_p(v)$ is well defined. Let $w \in T_p\mathcal{M} \approx T_v(T_p\mathcal{M})$. Then $\langle \mathcal{D} \exp_p(v)[v], \mathcal{D} \exp_p(v)[w] \rangle = \langle v, w \rangle.$ (48)

Manopt, a matlab toolbox for optimization on manifolds

- Manifolds in Manopt are represented as structures and are obtained by calling a factory.
 - M = euclideanfactory(m,n);
 - M = symmetricfactory(n);
 - M = skewsymmetricfactory(n);
 - M = spherefactory(n);
 - M = obliquefactory(n,m);
 - M = stiefelfactory(n,k);
 - M = fixedrankembeddedfactory(m,n);
- M = Ma x Mb x Mc...

.

M = productmanifold(Ma,Mb,Mc...);

Manopt — Manifold structure

• A manifold structure has a number of fields, most of which contain function handles.

Table: Part I — Basic

Field usage	Functionality
M.name()	Returns the name of M.
M.rand()	Computes a random point on M.
M.dist(x,y)	Computes the Riemannian distance.
M.proj(x,u)	Computes $\operatorname{Proj}_{x} u$.
M.exp(x,u,t)	Computes exponential map, $Exp_x(tu)$.
M.retr(x,u,t)	Computes retraction, $\operatorname{Retr}_{x}(tu)$.
<pre>M.egrad2rgrad(x,egrad)</pre>	Euclidean to Riemannian gradient.
<pre>M.ehess2rhess(x,egrad,ehess,u)</pre>	Euclidean to Riemannian Hessian.

Manopt — Manifold structure

• A manifold structure has a number of fields, most of which contain function handles.

Table: Part II — Tangent space

Field usage	Functionality	
M.dim()	Returns the dimension of M.	
M.zerovec(x)	Returns the zero tangent vector at x.	
M.randvec(x)	Computes a random tangent vector at x.	
$M = \lim_{x \to 1} \sup_{y \to 1} \frac{1}{y^2} + \frac{1}$	Computes the linear combination $a_1u_1 + a_2u_2$,	
H.IIICOMD(X,aI,uI,az,uz)	where a_1, a_2 scalars and u_1, u_2 tangent vectors at x .	
M.inner(x,u,v)	Computes the Riemannian metric $\langle u, v \rangle_x$.	
M.norm(x,u)	Computes the Riemannian norm $ u _x = \sqrt{\langle u, u \rangle_x}$.	

Manopt — Other tools

• A number of generically useful tools in Manopt.

Table: Linear operator

Function usage	Functionality
$\mathbf{P}\mathbf{x} = tangantarthabasis(\mathbf{M} \cdot \mathbf{x})$	Returns an orthonormal basis of
bx = tangentor thobasis(h, x)	tangent space at <i>x</i> .
matt - operator?matrix(M x x T By By)	Forms a matrix representing a linear
mati = operatorzmatitx(m,x,x,i,bx,bx)	operator between two tangent spaces.
$c_{\rm Mac} = t_{\rm Mac} + 2w_{\rm Mac} (M_{\rm M} \times P_{\rm M} c)$	Expands tangent vector c by
$C_{Vec} = \text{tangent}_{ZVec}(n, x, bx, c)$	an orthonormal basis Bx.
$v_{ac} = lincomb(M \times v_{acc}, cooff_c)$	Computes a linear combination of vec =
vec = iiicomb(n,x,vecs,coeiis)	coeffs(1)*vecs1 + + coeffs(n)*vecsn

General solver — RIPM.m

RIPM.m

%	function	[x,	cost,	info,	options]	=	RIPM(problem)		
%	function	[x,	cost,	info,	options]	=	RIPM(problem,	x0)	
%	function	[x,	cost,	info,	options]	=	RIPM(problem,	x0,	options)
%	function	[x,	cost,	info,	options]	=	RIPM(problem,	[],	options)

This function calls:

- RIPM_getNTdirection.m % Solve NT equation.
- RIPM_linesearch.m
- RIPM_stoppingcriterion.m % Allow the user defined stop criterion.
- RIPM_applyStatsfun.m % Allow the user defined stats function.

Riemannian IPM vs. Euclidean IPM

1 Euclidean IPM is a special case when \mathbb{M} is Euclidean space.

2 If the equality constraints are considered as \mathbb{M} , dim \mathcal{T} can become smaller.

Manifold \mathbb{M}	h(X)	codomain of h	$\dim \mathcal{T}$
$\mathbb{R}^{n imes n}$	$X^T - X = O$	$\operatorname{Skew}(n)$	$n^2 + n(n-1)/2$
$\operatorname{Sym}(n)$	-	-	n(n+1)/2
\mathbb{R}^{n}	$ x ^2 - 1 = 0$	\mathbb{R}	n+1
sphere(n)	-	-	n-1
$\mathbb{R}^{n imes k}$	$X^T X - I_k = O$	$\operatorname{Sym}(k)$	nk + k(k+1)/2
stiefel(n,k)	-	-	nk - k(k+1)/2
$\mathbb{R}^{m imes n}$	rank(X) = r is not continuous	-	-
fixedrank(m,n,r)	-	-	r(m+n-r)

3 Not all manifolds are equivalent to the <u>smooth</u> equality constraints.