Riemannian Interior Point Methods for Constrained Optimization on Manifolds

*Zhijian Lai Akiko Yoshise

University of Tsukuba s2130117@s.tsukuba.ac.jp

International Workshop on Continuous Optimization December 4, 2022

Overview

Introduction
 Background
 Preliminaries

2 Our proposal: Riemannian Interior Point Methods

Formulation of RIPM Global Algorithms Implementation

- **3** Numerical Experiments
- 4 Future work

- Introduction
 Background
 Preliminaries
- Our proposal: Riemannian Interior Point Methods Formulation of RIPM Global Algorithms Implementation
- Numerical Experiments
- 4 Future work

- 1 Introduction
 Background
- Our proposal: Riemannian Interior Point Methods Formulation of RIPM Global Algorithms Implementation
- Numerical Experiments
- 4 Future work

Riemannian Manifold

Riemannian manifold M is a locally linearizable set, equipped with a smoothly-varying inner product $\langle \cdot, \cdot \rangle_x$ on the tangent spaces $T_x M$.

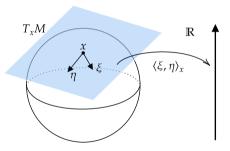


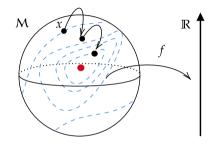
Figure: Manifold of unit sphere, $M = \{x \in \mathbb{R}^n : ||x||_2 = 1\}.$

Riemannian Optimization

Given
$$f: M \to \mathbb{R}$$
, solve

$$\min_{x \in M} f(x) \tag{1}$$

where M is a Riemannian manifold.



Unconstrained problem on manifold.

- Stiefel manifold, $St(n, k) = \{X \in \mathbb{R}^{n \times k} : X^{\top}X = I\}.$
- ② Fixed rank manifold, $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r\}.$

Riemannian version of classical methods (2002-)

steepest decent, conjugate gradient, trust region, BFGS, proximal gradient, ADMM and more.

Applications

1 Stiefel manifold, $\operatorname{St}(n,k) = \{X \in \mathbb{R}^{n \times k} : X^{\top}X = I\}.$

PCA:
$$\min_{X \in \text{St}(n,k)} - \text{trace}(X^{\top} A^{\top} A X).$$
 (2)

Applications

• Stiefel manifold, $\operatorname{St}(n,k) = \{X \in \mathbb{R}^{n \times k} : X^{\top}X = I\}.$

PCA:
$$\min_{X \in \text{St}(n,k)} - \text{trace}(X^{\top} A^{\top} A X).$$
 (2)

② Fixed rank manifold, $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r\}.$

Low-rank matrix completion:
$$\min_{X \in \mathbb{R}_r^{m \times n}} \sum_{(i,i) \in \Omega} (X_{ij} - M_{ij})^2$$
. (3)

More Requirements

1 Stiefel manifold, $\operatorname{St}(n,k) = \{X \in \mathbb{R}^{n \times k} : X^{\top}X = I\}.$

Nonnegative PCA:
$$\min_{X \in \text{St}(n,k)} - \text{trace}(X^{\top} A^{\top} A X) \text{ s.t. } X \ge 0.$$
 (4)

② Fixed rank manifold, $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r\}.$

Nonnegative Low-rank matrix completion:
$$\min_{X \in \mathbb{R}_r^{m \times n}} \sum_{(i,i) \in \Omega} (X_{ij} - M_{ij})^2$$
 s.t. $X \ge 0$. (5)

New Topic — Riemannian Constrained Optimization Problem

We consider

$$\min_{x \in \mathbb{M}} \quad f(x) \\ \text{s.t.} \quad h(x) = 0, \text{ and } g(x) \le 0,$$
 (RCOP)

where M is a Riemannian manifold, $f: \mathbb{M} \to \mathbb{R}, h: \mathbb{M} \to \mathbb{R}^l$, and $g: \mathbb{M} \to \mathbb{R}^m$.

Riemannian optimality conditions:

KKT conditions; Second-order conditions [Yang et al., 2014];

More constraint qualifications (CQ) [Bergmann and Herzog, 2019];

Sequential optimality conditions [Yamakawa and Sato, 2022].

Riemannian algorithms:

Augmented Lagrangian Method [Liu and Boumal, 2020, Yamakawa and Sato, 2022];

Exact Penalty Method [Liu and Boumal, 2020];

Sequential Quadratic Programming Method [Schiela and Ortiz, 2020, Obara et al., 2022].

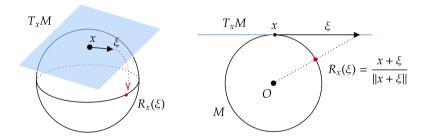
In this talk, we consider Interior Point Method.

- Introduction
 Background

 Preliminaries
- Our proposal: Riemannian Interior Point Methods Formulation of RIPM Global Algorithms Implementation
- Numerical Experiments
- 4 Future work

Retraction — moving on a manifold

A **retraction** *R* maps tangent vectors back to the manifold. $R_x : T_x M \to M$ for any *x*.

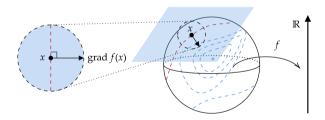


Euclidean	Riemannian
$x_{k+1} = x_k + \alpha_k \xi_k$	$x_{k+1} = R_{x_k}(\alpha_k \xi_k)$

Riemannian gradient — a vector field

Riemannian gradient, $\operatorname{grad} f(x)$, is the direction of steepest ascent in tangent space at x:

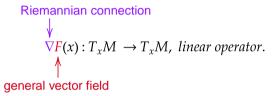
$$\frac{\operatorname{grad} f(x)}{\|\operatorname{grad} f(x)\|} = \underset{\xi \in T_x M: \|\xi\|=1}{\operatorname{arg} \max} \left(\lim_{\alpha \to 0} \frac{f(R_x(\alpha \xi)) - f(x)}{\alpha} \right).$$



Note that $x \mapsto \operatorname{grad} f(x)$ is a **vector field** on M.

Covariant derivative & Hessian & Newton method

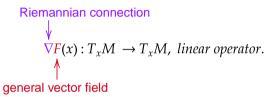
Covariant derivative of a vector field *F*:



Specially, $\operatorname{Hess} f(x) \triangleq \nabla \operatorname{grad} f(x)$ is called **Riemannian Hessian**.

Covariant derivative & Hessian & Newton method

Covariant derivative of a vector field *F*:



Specially, $\operatorname{Hess} f(x) \triangleq \nabla \operatorname{grad} f(x)$ is called **Riemannian Hessian**.

Riemannian Newton method: To find **singularity** $x^* \in M$ such that $F(x^*) = 0_{x^*}$. Solve a linear system on $T_{x_k}M \ni v_k$:

$$\nabla F(x_k)v_k = -F(x_k),\tag{6}$$

then $x_{k+1} = R_{x_k}(v_k)$.

- Introduction
 Background
 Preliminaries
- Our proposal: Riemannian Interior Point Methods

Formulation of RIPM Global Algorithms Implementation

- Numerical Experiments
- 4 Future work

- Introduction
 Background
 Preliminaries
- 2 Our proposal: Riemannian Interior Point Methods

Formulation of RIPM

Global Algorithms Implementation

- Numerical Experiments
- **4** Future work

Formulation of RIPM

We consider

$$\min_{\substack{x \in \mathbb{M} \\ \text{s.t.}}} f(x)$$
s.t. $h(x) = 0$, and $g(x) \le 0$, (RCOP)

where $f: \mathbb{M} \to \mathbb{R}, h: \mathbb{M} \to \mathbb{R}^l$, and $g: \mathbb{M} \to \mathbb{R}^m$.

Lagrangian function is

$$\mathcal{L}(x, y, z) \triangleq f(x) + y^{T} h(x) + z^{T} g(x).$$
(7)

 $x \mapsto \mathcal{L}(x, y, z)$ is a real-valued function on M,

Formulation of RIPM

We consider

$$\min_{\substack{x \in \mathbb{M} \\ \text{s.t.}}} f(x)
\text{s.t.} \quad h(x) = 0, \text{ and } g(x) \le 0,$$
(RCOP)

where $f: \mathbb{M} \to \mathbb{R}, h: \mathbb{M} \to \mathbb{R}^l$, and $g: \mathbb{M} \to \mathbb{R}^m$.

Lagrangian function is

$$\mathcal{L}(x, y, z) \triangleq f(x) + y^{T} h(x) + z^{T} g(x). \tag{7}$$

 $x \mapsto \mathcal{L}(x, y, z)$ is a real-valued function on M, so we have

- $\operatorname{grad}_x \mathcal{L}(x, y, z) = \operatorname{grad} f(x) + \sum_{i=1}^l y_i \operatorname{grad} h_i(x) + \sum_{i=1}^m z_i \operatorname{grad} g_i(x),$
- $\operatorname{Hess}_{x} \mathcal{L}(x, y, z) = \operatorname{Hess} f(x) + \sum_{i=1}^{l} y_{i} \operatorname{Hess} h_{i}(x) + \sum_{i=1}^{m} z_{i} \operatorname{Hess} g_{i}(x).$

KKT Vector Field

Riemannian KKT conditions [Liu and Boumal, 2020] are

$$\begin{cases} \operatorname{grad}_{x} \mathcal{L}(x, y, z) = 0_{x}, \\ h(x) = 0, \\ g(x) \leq 0, \\ Zg(x) = 0, (Z := \operatorname{diag}(z_{1}, \dots, z_{m})) \\ z \geq 0. \end{cases}$$
(8)

KKT Vector Field

Riemannian KKT conditions [Liu and Boumal, 2020] are

$$\begin{cases} \operatorname{grad}_{x} \mathcal{L}(x, y, z) = 0_{x}, \\ h(x) = 0, \\ g(x) \leq 0, \\ Zg(x) = 0, (Z := \operatorname{diag}(z_{1}, \dots, z_{m})) \\ z \geq 0. \end{cases}$$
(8)

Definition (KKT Vector Field, L.2022)

With s := -g(x), the above becomes

$$F(w) \triangleq \begin{pmatrix} \operatorname{grad}_{x} \mathcal{L}(x, y, z) \\ h(x) \\ g(x) + s \\ ZSe \end{pmatrix} = 0_{w} := \begin{pmatrix} 0_{x} \\ 0 \\ 0 \\ 0 \end{pmatrix}, \text{ and } (z, s) \geq 0, \tag{9}$$

where $w := (x, y, z, s) \in \mathcal{M} \triangleq \mathbb{M} \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m$. Note that $T_w \mathcal{M} \equiv T_x \mathbb{M} \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m$.

Covariant Derivative of KKT Vector Field

For each $x \in \mathbb{M}$, we define

$$H_x: \mathbb{R}^l \to T_x \mathbb{M}, \qquad H_x v \triangleq \sum_{i=1}^l v_i \operatorname{grad} h_i(x).$$
 (10)

Hence, the adjoint operator is

$$H_x^*: T_x \mathbb{M} \to \mathbb{R}^l, \qquad H_x^* \xi = \left[\langle \operatorname{grad} h_1(x), \xi \rangle_x, \cdots, \langle \operatorname{grad} h_l(x), \xi \rangle_x \right]^T.$$
 (11)

Lemma (L. 2022)

The linear operator $\nabla F(w): T_w \mathcal{M} \to T_w \mathcal{M}$ is given by

$$\nabla F(w)\Delta w = \begin{pmatrix} \operatorname{Hess}_{x} \mathcal{L}(w)\Delta x + H_{x}\Delta y + G_{x}\Delta z \\ H_{x}^{*} \Delta x \\ G_{x}^{*} \Delta x + \Delta s \\ Z\Delta s + S\Delta z \end{pmatrix}, \tag{12}$$

where $\Delta w = (\Delta x, \Delta y, \Delta s, \Delta z) \in T_x \mathbb{M} \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m \equiv T_w \mathcal{M}$.

Step 0. Initial w_0 with $(z_0, s_0) > 0$.

Step 1. Solve

$$\nabla F(w_k) \Delta w_k = -F(w_k) + \mu_k \hat{\mathbf{e}}, \tag{13}$$

where $\hat{e} \triangleq (0_x, 0, 0, e)$.

Step 2. Compute the step sizes α_k such that $(z_{k+1}, s_{k+1}) > 0$.

Step 3. Update:

$$w_{k+1} = \bar{R}_{w_k}(\alpha_k \Delta w_k). \tag{14}$$

Step 4. Shrink $\mu_k \to 0$. Return to 1.

Step 0. Initial w_0 with $(z_0, s_0) > 0$.

Step 1. Solve

$$\nabla F(w_k) \Delta w_k = -F(w_k) + \mu_k \hat{\mathbf{e}},\tag{13}$$

where $\hat{e} \triangleq (0_x, 0, 0, e)$.

Step 2. Compute the step sizes α_k such that $(z_{k+1}, s_{k+1}) > 0$.

Step 3. Update:

$$w_{k+1} = \bar{R}_{w_k}(\alpha_k \Delta w_k). \tag{14}$$

Step 4. Shrink $\mu_k \to 0$. Return to 1.

Theorem (Local Convergence, L. 2022)

Under some standard assumptions.

- **1** If $\mu_k = o(||F(w_k)||), \alpha_k \to 1$, then $\{w_k\}$ locally, superlinearly converges to w^* .
- 2 If $\mu_k = O(\|F(w_k)\|^2)$, $1 \alpha_k = O(\|F(w_k)\|)$, then $\{w_k\}$ locally, quadratically converges to w^* .

- Introduction
 Background
 Preliminaries
- 2 Our proposal: Riemannian Interior Point Methods

Formulation of RIPM

Global Algorithms

Implementation

- Numerical Experiments
- 4 Future work

Global Line Search RIPM Algorithm¹

- Merit function: Choose $\varphi(w) \triangleq ||F(w)||^2$.
- Backtracking for step size α_k :
 - Centrality conditions.
 - 2 With a slight abuse of notation, we also let

$$\varphi(\alpha) \triangleq \varphi(\underline{\bar{R}_{w_k}(\alpha \Delta w_k)}) \text{ for fixed } w_k \text{ and } \Delta w_k,$$

$$\text{(15)}$$

then
$$\varphi(0) = \varphi(w_k) =: \varphi_k$$
 and $\varphi'(0) = \langle \operatorname{grad} \varphi(w_k), \Delta w_k \rangle$. Sufficient decreasing asks
$$\varphi(\alpha_k) - \varphi(0) \leq \alpha_k \beta \varphi'(0).$$

¹The most classic global algorithm for Euclidean IPM is [El-Bakry et al., 1996].

Global Line Search RIPM Algorithm¹

- **Merit function:** Choose $\varphi(w) \triangleq ||F(w)||^2$.
- Backtracking for step size α_k :
 - Centrality conditions.
 - 2 With a slight abuse of notation, we also let

$$\varphi(\alpha) \triangleq \varphi(\underline{\bar{R}_{w_k}(\alpha \Delta w_k)}) \text{ for fixed } w_k \text{ and } \Delta w_k,$$

$$\text{new iterate}$$
(15)

then
$$\varphi(0) = \varphi(w_k) =: \varphi_k$$
 and $\varphi'(0) = \langle \operatorname{grad} \varphi(w_k), \Delta w_k \rangle$. Sufficient decreasing asks
$$\varphi(\alpha_k) - \varphi(0) \leq \alpha_k \beta \varphi'(0).$$

• **Descent direction:** Let Δw_k be the solution of $\nabla F(w_k) \Delta w_k = -F(w_k) + \rho_k \sigma_k \hat{e}$, then

$$\varphi'(0) < 0$$
 when we set $\rho_k := s_k^T z_k / m, \sigma_k \in (0, 1)$.

The sequence $\{\varphi_k\}$ is monotonically decreasing.

¹The most classic global algorithm for Euclidean IPM is [El-Bakry et al., 1996].

Global Convergence Theorem

Assumptions:

- the functions f(x), h(x), g(x) are smooth; the set $\{\operatorname{grad} h_i(x)\}_{i=1}^l$ is linearly independent in $T_x\mathbb{M}$ for all x; and $w \mapsto \nabla F(w)$ is Lipschitz continuous;
- 2) the sequences $\{x_k\}$ and $\{z_k\}$ are bounded;
- 3 the operator $\nabla F(w)$ is nonsingular.

Theorem (Global Convergence, L. 2022)

Let $\{\sigma_k\} \subset (0,1)$ bounded away from zero and one. If Assumptions $1 \sim 3$ hold, then $\{F(w_k)\}$ converges to zero; and for any limit point $w^* = (x^*, y^*, z^*, s^*)$ of $\{w_k\}$, x^* is a Riemannian KKT point of problem (RCOP).

- Introduction
 Background
 Preliminaries
- 2 Our proposal: Riemannian Interior Point Methods

Formulation of RIF Global Algorithms

Implementation

- Numerical Experiments
- 4 Future work

Dominant cost — solving Newton equation

Dominant cost is to solve

$$\nabla F(w)\Delta w = -F(w) + \mu \hat{e},\tag{16}$$

where

$$F(w) = \begin{pmatrix} F_x \triangleq \operatorname{grad}_x \mathcal{L}(x, y, z) \\ F_y \triangleq h(x) \\ F_z \triangleq g(x) + s \\ F_s \triangleq ZSe \end{pmatrix}, \quad \hat{e} \triangleq \begin{pmatrix} 0_x \\ 0 \\ 0 \\ e \end{pmatrix}.$$
 (17)

Thus, we need to solve the following linear system on $T_x \mathbb{M} \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m$:

$$\begin{pmatrix} \operatorname{Hess}_{x} \mathcal{L}(w) \Delta x + H_{x} \Delta y + G_{x} \Delta z \\ H_{x}^{*} \Delta x \\ G_{x}^{*} \Delta x + \Delta s \\ Z \Delta s + S \Delta z \end{pmatrix} = \begin{pmatrix} -F_{x} \\ -F_{y} \\ -F_{z} \\ -F_{s} + \mu e \end{pmatrix}.$$
(18)

Two substitutions $\Delta s = Z^{-1} \left(\mu e - F_s - S \Delta z \right)$, $\Delta z = S^{-1} \left[Z \left(G_x^* \Delta x + F_z \right) + \mu e - F_s \right]$ from 3rd and 4th rows.

Condensed form of Newton equation

It suffices to focus on **condensed form** on $T_x \mathbb{M} \times \mathbb{R}^l$:

$$\mathcal{T}(\Delta x, \Delta y) := \begin{pmatrix} A_w \Delta x + H_x \Delta y \\ H_x^* \Delta x \end{pmatrix} = \begin{pmatrix} c \\ q \end{pmatrix}, \tag{19}$$

where

$$\mathcal{A}_{w} \triangleq \operatorname{Hess}_{x} \mathcal{L}(w) + G_{x} S^{-1} Z G_{x}^{*},$$

$$c := -F_{x} - G_{x} S^{-1} \left(Z F_{z} + \mu e - F_{s} \right), \quad q := -F_{y}.$$
(20)

- A_w is self-adjoint (but may indefinite) on $T_x\mathbb{M}$.
- \mathcal{T} is self-adjoint (but may indefinite) on $T_x \mathbb{M} \times \mathbb{R}^l$. This is a saddle point problems on Hilbert space.
- The Riemannian situation leaves us with no explicit matrix form available.
- A simple approach is to first find the representing matrix \hat{T} . (Expensive!)

Krylov subspace methods on Tangent space

An ideal approach is to use iterative methods, such as **Krylov subspace methods** (e.g., Conjugate Gradients method [Boumal, 2022, Chapter 6.3]), on $T_x \mathbb{M} \times \mathbb{R}^l$ directly.

For simplicity, we consider the case of only inequality constraints, where Δy vanishes and only

$$\mathcal{A}_{w}\Delta x = c \text{ on } T_{x}\mathbb{M} \tag{21}$$

needs to be solved.

Krylov subspace methods on Tangent space

An ideal approach is to use iterative methods, such as **Krylov subspace methods** (e.g., Conjugate Gradients method [Boumal, 2022, Chapter 6.3]), on $T_x \mathbb{M} \times \mathbb{R}^l$ directly.

For simplicity, we consider the case of only inequality constraints, where Δy vanishes and only

$$\mathcal{A}_{w}\Delta x = c \text{ on } T_{x}\mathbb{M} \tag{21}$$

needs to be solved.

- It only needs to call an abstract linear operator $v \mapsto A_w v$. (matrix-vector product)
- All the iterates v_k are in $T_x \mathbb{M}$.
- Since operator A_w is self-adjoint but indefinite, we use Conjugate Residual (CR) method to solve it.

The discussion of above can be naturally extended to the general case.

- Introduction
 Background
 Preliminaries
- Our proposal: Riemannian Interior Point Methods Formulation of RIPM Global Algorithms Implementation
- **3** Numerical Experiments
- 4 Future work

Numerical Experiments

We compare with the other Riemannian methods:²

- RALM : Riemannian augmented Lagrangian method.
- REPM(LQH): Riemannian exact penalty method with smoothing function LQH.
- REPM(LSE): Riemannian exact penalty method with smoothing function LSE.
- RSQP: Riemannian sequential quadratic programming.
- RIPM (Our method): Riemannian interior point method.

KKT residual is defined by

$$\sqrt{\left\|\operatorname{grad}_{x}\mathcal{L}(w)\right\|^{2} + \sum_{i=1}^{m} \left\{\min\left(0, z_{i}\right)^{2} + \max\left(0, g_{i}(x)\right)^{2} + \left|z_{i}g_{i}(x)\right|^{2}\right\} + \sum_{i=1}^{l} \left|h_{i}(x)\right|^{2}} + \operatorname{Manvio}(x),$$

where Manvio measures the violation of manifold constraints.

²The numerical experiments were performed in Matlab R2022a on a computer equipped with an Intel Core i7-10700 at 2.90GHz with 16GB of RAM.

Problem I — Nonnegative Low Rank Matrix Approximation (NLRM)

Problem I

[Song and Ng, 2020] proposed

$$\min_{X \in \mathbb{R}_r^{m \times n}} \|A - X\|_F^2 \quad \text{ s.t. } X \ge 0, \tag{NLRM}$$

where
$$\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r\}$$
.

Data setting:

$$B = rand(m, r);$$

$$C = rand(r, n);$$

$$A = B*C+sigma*randn(m,n);$$

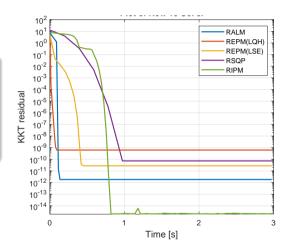


Figure: m = 10, n = 8, r = 3 and $\sigma = 0.01$.

Problem II — Projection onto nonnegative Stiefel manifold

Problem II

Given $C \in \mathbb{R}^{n \times k}$, we consider

$$\min_{X \in \operatorname{St}(n,k)} \|X - C\|_F^2, \quad \text{ s.t. } X \ge 0, \tag{Model_St}$$

which can be equivalently reformulated [Jiang et al., 2022, Lemma 2.1] into

$$\min_{X\in \mathrm{OB}(n,k)}\|X-C\|_F^2\quad \text{ s.t. } X\geq 0, \text{ and } \|XV\|_F=1. \tag{Model_Ob}$$

Here,

- Stiefel manifold, $\operatorname{St}(n,k) \triangleq \{X \in \mathbb{R}^{n \times k} : X^{\top}X = I\}.$
- Oblique manifold, $OB(n, k) \triangleq \{X \in \mathbb{R}^{n \times k} : \text{ all columns have unit norm}\}.$
- V is an arbitrary constant matrix satisfying $||V||_F = 1$ and $VV^\top > 0$ (irrelevant to X, C).

Problem II — Projection onto nonnegative Stiefel manifold

- For each Model, we conducted 20 random trials.
- Each experiment terminated successfully if a solution with KKT residual $\epsilon_{kkt} = 10^{-6}$ was found.
- It failed if the maximum iteration 10,000 or maximum time 600 [s] was reached.³

Table: Model_St

(n,k)	(60,12)			(70,14)		
	Rate	Time [s]	Iter.	Rate	Time [s]	Iter.
RALM	1	4.097	34	1	6.234	37
REPM(LQH)	0	-	-	0	-	-
REPM(LSE)	0	-	-	0	-	-
RSQP	0.65	78.02	7	0.85	166.1	7
RIPM	1	5.555	32	1	7.574	33

Table: Model_Ob

(n,k)	(60,12)			(70,14)		
	Rate	Time [s]	Iter.	Rate	Time [s]	Iter.
RALM	0.6	5.725	49	0.6	8.223	52
REPM(LQH)	0	-	-	0	-	-
REPM(LSE)	0	-	-	0	-	-
RSQP	0.7	44.46	5	0.5	91.38	5
RIPM	1	7.134	23	1	9.268	24

³The success rate (Rate) over the total number of trials, the average time in seconds (Time [s]) and the average iteration number (Iter.) among the successful trials.

Riemannian Interior Point Methods (RIPM)

- Introduction Background Preliminaries
- Our proposal: Riemannian Interior Point Methods Formulation of RIPM Global Algorithms Implementation
- Numerical Experiments
- 4 Future work

Concluding remarks

We consider

$$\min_{\substack{x \in \mathbb{M} \\ \text{s.t.}}} f(x)$$
s.t. $h(x) = 0$, and $g(x) \le 0$, (RCOP)

where \mathbb{M} is a Riemannian manifold, $f: \mathbb{M} \to \mathbb{R}, h: \mathbb{M} \to \mathbb{R}^l$, and $g: \mathbb{M} \to \mathbb{R}^m$.

Contributions:

- We proposed a Riemannian version of the interior point method.
- 2 We proved the local superlinear/quadratic and global convergence.

Future Work

Future Work

1 Preconditioner for linear operator equation. Recall that we use Krylov subspace methods to solve

$$\mathcal{T}(\Delta x, \Delta y) := \begin{pmatrix} A_w \Delta x + H_x \Delta y \\ H_x^* \Delta x \end{pmatrix} = \begin{pmatrix} c \\ q \end{pmatrix}, \tag{22}$$

where $A_w \triangleq \operatorname{Hess}_x \mathcal{L}(w) + G_x S^{-1} Z G_x^*$. Due to the strictly complementary condition, as $k \to \infty$, the values of $S_k^{-1} Z_k$ display a huge difference of magnitude. Hence, $\Theta := G_x S^{-1} Z G_x^*$ makes \mathcal{T} very ill-conditioned.

One possible way is to find another nonsingular operator \mathcal{P} such that the condition number of new operator $\mathcal{P}^{-1}\mathcal{T}$ becomes smaller.

Future Work

1 Preconditioner for linear operator equation. Recall that we use Krylov subspace methods to solve

$$\mathcal{T}(\Delta x, \Delta y) := \begin{pmatrix} A_w \Delta x + H_x \Delta y \\ H_x^* \Delta x \end{pmatrix} = \begin{pmatrix} c \\ q \end{pmatrix}, \tag{22}$$

where $\mathcal{A}_w \triangleq \operatorname{Hess}_x \mathcal{L}(w) + G_x S^{-1} Z G_x^*$. Due to the strictly complementary condition, as $k \to \infty$, the values of $S_k^{-1} Z_k$ display a huge difference of magnitude. Hence, $\Theta := G_x S^{-1} Z G_x^*$ makes \mathcal{T} very ill-conditioned.

One possible way is to find another nonsingular operator \mathcal{P} such that the condition number of new operator $\mathcal{P}^{-1}\mathcal{T}$ becomes smaller.

- 2 Sophisticated global strategies. Recall that now we use
 - Merit function $\varphi(w) = ||F(w)||^2$. (too simple)
 - Backtracking for line-search.

The more sophisticated and robust global strategies are often based on the trust region or filter line-search method.

Reference I

[Bergmann and Herzog, 2019] Bergmann, R. and Herzog, R. (2019).

Intrinsic formulation of KKT conditions and constraint qualifications on smooth manifolds.

SIAM Journal on Optimization, 29(4):2423–2444.

[Boumal, 2022] Boumal, N. (2022).

An introduction to optimization on smooth manifolds.

To appear with Cambridge University Press.

[Do Carmo and Flaherty Francis, 1992] Do Carmo, M. P. and Flaherty Francis, J. (1992).

Riemannian geometry, volume 6.

Springer.

[El-Bakry et al., 1996] El-Bakry, A., Tapia, R. A., Tsuchiya, T., and Zhang, Y. (1996).

On the formulation and theory of the Newton interior-point method for nonlinear programming.

Journal of Optimization Theory and Applications, 89(3):507–541.

[Fernandes et al., 2017] Fernandes, T. A., Ferreira, O. P., and Yuan, J. (2017).

On the superlinear convergence of Newton's method on Riemannian manifolds.

Journal of Optimization Theory and Applications, 173(3):828-843.

Reference II

[Ferreira and Silva, 2012] Ferreira, O. P. and Silva, R. C. (2012).

Local convergence of Newton's method under a majorant condition in Riemannian manifolds.

IMA Journal of Numerical Analysis, 32(4):1696–1713.

[Forsgren et al., 2002] Forsgren, A., Gill, P. E., and Wright, M. H. (2002).

Interior methods for nonlinear optimization.

SIAM Review, 44(4):525-597.

[Jiang et al., 2022] Jiang, B., Meng, X., Wen, Z., and Chen, X. (2022).

An exact penalty approach for optimization with nonnegative orthogonality constraints.

Mathematical Programming, pages 1-43.

[Liu and Boumal, 2020] Liu, C. and Boumal, N. (2020).

Simple algorithms for optimization on Riemannian manifolds with constraints.

Applied Mathematics & Optimization, 82(3):949–981.

[Obara et al., 2022] Obara, M., Okuno, T., and Takeda, A. (2022).

Sequential quadratic optimization for nonlinear optimization problems on riemannian manifolds.

SIAM Journal on Optimization, 32(2):822-853.

Reference III

[Schiela and Ortiz, 2020] Schiela, A. and Ortiz, J. (2020).

An SQP method for equality constrained optimization on manifolds.

arXiv preprint arXiv:2005.06844.

[Song and Ng, 2020] Song, G.-J. and Ng, M. K. (2020).

Nonnegative low rank matrix approximation for nonnegative matrices.

Applied Mathematics Letters, 105:106300.

[Yamakawa and Sato, 2022] Yamakawa, Y. and Sato, H. (2022).

Sequential optimality conditions for nonlinear optimization on Riemannian manifolds and a globally convergent augmented lagrangian method.

Computational Optimization and Applications, pages 1–25.

[Yamashita and Yabe, 1996] Yamashita, H. and Yabe, H. (1996).

Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimization.

Mathematical Programming, 75(3):377–397.

[Yang et al., 2014] Yang, W. H., Zhang, L.-H., and Song, R. (2014).

Optimality conditions for the nonlinear programming problems on Riemannian manifolds.

Pacific Journal of Optimization, 10(2):415-434.

The End

Questions? Comments?

Appendix.

Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

- **1 EIPM is a special case of RIPM** when $\mathbb{M} \equiv \mathbb{R}^n$ or $\mathbb{R}^{n \times k}$.
- 2 RIPM can solve a condensed equation (23) of smaller order.

$$\mathcal{T}(\Delta x, \Delta y) := \begin{pmatrix} A_w \Delta x + H_x \Delta y \\ H_x^* \Delta x \end{pmatrix} = \begin{pmatrix} c \\ q \end{pmatrix}, \tag{23}$$

For example, the Stiefel manifold can be used as the equality constraints; i.e., we set $h: \mathbb{M} \equiv \mathbb{R}^{n \times k} \to \operatorname{Sym}(k)$, where $h(X) = X^{\top}X - I_k$. Here, EIPM requires us to solve (23) of order nk + k(k+1)/2.

But RIPM only requires us to solve a problem of order nk - k(k+1)/2, i.e., the dimension of St(n,k).

3 Not all manifolds are equivalent to the <u>smooth</u> equality constraints. For example, rank(X) = r is <u>not continuous</u>, we can not apply EIPM.

Riemannian Newton method

Riemannian Newton method: Consider

$$F(x) = 0. (24)$$

Solve a linear system on $T_{x_k}M \ni v_k$:

$$\nabla F(x_k)v_k = -F(x_k)$$

then $x_{k+1} = R_{x_k}(v_k)$.

Standard Newton assumptions & Local Convergence Results:

(N1)There exists $x^*: F(x^*) = 0$. (N2) $\nabla F(x^*)$ is nonsingular operator. \Rightarrow superlinear[Fernandes et al., 2017] \Rightarrow quadratic[Ferreira (N3) ∇F is locally Lipschitz cont. at x^* .

Riemannian Interior Point Methods

Superlinear and Quadratic Convergence

- **1** Existence. There exists w^* satisfying the KKT conditions.
- **2** Smoothness. The functions f, g, h are smooth on \mathcal{M} .
- **3** Regularity. The set $\{\operatorname{grad} h_i(x^*): i=1,\cdots,l\} \cup \{\operatorname{grad} g_i(x^*): i\in \mathcal{A}(x)\}$ is linearly independent in $T_{x^*}\mathcal{M}$.
- **4** Strict Complementarity. $(z^*)_i > 0$ if $g_i(x^*) = 0$ for all $i = 1, \dots, m$.
- **Second-Order Sufficiency.** $\langle \text{Hess}_x \mathcal{L}(w^*)\xi, \xi \rangle > 0$ for all nonzero $\xi \in T_{x^*}\mathbb{M}$ satisfying $\langle \xi, \text{grad } h_i(x^*) \rangle = 0$ for $i = 1, \dots, l$, and $\langle \xi, \text{grad } g_i(x^*) \rangle = 0$ for $i \in \mathcal{A}(x^*)$.

Proposition (L. 2022)

If assumptions (1)-(5) hold, then standard Newton assumptions (N1)-(N3) hold for KKT vector field F.

Riemannian Interior Point Methods

Superlinear and Quadratic Convergence

On the other hand, to keep $(s_k, z_k) \ge 0$:

• Introducing the **perturbed** complementary equation,

$$Z\Delta s + S\Delta z = -ZSe + \mu e, \tag{25}$$

so that we are able to keep the iterates far from the boundary.

• Compute the **damped** step sizes α_k , e.g., choose $\gamma_k \in (0,1)$ and compute

$$\alpha_{\mathbf{k}} := \min \left\{ 1, \gamma_{\mathbf{k}} \min_{i} \left\{ -\frac{(s_{k})_{i}}{(\Delta s_{k})_{i}} \mid (\Delta s_{k})_{i} < 0 \right\}, \gamma_{\mathbf{k}} \min_{i} \left\{ -\frac{(z_{k})_{i}}{(\Delta z_{k})_{i}} \mid (\Delta z_{k})_{i} < 0 \right\} \right\}, \tag{26}$$

such that $(s_{k+1}, z_{k+1}) > 0$.

The relation of α_k and γ_k : [Yamashita and Yabe, 1996]

- 2 If $1 \gamma_k = O(\|F(w_k)\|)$, then $1 \alpha_k = O(\|F(w_k)\|)$.

History of Euclidean Interior Point Method

Interior Point (IP) Method for NONLINEAR, NONCONVEX (1990-)

Early phase (1990-1995)

- Local algorithms with superlinear/ quadratic convergence [El-Bakry et al., 1996, Yamashita and Yabe, 1996].
- Global algorithms [El-Bakry et al., 1996]

Variations (1995-2010)

- Inexact Newton/ Quasi Newton IP Method
- Global strategy: *many* merit functions; linear search, or trust region, etc.

Update by Retraction

At a current point w = (x, y, z, s) and direction $\Delta w = (\Delta x, \Delta y, \Delta z, \Delta s)$, the next iterate is calculated along a curve on \mathcal{M} , i.e.,

$$w(\alpha) := \bar{R}_w(\alpha \Delta w), \tag{27}$$

for some step length $\alpha > 0$.

By introducing

$$w(\alpha) = (x(\alpha), y(\alpha), z(\alpha), s(\alpha)), \tag{28}$$

we have

$$x(\alpha) = R_x(\alpha \Delta x),$$

and
$$y(\alpha) = y + \alpha \Delta y, z(\alpha) = z + \alpha \Delta z, s(\alpha) = s + \alpha \Delta s.$$

Centrality conditions

Given $w_0 = (x_0, y_0, z_0, s_0)$ with $(z_0, s_0) > 0$, let $\tau_1 := \frac{\min(Z_0 S_0 e)}{z_0^T s_0 / m}$, $\tau_2 := \frac{z_0^T s_0}{\|F(w_0)\|}$. Let $\gamma \in (0, 1)$ be a constant. Define centrality functions:

$$f^{I}(\alpha) := \min(Z(\alpha)S(\alpha)e) - \gamma \tau_{1} \frac{z(\alpha)^{T}s(\alpha)}{m}, \tag{29}$$

$$f^{II}(\alpha) := z(\alpha)^T s(\alpha) - \gamma \tau_2 ||F(w(\alpha))||.$$
(30)

For i = I, II, let

$$\alpha^{i} := \max_{\alpha \in (0,1]} \left\{ \alpha : f^{i}(t) \ge 0, \text{ for all } t \in (0,\alpha] \right\}.$$

$$(31)$$

Global RIP Algorithm

1 Choose $\sigma_k \in (0,1)$; for w_k , compute the perturbed Newton direction Δw_k with

$$\mu_k = z_k^T s_k / m \tag{32}$$

and by

$$\nabla F(w)\Delta w = -F(w) + \sigma_k \mu_k \hat{e}. \tag{33}$$

- 2 Step length selection.
 - Centrality conditions: Choose $1/2 < \gamma_k < \gamma_{k-1} < 1$; compute $\alpha^i, i = I, II$, from (31); and let

$$\bar{\alpha}_k = \min(\alpha^I, \alpha^{II}). \tag{34}$$

2 Sufficient decreasing: Choose $\theta \in (0, 1)$, and $\beta \in (0, 1/2]$. Let $\alpha_k = \theta^t \bar{\alpha}_k$, where t is the smallest nonnegative integer such that α_k satisfies

$$\varphi(\bar{R}_{w_k}(\alpha_k \Delta w_k)) - \varphi(w_k) \le \alpha_k \beta \langle \operatorname{grad} \varphi_k, \Delta w_k \rangle. \tag{35}$$

3 Let $w_{k+1} = \bar{R}_{w_k}(\alpha_k \Delta w_k)$ and $k \leftarrow k+1$.

Auxiliary Results I: Boundedness of the sequences

Given $\epsilon \geq 0$, let us define the set

$$\Omega(\epsilon) := \left\{ w \in \mathcal{M} : \epsilon \le \varphi(w) \le \varphi_0, \min(ZSe) / (z^T s / m) \ge \tau_1 / 2, z^T s / ||F(w)|| \ge \tau_2 / 2 \right\}.$$

Lemma (Boundedness of the sequences I, L. 2022)

If $\epsilon > 0$ and $w_k \in \Omega(\epsilon)$ for all k, then

- the sequence $\{z_k^T s_k\}$ and $\{(z_k)_i(s_k)_i\}$, $i=1,2,\ldots,m$, are all bounded above and below away from zero.
- 2) the sequence $\{z_k\}$ and $\{s_k\}$ are bounded above and component-wise bounded away from zero;
- **3** the sequence $\{w_k\}$ is bounded;
- **4** the sequence $\{\|\nabla F(w_k)^{-1}\|\}$ is bounded;
- **5** the sequence $\{\Delta w_k\}$ is bounded.

Lemma (Boundedness of the sequences II, L. 2022)

If $\{\sigma_k\}$ is bounded away from zero. Then, $\{\bar{\alpha}_k\}$ is bounded away from zero.

Auxiliary Results II: Continuity of Some Special Scalar Fields

Lemma (L. 2022)

Let $x \in \mathcal{M}$ and A_x be a linear operator on $T_x\mathcal{M}$. Then, the values $\|\widehat{A}_x\|_2$ and $\|\widehat{A}_x\|_F$ are invariant under a change of orthonormal basis; moreover,

$$||A_x|| = ||\hat{A}_x||_2 \le ||\hat{A}_x||_F. \tag{36}$$

Lemma (L. 2022)

$$x \mapsto \|\widehat{\operatorname{Hess}}f(x)\|$$
 (37)

is a continuous scalar field on \mathbb{M} . It is true for all h_i , g_i .

$$x \mapsto \|H_x\| \text{ and } x \mapsto \|G_x\|$$
 (38)

are continuous scalar field on M.

Global Convergence Theorem

This theorem, now, is only proved under exponential map exp.

Lemma (Gauss [Do Carmo and Flaherty Francis, 1992, Lemma 3.5])

Let $p \in \mathcal{M}$ and let $v \in T_p \mathcal{M}$ such that $\exp_p(v)$ is well defined. Let $w \in T_p \mathcal{M} \approx T_v(T_p \mathcal{M})$. Then

$$\langle \mathcal{D} \exp_p(\nu)[\nu], \mathcal{D} \exp_p(\nu)[w] \rangle = \langle \nu, w \rangle.$$
 (39)

Conjugate Gradients (CG) on a tangent space

Input: positive definite map
$$H$$
 on $T_x\mathcal{M}$ and $b \in T_x\mathcal{M}, b \neq 0$
Set $v_0 = 0, r_0 = b, p_0 = r_0$
For $n = 1, 2, ...$
Compute Hp_{n-1} (this is the only call to H)
$$\alpha_n = \frac{\|r_{n-1}\|_x^2}{\langle p_{n-1}, Hp_{n-1}\rangle_x}$$

$$v_n = v_{n-1} + \alpha_n p_{n-1}$$

$$r_n = r_{n-1} - \alpha_n Hp_{n-1}$$
If $r_n = 0$, output $s = v_n$: the solution of $Hs = b$

$$\beta_n = \frac{\|r_n\|_x^2}{\|r_{n-1}\|_x^2}$$

$$p_n = r_n + \beta_n p_{n-1}$$

- Exactly the same in form of usual CG.
- 2 Every vectors v_n, r_n, p_n belong to tangent space $V \equiv T_x \mathcal{M}$.
- 3 Converges very fast if *H* is PD with small condition number.

Consider

$$\min_{x \in \mathbb{M}} \quad f(x) \quad \text{s.t.} \quad c(x) \ge 0. \tag{RCOP_Ineq}$$

Its logarithmic barrier function is

$$B(x; \mu) := f(x) - \mu \sum_{i=1}^{m} \log c_i(x),$$

where $\mu > 0$. Note that the function $x \mapsto B(x; \mu)$ is differentiable on, strict $\mathcal{F} := \{x \in \mathbb{M} : c(x) > 0\}$. Its Riemannian gradient is

$$\operatorname{grad} B(x; \mu) = \operatorname{grad} f(x) - \sum_{i=1}^{m} \frac{\mu}{c_i(x)} \operatorname{grad} c_i(x).$$

Barrier Method on Manifolds

- Set $x_0 \in \mathbb{M}$ to a strictly feasible point, i.e., $c(x_0) > 0$, and set $\mu_0 > 0$ and $k \leftarrow 0$.
- 2 Check whether x_k satisfies a stopping test for (RCOP_Ineq).
- **3** Compute an unconstrained minimizer $x(\mu_k)$ of $B(x; \mu_k)$ with a warm starting point x_k .
- 4 $x_{k+1} \leftarrow x(\mu_k)$; choose $\mu_{k+1} < \mu_k$; $k \leftarrow k+1$. Return to Step 1.

\mathbf{C}

onsider the following simple problem on a sphere manifold, $\mathbb{S}^2 := \{x \in \mathbb{R}^3 : ||x||_2 = 1\},$

$$\min_{x \in \mathbb{S}^2} \quad a^T x \quad \text{s.t.} \quad x \ge 0, \tag{SP}$$

where $a = [-1, 2, 1]^T$. Its solution is $x^* = [1, 0, 0]^T$.

Now, check the KKT conditions at x (asterisks omitted below):

$$\operatorname{grad} f(x) = (I_n - xx^T)a = [0, 2, 1]^T.$$

The constraint $x \ge 0$ implies $c_i(x) = e_i^T x$ for i = 1, 2, 3;

grad
$$c_1(x) = (I_n - xx^T)e_1 = [0, 0, 0]^T;$$

grad $c_2(x) = (I_n - xx^T)e_2 = [0, 1, 0]^T;$
grad $c_3(x) = (I_n - xx^T)e_3 = [0, 0, 1]^T.$

Clearly, the multipliers $z^* = [0, 2, 1]^T$, and LICQ and strict complementarity hold.

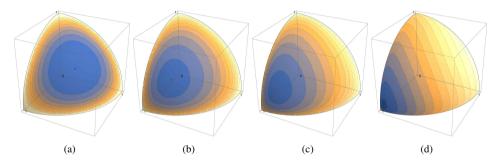


Figure: Contour plots of logarithmic barrier function $B(x; \mu)$ of (SP) for (a) $\mu = 10$ (b) $\mu = 1$ (c) $\mu = 0.5$ (d) $\mu = 0.1$. The blue area indicates low values.

Finally, we find that $\lim_{k\to\infty} x_k = x^*$ and that

$$\lim_{k \to \infty} \mu_k / c_1 \left(x_k \right) = 0 = z_{(1)}^*, \lim_{k \to \infty} \mu_k / c_2 \left(x_k \right) = 2 = z_{(2)}^*, \lim_{k \to \infty} \mu_k / c_3 \left(x_k \right) = 1 = z_{(3)}^*,$$

which are the notable features of the classical barrier method; see [Forsgren et al., 2002, Theorem 3.10 & 3.12].

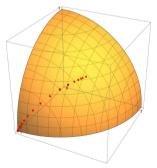


Figure: Iterates x_k of barrier method for (SP).

Furthermore, if we denote the minimizer of $B(x; \mu)$ by either x_{μ} or $x(\mu)$, it must be that $\operatorname{grad} B(x_{\mu}; \mu) = 0$.

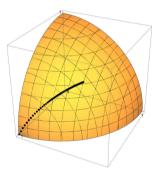


Figure: Existence of a central path for (SP).