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Riemannian Manifold

A Riemannian manifold M is a set that can be locally linearizable, with a smooth
mapping x — (-, -)x, which is an inner product on the tangent spaces T, M.
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Figure: Unit sphere: M = {x € R" : ||x||]2 =1} and .M = {v € R" : (x,v) = 0}.

M
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Riemannian Optimization

Givenf: M — R, solve

min f{x)

xXEM

where M is a Riemannian manifold.

Figure: Iteration on unit sphere.

40+ available manifolds M in Riemannian solver “Manopt” [Boumal et al., ]:
e Stiefel manifold, St(n, k) = {X € R™*: XTX = I}.
® Fixed rank manifold, R"*" = {X € R™*" : rk(X) = r}.

Riemannian version of classical methods. (2002-) steepest decent, conjugate

gradient, trust region, BFGS, proximal gradient, ADMM and more.
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https://www.manopt.org/index.html

Riemannian Optimization

Givenf: M — R, solve

min f(x) Fomlaionof RPW

xXEM

where M is a Riemannian manifold.

Figure: Iteration on unit sphere.

Advantages of Riemannian Optimization:
@ Exploit the geometric structure of the constrained set.
® Convergence properties of like optimization on Euclidean space.

® No need to consider Lagrange multipliers or penalty functions.
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Applications

® PCA on Stiefel manifold,
St(n, k) = {X e R™k: XTX =1}.

Introduction

min — trace(XTATAX). el
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More Requirements in Applications

® Nonnegative PCA on Stiefel manifold,
St(n, k) = {X e R™k: XTX =1}.

Introduction
min _ trace(XTATAX) Preliminaries
XeSt(n,k) Our proposal:
Riemannian Interior
st. X > U Point Methods

Formulation of RIPM

Global Algorithms

e Nonnegative matrix completion on fixed rank manifold, N
R;an — {X e Rmx” . I'k(X) — }"}, Experiments
Concluding
. 2
min E (Xij — Ayj)
XER (i eq
s.t. X>0

~> What should we do at this point?
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Some limitations of Riemannian optimization

Given f: M — R, solve
min f{x)

xeM

where M is a Riemannian manifold.

Some limitations of Riemannian optimization are:

@ Existing manifold solvers lack flexibility, and adding even one more constraint
can make it impossible to use them directly. E.g., x € M, x > 0.

® Adding new constraints does not necessarily guarantee that the feasible set is
still a manifold.

~» We are attempting to develop a new model to address these issues.
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New Topic — Riemannian Constrained Optimization Problem

‘We consider

min  f(x)
xEM (RCOP)
s.t.  h(x) =0, and g(x) <0,

where f: M — R,h: M — R/ and g : M — R™.

Advantages of (RCOP):

@ Still using the geometric structure of M. The advantages of Riemannian
optimization are maintained.
® Very flexible, even if the constraints of 4, g cannot form a new manifold.
Riemannian version of classical algorithms:
® Augmented Lagrangian Method [Liu and Boumal, 2020, Yamakawa and Sato, 2022];
® Exact Penalty Method [Liu and Boumal, 2020];
® Sequential Quadratic Programming Method [Schiela and Ortiz, 2020, Obara et al., 2022].
® -~ In this talk, we consider Riemannian version of Interior Point Method.
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Q1: How to move on manifolds? Retraction!
A retraction R maps tangent vectors back to the manifold.

R, : T.M — M for any x.
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Euclidean Riemannian
Xkp1 = Xk 4+ axdy | X1 = Ry (audy)
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Q2: Where to move towards on manifolds? Riemannian Gradient!
For an embedded submanifold M, Riemannian gradient of /: M — R is the
orthogonal projection onto 7,M of the Euclidean gradient,

Introduction

grad f(x) = Proj,(egrad f(x)).
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Supplementary: Vector fields on manifolds

A vector field is a mapping F defined on M such that F(x) € T, M for all x € M.
Riemannian gradient,
x — grad f(x),

is a vector field generated by scalar field f: M — R.

Figure: A vector field on a unit sphere. Source: Wikipedia.
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https://en.wikipedia.org/wiki/Vector_field

Covariant derivative & Hessian & Riemannian Newton method

Covariant derivative of a vector field F:

Riemannian connection
VF(x): TxM — T\ M, linear operator.

general vector field

Specially, Hess f(x) = V gradf(x) is called Riemannian Hessian.
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Covariant derivative & Hessian & Riemannian Newton method

Covariant derivative of a vector field F:

Riemannian connection
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Riemannian Newton method: To find singularity x* € M such that F(x*) = 0,~.
(Step 1.) Solve a linear system on T, M > vy :

VF(xp)ve = —F(xz), (D
(Step 2.) xg+1 = Ry, (vk). Return to Step 1.
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Formulation of RIPM

‘We consider

mln f(x) Introduction
S (RCOP)
s.t.  h(x) =0, and g(x) <0,

Our proposal:

Riemannian Interior
where f: M — R, h: M — R/ and g : M — R™. Point Methods
Lagrangian function is N

Experiments
L A 772 T 2 et
(x,,2) = fx) + ¥ h(x) + 2" g(x). (2) | Concluding

x +— L(x,y,z) is a real-valued function on M,
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Formulation of RIPM

We consider '

min - f(x)

s.t.  h(x) =0, and g(x) <0,
where f: M — R,h: M — R/ and g : M — R™.

Lagrangian function is

L(x,y,2) £ flx) + y'h(x) + 2"g(x).

x +— L(x,y,z) is a real-valued function on M, then we have

* grad, £(x,y,2) = grad f(x) + 3 i, yi grad hi(x) + 2L, 7 grad gi(x),

® Hess, L£(x,y,z) = Hessf(x) + Z§:1 yiHess hij(x) + > " | zi Hess gi(x).

(RCOP)

2)

Introduction

Prelimin

Our proposal:
Riemannian Interior
Point Methods

Global Algorithms

Numerical
Experiments

Concluding

19/38



KKT Vector Field

Riemannian KKT conditions [Liu and Boumal, 2020] are
grad, L(x,y,2) = ()x,

h(x) =

glx) <

Zg(x) =

z

v

0
0, (Z := diag (z1, . ..
0.

yZm))

3
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KKT Vector Field

Riemannian KKT conditions [Liu and Boumal, 2020] are

grad, L(x,y,z) = 0y,

g(x) <0, 3)
Zg(x) = 0,(Z := diag (z1, .- ,2m))
0

Definition (KKT Vector Field, L. 2022)

Using s := —g(x), the above becomes
grad, L(x,y,2) 0y
A | A(x) 0
= = = >
F(w) 2(x) + s Oy : N E and (z,s) > 0, 4)
ZSe 0

where w := (x,y,2,5) € .4 = M x R x R™ x R, Note that T,,.# = T,M x R! x R™ x R™.
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Covariant Derivative of KKT Vector Field
For each x € M, we define
!
H.:R' - T.M, Hyv%: Zv,- grad h;(x).
i=1
Hence, the adjoint operator is

H':TM — R, H¢ = [(gradhy(x),6), - , (grad by(x),€),]

Lemma (L. 2022)
The linear operator VE(w) : Tt — T, M is given by

Hess, L(w)Ax + H.Ay + G, Az
H Ax
Vi) By = GiAx+ As ’

ZAs + SAz

where Aw = (Ax, Ay, As, Az) € T,M x R x R" x R" = T, /.

&)

(6)

(N
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Riemannian Interior Point Method (RIPM)

Step 0. Initial wy with (zg, so) > 0.
Step 1. Solve

VF(Wk)AWk = —F(Wk) + Iu/ké’ (8) Introduction
where ¢ = (0,,0,0, ¢). Pl
Step 2. Compute the step sizes oy such that (zy41, Sx+1) > 0. Ourproposel:
Step 3 Update: Point Methods
Wil = Ry, (e Awy). () I
Step 4. Let p; — 0. Return to 1. Numerical

Experiments

Concluding
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Riemannian Interior Point Method (RIPM)

Step 0. Initial wy with (zg, so) > 0.
Step 1. Solve

VF(wi)Awp = —F(wi) + e, ®)
where ¢ = (0,,0,0,¢).
Step 2. Compute the step sizes oy such that (zy41, Sx+1) > 0. L
Step 3. Update: Point Methods
Wir1 = Ry, (i Awy). (C) I
Step 4. Let px — 0. Return to 1. Humerical

}‘,\PL‘]'JIUL‘HL\
Theorem (Local Convergence, L. 2022) Coneluding
Under some standard assumptions.
® If e = o(||F(wi)l), e — 1, then {wy} locally, superlinearly converges to w*.

® If i = O(|Fwi)||1?), 1 — ax = O(||F(wi)||), then {wy} locally, quadratically
converges to w*.

22/38
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Global Line Search RIPM Algorithm
Merit function: Choose ¢(w) = ||[F(w)||%.
Backtracking for step size oy:
@ Centrality conditions.
® Sufficient decreasing condition.

With a slight abuse of notation, we also let

() = p(Ry, (Awy)) for fixed wy and Awy, (10)
5,—/
new iterate
then ¢(0) = p(wi) =: ¢ and ¢’ (0) = (grad p(wx), Awy). Sufficient decreasing
asks
p(ax) — 9(0) < axBe'(0).
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Global Line Search RIPM Algorithm
Merit function: Choose ¢(w) = ||[F(w)||%.
Backtracking for step size oy:
@ Centrality conditions.
® Sufficient decreasing condition.

With a slight abuse of notation, we also let

() = p(Ry, (Awy)) for fixed wy and Awy, (10)

new iterate
then ¢(0) = p(wi) =: ¢ and ¢’ (0) = (grad p(wx), Awy). Sufficient decreasing

asks
p(ar) — (0) < B’ (0).

Descent direction: Let Awy be the solution of VF(wy) Awy = —F(wy) + proe,
then ¢'(0) < 0 if we set p := s} z¢/m, ox € (0,1). Then, {4} is monotonically
decreasineg.

24/38



Global Convergence

Assumptions:

@ the functions f(x), h(x), g(x) are smooth; the set {grad hi(x)}ﬁ:1 is linearly independent
in T,M for all x; and w — VF(w) is Lipschitz continuous;

® the sequences {x;} and {z;} are bounded,;

© the operator VF(w) is nonsingular.

Theorem (Global Convergence, L. 2022)

Let {0y} C (0,1) bounded away from zero and one. If Assumptions 1~3 hold, then {F(wy)}
converges to zero; and for any limit point w* = (x*,y*,z*,5*) of {wi} ,x* is a Riemannian
KKT point of problem (RCOP).
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Numerical Experiments

We compare with the other Riemannian methods:!

® RALM : Riemannian augmented Lagrangian method.

e REPM_lgh : Riemannian exact penalty method with smoothing function LQH.

e REPM_lIse : Riemannian exact penalty method with smoothing function LSE.
e RSQP : Riemannian sequential quadratic programming.

e RIPM (Our method): Riemannian interior point method.
KKT residual is defined by

i=1 i=1

m !
J llgrad, £(w)[|* + > {min (0, )* + max (0, g:(x))* + |zigi(x)[*} + > |hi(x)|? + Manvio(x),

where Manvio measures the violation of manifold constraints.

IThe numerical experiments were performed in Matlab R2022a on a computer equipped with an
Intel Core i7-10700 at 2.90GHz with 16GB of RAM.
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Problem I [Song and Ng, 2020] proposed

Problem I — Nonnegative Low Rank Matrix Approximation
(NLRM)

min [|A — X||12r

XeRp<"

s.t. X > 0,

where RV = {X € R™" : tk(X) =

Data setting:

B
C

A

rand(m, r);
rand(r, n);

BxC+sigma*randn(m,n) ;

r}.

KKT residual

102
10’
10°
107!
102
103
10
1032
10°®
107
102
10°

100k
10—11 =

10—12
10—13

1014 E

Figure: m = 10,n = 8,r = 3 and 0 = 0.01.

-

—

RALM

REPM(LQH) | ]
REPM(LSE) |

RsSQP
RIPM
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Problem II — Projection onto nonnegative Stiefel manifold

Problem II[Jiang et al., 2022] Given C € R"**, we consider

min || X — C|%, st X>0, (Model_Stiefel)
XESt(n,k) Our proposal:
Riemannian Interior
which can be equivalently reformulated into B
min ||[X—C||? st X>0, and |[XV|F = 1. (Model_Oblique)
X€eOB(n,k)

Concluding

Here,
® Stiefel manifold, St(n, k) £ {X € R™*: XTX = I}.
® Oblique manifold, OB(n, k) £ {X € R™* : all columns have unit norm}.

® Vis an arbitrary constant matrix satisfying ||V||z = 1 and VVT > 0 (irrelevant to X, C).
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Problem II — Projection onto nonnegative Stiefel manifold

® For each Model, we conducted 20 random trials.

® Each experiment terminated successfully if solution with KKT residual < 10~% was found.

® [t failed if the maximum iteration 10,000 or maximum time 600 [s] was reached.?

Table: Results on (Model_Stiefel)

(n, k) (60,12) (70,14)

Rate Time [s] Iter.|Rate Time [s] Iter.
RALM 1 4.097 34 |1 6.234 37
REPM_Igh|0 - - |0 - -
REPM_lIse |0 - - 0 - -
RSQP 0.65 78.02 7 ]0.85 166.1 7
RIPM 1 5555 32 |1 7.574 33

2The success rate (Rate) over the total number of trials, the average time in seconds (Time [s]) and

the average iteration number (Iter.) among the successful trials.
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Problem II — Projection onto nonnegative Stiefel manifold

® For each Model, we conducted 20 random trials.

® Each experiment terminated successfully if solution with KKT residual < 10~° was found.

® [t failed if the maximum iteration 10,000 or maximum time 600 [s] was reached.?

Table: Results on (Model_Oblique)

(n, k) (60,12) (70,14)

Rate Time [s] Iter.|Rate Time [s] Iter.
RALM 0.6 5725 49 |0.6 8.223 52
REPM_Igh|0 - - 10 - -
REPM_lIse |0 - - 0 - -
RSQP 0.7 4446 5 |05 9138 5
RIPM 1 7134 23 |1 9.268 24

3The success rate (Rate) over the total number of trials, the average time in seconds (Time [s]) and

the average iteration number (Iter.) among the successful trials.
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Riemannian Interior
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Riemannian IPM (RIPM) vs. Euclidean IPM(EIPM)

Riemannian Constrained Optimization Problem

Introduction

min X Backgr
min  f(x) o« B
S.t. I’l(.x) = 0, and g(x) S 0, Our proposal:
RiL“m.uml.m Interior
where M is a Riemannian manifold, f: M — R, 2 : M — RY, and g : M — R™. ‘:“\““l""‘”j‘]:]‘[‘;]
Global Algorithms
Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM) R
@ RIPM inherits the advantages of Riemannian optimization and can exploit the geometric g

structure of the constraints.
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Riemannian IPM (RIPM) vs. Euclidean IPM(EIPM)

Riemannian Constrained Optimization Problem

min  f(x)

xeM
s.t.  h(x) =0, and g(x) <0,

where M is a Riemannian manifold, f: M — R, A : M — R, and g: M — R™
Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

@ RIPM inherits the advantages of Riemannian optimization and can exploit the geometric
structure of the constraints.

@ EIPM is a special case of RIPM when M = R" or R"*¥,

Introduction
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Our proposal:
Riemannian Interior
Point Methods

Formulation of RIPM

Global Algorithms

Numerical
Experiments

33/38



Riemannian IPM (RIPM) vs. Euclidean IPM(EIPM)

Riemannian Constrained Optimization Problem

Introduction

min  f(x) S—
xeM (11) Pre s
st.  h(x) =0, and g(x) < 0, CurEss
Riemannian Interior
where M is a Riemannian manifold, f: M — R, 2 : M — RY, and g : M — R™. ':“\““ "‘”“‘w‘\]
Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM) .
@ RIPM inherits the advantages of Riemannian optimization and can exploit the geometric g

structure of the constraints.
@ EIPM is a special case of RIPM when M = R" or R"**,
©® RIPM solves Newton equation (13) of smaller order on T, M x R :

T(Ax,Ay) = ( Sy ) - ( . ) (12)
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Riemannian IPM (RIPM) vs. Euclidean IPM(EIPM)

Riemannian Constrained Optimization Problem

min - f(x) (an

s.t.  h(x) =0, and g(x) <0,
where M is a Riemannian manifold, f: M — R, A : M — R, and g: M — R™
Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

@ RIPM inherits the advantages of Riemannian optimization and can exploit the geometric
structure of the constraints.

@ EIPM is a special case of RIPM when M = R" or R"**,
©® RIPM solves Newton equation (13) of smaller order on T,M x R':

W\ H.A
T(Ax, Ay) := ( ﬁiA;—’— Y > = < 2 ) (12)

@ RIPM can solve some problems that EIPM cannot. For example, rk(X) = r is not continuous, we
can not apply EIPM.
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Concluding remarks

Riemannian Constrained Optimization Problem

‘We consider

min  f(x)
xEM (RCOP)
s.t.  h(x) =0, and g(x) <0,

where M is a Riemannian manifold, f: M — R,h: M — R/, and g : M — R™.

Our contributions:
@ We proposed a Riemannian version of the interior point method.
® We proved the local superlinear/quadratic and global convergence.
Future work:

©® The more sophisticated and robust global strategies are often based on the trust
region or filter line-search method.

tion of RIPM
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Appendix.



Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

RIPM can solve a condensed equation (13) of smaller order.

WAx 4+ HA
T(Ax,Ay):=<ﬁ*Aj+ y>:(2) (13)

For example, the Stiefel manifold can be used as the equality constraints; i.e., we set
h: M =R — Sym(k), where 1(X) = X' X — I;. Here, EIPM requires us to solve
(13) of order nk + k(k + 1)/2.

But RIPM only requires us to solve a problem of order nk — k(k + 1)/2, i.e., the
dimension of St(n, k).
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Riemannian Newton method

Riemannian Newton method: Consider
F(x) = 0. (14)
Solve a linear system on T, M > vy :
VF(xi)vi = —F(xg),
then xg1 = Ry, (vk)-

Standard Newton assumptions & Local Convergence Results:

(N1)There exists x* : F(x*) = 0.
(N2)VF(x*) is nonsingular operator.

—> quadratic [Ferreira and Silva, 2012] .
(N3)VF is locally Lipschitz cont. at x*.

} = superlinear|[Fernandes et al., 2017] }
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Riemannian Interior Point Methods

Superlinear and Quadratic Convergence

@ Existence. There exists w* satisfying the KKT conditions.

® Smoothness. The functions f, g, h are smooth on M.

© Regularity. The set {grad h;(x*) : i =1,--- I} U{grad g;(x*) : i € A(x)} is
linearly independent in 7M.

@ Strict Complementarity. (z*); > 0if g;(x*) =0foralli=1,--- ,m.

©® Second-Order Sufficiency. (Hess, £(w*)¢,£) > 0 for all nonzero £ € Ty M satisfying
(€, grad by(x*)) = Ofori =1,--- 1, and (¢, grad g;(x*)) = O fori € A(x*).

Proposition (L. 2022)

If assumptions (1)-(5) hold, then standard Newton assumptions (N1)-(N3) hold for
KKT vector field F.
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Riemannian Interior Point Methods
Superlinear and Quadratic Convergence

On the other hand, to keep (s¢,zx) > 0:

® Introducing the perturbed complementary equation,
ZAs + SAz = —ZSe + pe, (15)

so that we are able to keep the iterates far from the boundary.

e Compute the damped step sizes oy, e.g., choose 7, € (0, 1) and compute

Q= min{l,”m min {—(giii)[ | (As)i < 0} s Y ml,in{— (Z]Z")i | (Az)i < 0}}7 (16

such that (g1, zk+1) > 0.
The relation of o, and ~;: [Yamashita and Yabe, 1996]
® If v — 1, then o — 1.
@ If1l— v =O(||F(w)

), then 1 — oy = O (||F (wy)]]).
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History of Euclidean Interior Point Method

Interior Point (IP) Method for NONLINEAR, NONCONVEX (1990-)

Early phase (1990-1995)

® [ ocal algorithms with superlinear/ quadratic convergence
[El-Bakry et al., 1996, Yamashita and Yabe, 1996].

® Global algorithms [El-Bakry et al., 1996]
Variations (1995-2010)
® Inexact Newton/ Quasi Newton IP Method

® Global strategy: many merit functions; linear search, or trust region, etc.
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Update by Retraction

At a current point w = (x,y, z,s) and direction Aw = (Ax, Ay, Az, As), the next
iterate is calculated along a curve on ./Z, i.e.,

w(a) == Ry(alAw), (17)
for some step length o > 0.
By introducing
w(a) = (x(@),y(a),z(a), s(a)), (18)
we have

x(a) = Ry(aAx),
and y(a) =y + @Ay, z(a) = z + @Az, s(a) = s + als.

7121



Centrality conditions

min(ZoSoe) zgso

Given wy = (xo, Y0, 20, 50) With (zg,s0) > 0, let 7 := == , To:
z4s0/m

"= TFwo)lT”
Let v € (0, 1) be a constant. Define centrality functions:

() 1= min(zZ(a)S(a)e) — 7, 02 2E) (19
fM(@) = z(@)"s(a) = || F(w(a))|- (20)

Fori = 1,11, let
o == max {a:f (1) >0, forallt € (0,0]}. (21)

a€(0,1]
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Global RIP Algorithm

© Choose oy € (0, 1); for wy, compute the perturbed Newton direction Awy with
[k = Zgsi/m (22)

and by
VF(w)Aw = —F(w) + ogpuxe. (23)

® Step length selection.
© Centrality conditions: Choose 1/2 < 7, < Y_1 < 1; compute o, i = I, II, from
(21); and let
a; = min(o/, o). (24)
® Sufficient decreasing: Choose 6 € (0,1), and 8 € (0,1/2]. Let cyy = 6",
where ¢ is the smallest nonnegative integer such that oy, satisfies

O(Ry, (xAwy)) — o(wi) < apf{grad or, Awy). (25)

O Let wiyy = ka (OékAWk) and k < k+ 1.
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Auxiliary Results I: Boundedness of the sequences
Given € > 0, let us define the set

Q(e) :=={w e A : e < p(w) < o, min(ZSe)/(zl's/m) > 1/2,28s/||[F(w)|| > 2/2} .

Lemma (Boundedness of the sequences I, L. 2022)
If e > 0 and wi € Q(¢) for all k, then

@ the sequence {zisi} and {(z1)i(si)i} ,i = 1,2, ..., m, are all bounded above and below away
from zero.

@ the sequence {zi} and {s¢} are bounded above and component-wise bounded away from zero;

© ihe sequence {wyi} is bounded;
O the sequence {||VF(wy) ||} is bounded;
© the sequence { Awy} is bounded.

Lemma (Boundedness of the sequences II, L. 2022)

If {0} is bounded away from zero. Then, {ay} is bounded away from zero.
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Auxiliary Results II: Continuity of Some Special Scalar Fields
Lemma (L. 2022)

Let x € M and A, be a linear operator on TM. Then, the values ||A||2 and ||A,| r
are invariant under a change of orthonormal basis; moreover,

IAx]| = |Ax]l2 < ||As|F. (26)
Lemma (L. 2022)
x — |[Hess fx)| @7)

is a continuous scalar field on M. It is true for all h;, g;.

x — ||Hy|| and x — ||Gy|| (28)

are continuous scalar field on M.
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Global Convergence Theorem

This theorem, now, is only proved under exponential map exp.

Lemma (Gauss [Do Carmo and Flaherty Francis, 1992, Lemma 3.5])

Letp € M and let v € T,M such that exp,,(v) is well defined. Let
we T,M~T,(T,M). Then

(Dexp,(v)[V], Dexp, (v)[w]) = (v,w). (29)

12/21



Conjugate Gradients (CG) on a tangent space

Input: positive definite map H on T, M and b€ T, M, b#0
Set vg = 0,79 = b,po = 710

Forn=12,...
Compute Hp,_; (this is the only call to H)
lrn—ull3
=

" ({pn—1,Hpn_1),
Vn = VUn—1 + QnPn—1

Tn =Tpn—1 — aann—l
If r, =0, output s = v,,: the solution of Hs = b

ﬂn I ||§

= Traal2

Pn = Tn + Bnbn—1

@ Exactly the same in form of usual CG.
® Every vectors v, 1, p, belong to tangent space V = T, M.
©® Converges very fast if H is PD with small condition number.
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An Intuitive Barrier Method on Manifolds

Consider

nélAI/Il fx) st oe(x) >0. (RCOP_Ineq)

Its logarithmic barrier function is

B(x; 1) := flx) — p >0 logei(x),

where 1 > 0. Note that the function x — B(x; p1) is differentiable on,
strict F := {x € M : ¢(x) > 0} . Its Riemannian gradient is

grad B(x; p) = grad flx) — Y"1, Ci’(”x) grad ¢;(x).

Barrier Method on Manifolds
@ Setxo € M to a strictly feasible point, i.e., c¢(xo) > 0, and set po > 0 and k < 0.
@ Check whether x; satisfies a stopping test for (RCOP_Ineq).

©® Compute an unconstrained minimizer x (1) of B(x; 1) with a warm starting point x.
@ xi11 < x(p); choose pgt1 < pe; k < k+ 1. Return to Step 1.
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Barrier Method on Manifolds

Barrier Method
Consider the following simple problem on a sphere manifold,
S? = {x e R?: |x]|]2 = 1},

min a’x st x> 0, (SP)
x€S?
where a = [—1,2,1]7. Its solution is x* = [1,0, 0]7.

Now, check the KKT conditions at x (asterisks omitted below):

gradf(x) = (I, — xxT)a = [0,2,1]".

The constraint x > 0 implies ¢;(x) = elx fori = 1,2, 3;
gradcy (x) = (I, — xx")e; = [0,0,0];
grad co(x) = (I, — xx")ey = [0,1,0]7;
gradc3(x) = (I, — xx")e3 = [0,0,1]".

Clearly, the multipliers z* = [0,2,1]7, and LICQ and strict complementarity hold.
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Barrier Method on Manifolds

Zhijian Lai, Akiko
Yoshise

(a) (b) © (d)

Figure: Contour plots of logarithmic barrier function B(x; ) of (SP) for (a) u = 10 (b)
w=1(c)p=0.5() p=0.1. The blue area indicates low values.
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Barrier Method on Manifolds

Finally, we find that limy_, o, x; = x* and that
klggo pe/c1 (i) =0 = 21y klggo /2 (xx) =2 = Z(z)ykl_iglo pe/es () =1 = Z(3)

which are the notable features of the classical barrier method; see
[Forsgren et al., 2002, Theorem 3.10 & 3.12].

Figure: Iterates x; of barrier method for (SP).
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Barrier Method on Manifolds

Furthermore, if we denote the minimizer of B(x; i) by either x,, or x(y), it must be
that grad B(x,,; 1) = 0.

Figure: Existence of a central path for (SP).
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Dominant cost — Newton equation

Dominant cost is to solve

VFE(w)Aw = —F(w) + pe, (30)
where
F, = grad, L(x,y,2) 0y
— F\ = h( ) 54 0
SOES IS cer | @31)
Fy £ ZSe e

Thus, we need to solve the following linear system on T,M x R! x R™ x R™:

Hess, L(w)Ax + H Ay + G Az —F,
H;Ax _ /7
GiAx+ As | —-F, ' (32)

ZAs + SAz —F + pe
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Condensed form of Newton equation

It suffices to focus on condensed form on 7,M x R!:

_( AVAX+HAy \ [ ¢
T (Ax, Ay) := ( H Ax > = < q ) , (33)
where
A, := Hess, L(w) + G.S~'ZG*,
(34)

ci=—F—GS Y (ZF. + pe — F,), q:=—F
e A, is self-adjoint (but may indefinite) on T, M.
e T is self-adjoint (but may indefinite) on 7,M x R’. This is a saddle point
problems on Hilbert space.
® The Riemannian situation leaves us with no explicit matrix form available.

® A simple approach is to first find the representing matrix 7 under some basis.
(Expensive !)
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Krylov subspace methods on Tangent space

An ideal approach is to use iterative methods, such as Krylov subspace methods
(e.g., Conjugate Gradients method), on T,M x R/ directly.

For simplicity, we consider the case of only inequality constraints, where Ay
vanishes, thus we only needs to

solve A,,Ax = ¢ for Ax € T M. (35)

e Tt only needs to call an abstract linear operator v — A, v. (matrix-vector
product)

® All the iterates vy are in T, .M.

® Since operator .A,, is self-adjoint but indefinite, we use Conjugate Residual
(CR) method to solve it.

The discussion of above can be naturally extended to the general case.
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