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Riemannian Manifold

A Riemannian manifold M is a set that can be locally linearizable, with a smooth
mapping x 7→ 〈·, ·〉x, which is an inner product on the tangent spaces TxM.

Figure: Unit sphere: M = {x ∈ Rn : ‖x‖2 = 1} and TxM = {v ∈ Rn : 〈x, v〉 = 0}.
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Riemannian Optimization

Given f : M→ R, solve

min
x∈M

f(x)

where M is a Riemannian manifold.

Figure: Iteration on unit sphere.

40+ available manifolds M in Riemannian solver “Manopt” [Boumal et al., ]:
• Stiefel manifold, St(n, k) = {X ∈ Rn×k : X⊤X = I}.
• Fixed rank manifold, Rm×n

r = {X ∈ Rm×n : rk(X) = r}.
Riemannian version of classical methods. (2002-) steepest decent, conjugate
gradient, trust region, BFGS, proximal gradient, ADMM and more.

6 / 38
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Riemannian Optimization

Given f : M→ R, solve

min
x∈M

f(x)

where M is a Riemannian manifold.

Figure: Iteration on unit sphere.

Advantages of Riemannian Optimization:
1 Exploit the geometric structure of the constrained set.
2 Convergence properties of like optimization on Euclidean space.
3 No need to consider Lagrange multipliers or penalty functions.

7 / 38



Riemannian Interior
Point Methods

(RIPM)

Zhijian Lai, Akiko
Yoshise

Introduction
Background

Preliminaries

Our proposal:
Riemannian Interior
Point Methods
Formulation of RIPM

Global Algorithms

Numerical
Experiments

Concluding

Applications
• PCA on Stiefel manifold,

St(n, k) = {X ∈ Rn×k : X⊤X = I}.

min
X∈St(n,k)

− trace(X⊤A⊤AX).

• Matrix completion on fixed rank manifold,
Rm×n

r = {X ∈ Rm×n : rk(X) = r}.

min
X∈Rm×n

r

∑
(i,j)∈Ω

(Xij − Aij)
2.
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More Requirements in Applications
• Nonnegative PCA on Stiefel manifold,

St(n, k) = {X ∈ Rn×k : X⊤X = I}.

min
X∈St(n,k)

− trace(X⊤A⊤AX)

s.t. X ≥ 0

• Nonnegative matrix completion on fixed rank manifold,
Rm×n

r = {X ∈ Rm×n : rk(X) = r}.

min
X∈Rm×n

r

∑
(i,j)∈Ω

(Xij − Aij)
2

s.t. X ≥ 0

⇝What should we do at this point?
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Some limitations of Riemannian optimization

Given f : M→ R, solve
min
x∈M

f(x)

where M is a Riemannian manifold.

Some limitations of Riemannian optimization are:
1 Existing manifold solvers lack flexibility, and adding even one more constraint

can make it impossible to use them directly. E.g., x ∈ M, x ≥ 0.

2 Adding new constraints does not necessarily guarantee that the feasible set is
still a manifold.

⇝We are attempting to develop a new model to address these issues.
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New Topic — Riemannian Constrained Optimization Problem

We consider
min
x∈M

f(x)
s.t. h(x) = 0, and g(x) ≤ 0,

(RCOP)

where f : M→ R, h : M→ Rl, and g : M→ Rm.

Advantages of (RCOP):
1 Still using the geometric structure of M. The advantages of Riemannian

optimization are maintained.
2 Very flexible, even if the constraints of h, g cannot form a new manifold.

Riemannian version of classical algorithms:
• Augmented Lagrangian Method [Liu and Boumal, 2020, Yamakawa and Sato, 2022];
• Exact Penalty Method [Liu and Boumal, 2020];
• Sequential Quadratic Programming Method [Schiela and Ortiz, 2020, Obara et al., 2022].
• ⇝ In this talk, we consider Riemannian version of Interior Point Method.
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Q1: How to move on manifolds? Retraction!
A retraction R maps tangent vectors back to the manifold.

Rx : TxM→ M for any x.

Euclidean Riemannian
xk+1 = xk + αkdk xk+1 = Rxk(αkdk)
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Q2: Where to move towards on manifolds? Riemannian Gradient!
For an embedded submanifold M, Riemannian gradient of f : M→ R is the
orthogonal projection onto TxM of the Euclidean gradient,

grad f(x) = Projx(egrad f(x)).

Tangential
component Normal component

14 / 38
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Supplementary: Vector fields on manifolds
A vector field is a mapping F defined on M such that F(x) ∈ TxM for all x ∈ M.
Riemannian gradient,

x 7→ grad f(x),
is a vector field generated by scalar field f : M→ R.

Figure: A vector field on a unit sphere. Source: Wikipedia.
15 / 38
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Covariant derivative & Hessian & Riemannian Newton method
Covariant derivative of a vector field F:

Riemannian connection

general vector field

Specially, Hess f(x) ≜ ∇ grad f(x) is called Riemannian Hessian.

Riemannian Newton method: To find singularity x∗ ∈ M such that F(x∗) = 0x∗ .

(Step 1.) Solve a linear system on TxkM 3 vk :

∇F(xk)vk = −F(xk), (1)

(Step 2.) xk+1 = Rxk(vk). Return to Step 1.
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Formulation of RIPM

We consider
min
x∈M

f(x)
s.t. h(x) = 0, and g(x) ≤ 0,

(RCOP)

where f : M→ R, h : M→ Rl, and g : M→ Rm.

Lagrangian function is

L(x, y, z) ≜ f(x) + yTh(x) + zTg(x). (2)

x 7→ L(x, y, z) is a real-valued function on M,

then we have

• gradx L(x, y, z) = grad f(x) +
∑l

i=1 yi grad hi(x) +
∑m

i=1 zi grad gi(x),

• Hessx L(x, y, z) = Hess f(x) +
∑l

i=1 yi Hess hi(x) +
∑m

i=1 zi Hess gi(x).
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KKT Vector Field
Riemannian KKT conditions [Liu and Boumal, 2020] are

gradx L(x, y, z) = 0x,

h(x) = 0,

g(x) ≤ 0,

Zg(x) = 0, (Z := diag (z1, . . . , zm))

z ≥ 0.

(3)

Definition (KKT Vector Field, L. 2022)
Using s := −g(x), the above becomes

F(w) ≜


gradx L(x, y, z)
h(x)
g(x) + s
ZSe

 = 0w :=


0x
0
0
0

 , and (z, s) ≥ 0, (4)

where w := (x, y, z, s) ∈M ≜ M×Rl×Rm×Rm. Note that TwM ≡ TxM×Rl×Rm×Rm.

20 / 38
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Covariant Derivative of KKT Vector Field
For each x ∈ M, we define

Hx : Rl → TxM, Hxv ≜
l∑

i=1

vi grad hi(x). (5)

Hence, the adjoint operator is

H∗
x : TxM→ Rl, H∗

x ξ =
[
〈grad h1(x), ξ〉x , · · · , 〈grad hl(x), ξ〉x

]T
. (6)

Lemma (L. 2022)
The linear operator∇F(w) : TwM → TwM is given by

∇F(w)∆w =


Hessx L(w)∆x + Hx∆y + Gx∆z
H∗

x∆x
G∗

x∆x +∆s
Z∆s + S∆z

 , (7)

where ∆w = (∆x,∆y,∆s,∆z) ∈ TxM× Rl × Rm × Rm ≡ TwM .
21 / 38
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Riemannian Interior Point Method (RIPM)
Step 0. Initial w0 with (z0, s0) > 0.
Step 1. Solve

∇F(wk)∆wk = −F(wk) + µkê, (8)

where ê ≜ (0x, 0, 0, e).
Step 2. Compute the step sizes αk such that (zk+1, sk+1) > 0.
Step 3. Update:

wk+1 = R̄wk(αk∆wk). (9)

Step 4. Let µk → 0. Return to 1.

Theorem (Local Convergence, L. 2022)
Under some standard assumptions.

(1) If µk = o(‖F(wk)‖), αk → 1, then {wk} locally, superlinearly converges to w∗.

(2) If µk = O(‖F(wk)‖2), 1− αk = O(‖F(wk)‖), then {wk} locally, quadratically
converges to w∗.

22 / 38
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Global Line Search RIPM Algorithm
Merit function: Choose φ(w) ≜ ‖F(w)‖2.
Backtracking for step size αk:

1 Centrality conditions.
2 Sufficient decreasing condition.

With a slight abuse of notation, we also let

φ(α) ≜ φ(R̄wk(α∆wk)︸ ︷︷ ︸
new iterate

) for fixed wk and ∆wk, (10)

then φ(0) = φ(wk) =: φk and φ′(0) = 〈gradφ(wk),∆wk〉. Sufficient decreasing
asks

φ(αk)− φ(0) ≤ αkβφ
′(0).

Descent direction: Let ∆wk be the solution of ∇F(wk)∆wk = −F(wk) + ρkσkê,
then φ′(0) < 0 if we set ρk := sT

k zk/m, σk ∈ (0, 1). Then, {φk} is monotonically
decreasing.

24 / 38
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Global Convergence

Assumptions:

1 the functions f(x), h(x), g(x) are smooth; the set {grad hi(x)}l
i=1 is linearly independent

in TxM for all x; and w 7→ ∇F(w) is Lipschitz continuous;

2 the sequences {xk} and {zk} are bounded;

3 the operator ∇F(w) is nonsingular.

Theorem (Global Convergence, L. 2022)
Let {σk} ⊂ (0, 1) bounded away from zero and one. If Assumptions 1∼3 hold, then {F(wk)}
converges to zero; and for any limit point w∗ = (x∗, y∗, z∗, s∗) of {wk} , x∗ is a Riemannian
KKT point of problem (RCOP).

25 / 38
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Numerical Experiments

We compare with the other Riemannian methods:¹
• RALM : Riemannian augmented Lagrangian method.
• REPM_lqh : Riemannian exact penalty method with smoothing function LQH.
• REPM_lse : Riemannian exact penalty method with smoothing function LSE.
• RSQP : Riemannian sequential quadratic programming.
• RIPM (Our method): Riemannian interior point method.

KKT residual is defined by
√√√√∥gradx L(w)∥

2 +
m∑

i=1

{min (0, zi)
2 + max (0, gi(x))2 + |zigi(x)|2}+

l∑
i=1

|hi(x)|2 + Manvio(x),

where Manvio measures the violation of manifold constraints.

¹The numerical experiments were performed in Matlab R2022a on a computer equipped with an
Intel Core i7-10700 at 2.90GHz with 16GB of RAM.
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Problem I — Nonnegative Low Rank Matrix Approximation
(NLRM)

Problem I [Song and Ng, 2020] proposed

min
X∈Rm×n

r

‖A− X‖2F s.t. X ≥ 0,

where Rm×n
r = {X ∈ Rm×n : rk(X) = r} .

Data setting:
B = rand(m, r);
C = rand(r, n);
A = B*C+sigma*randn(m,n);

Figure: m = 10, n = 8, r = 3 and σ = 0.01.
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Problem II — Projection onto nonnegative Stiefel manifold

Problem II[Jiang et al., 2022] Given C ∈ Rn×k, we consider

min
X∈St(n,k)

‖X− C‖2F, s.t. X ≥ 0, (Model_Stiefel)

which can be equivalently reformulated into

min
X∈OB(n,k)

‖X− C‖2F s.t. X ≥ 0, and ‖XV‖F = 1. (Model_Oblique)

Here,
• Stiefel manifold, St(n, k) ≜ {X ∈ Rn×k : X⊤X = I}.
• Oblique manifold, OB(n, k) ≜ {X ∈ Rn×k : all columns have unit norm}.
• V is an arbitrary constant matrix satisfying ‖V‖F = 1 and VV⊤ > 0 (irrelevant to X,C).
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Problem II — Projection onto nonnegative Stiefel manifold

• For each Model, we conducted 20 random trials.
• Each experiment terminated successfully if solution with KKT residual < 10−6 was found.
• It failed if the maximum iteration 10,000 or maximum time 600 [s] was reached.²

Table: Results on (Model_Stiefel)

(n, k) (60,12) (70,14)
Rate Time [s] Iter. Rate Time [s] Iter.

RALM 1 4.097 34 1 6.234 37
REPM_lqh 0 - - 0 - -
REPM_lse 0 - - 0 - -
RSQP 0.65 78.02 7 0.85 166.1 7
RIPM 1 5.555 32 1 7.574 33

²The success rate (Rate) over the total number of trials, the average time in seconds (Time [s]) and
the average iteration number (Iter.) among the successful trials.
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Problem II — Projection onto nonnegative Stiefel manifold

• For each Model, we conducted 20 random trials.
• Each experiment terminated successfully if solution with KKT residual < 10−6 was found.
• It failed if the maximum iteration 10,000 or maximum time 600 [s] was reached.³

Table: Results on (Model_Oblique)

(n, k) (60,12) (70,14)
Rate Time [s] Iter. Rate Time [s] Iter.

RALM 0.6 5.725 49 0.6 8.223 52
REPM_lqh 0 - - 0 - -
REPM_lse 0 - - 0 - -
RSQP 0.7 44.46 5 0.5 91.38 5
RIPM 1 7.134 23 1 9.268 24

³The success rate (Rate) over the total number of trials, the average time in seconds (Time [s]) and
the average iteration number (Iter.) among the successful trials.
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Riemannian IPM (RIPM) vs. Euclidean IPM(EIPM)

Riemannian Constrained Optimization Problem

min
x∈M

f(x)
s.t. h(x) = 0, and g(x) ≤ 0,

(11)

where M is a Riemannian manifold, f : M→ R, h : M→ Rl, and g : M→ Rm.

Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)
1 RIPM inherits the advantages of Riemannian optimization and can exploit the geometric

structure of the constraints.

2 EIPM is a special case of RIPM when M = Rn or Rn×k.
3 RIPM solves Newton equation (13) of smaller order on TxM× Rl :

T (∆x,∆y) :=
(
Aw∆x + Hx∆y
H∗

x ∆x

)
=

(
c
q

)
. (12)

4 RIPM can solve some problems that EIPM cannot. For example, rk(X) = r is not continuous, we
can not apply EIPM.
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Concluding remarks

Riemannian Constrained Optimization Problem
We consider

min
x∈M

f(x)
s.t. h(x) = 0, and g(x) ≤ 0,

(RCOP)

where M is a Riemannian manifold, f : M→ R, h : M→ Rl, and g : M→ Rm.

Our contributions:
1 We proposed a Riemannian version of the interior point method.
2 We proved the local superlinear/quadratic and global convergence.

Future work:
1 The more sophisticated and robust global strategies are often based on the trust

region or filter line-search method.
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The End
Questions? Comments?
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Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

RIPM can solve a condensed equation (13) of smaller order.

T (∆x,∆y) :=
(
Aw∆x + Hx∆y
H∗

x∆x

)
=

(
c
q

)
, (13)

For example, the Stiefel manifold can be used as the equality constraints; i.e., we set
h : M ≡ Rn×k → Sym(k), where h(X) = X⊤X− Ik. Here, EIPM requires us to solve
(13) of order nk + k(k + 1)/2.
But RIPM only requires us to solve a problem of order nk− k(k + 1)/2, i.e., the
dimension of St(n, k).
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Riemannian Newton method

Riemannian Newton method: Consider

F(x) = 0. (14)

Solve a linear system on TxkM 3 vk :

∇F(xk)vk = −F(xk),

then xk+1 = Rxk(vk).

Standard Newton assumptions & Local Convergence Results:

(N1)There exists x∗ : F(x∗) = 0.
(N2)∇F(x∗) is nonsingular operator.

}
⇒ superlinear[Fernandes et al., 2017]

(N3)∇F is locally Lipschitz cont. at x∗.

}
⇒ quadratic[Ferreira and Silva, 2012].
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Riemannian Interior Point Methods
Superlinear and Quadratic Convergence

1 Existence. There exists w∗ satisfying the KKT conditions.
2 Smoothness. The functions f, g, h are smooth on M.
3 Regularity. The set {grad hi(x∗) : i = 1, · · · , l} ∪ {grad gi(x∗) : i ∈ A(x)} is

linearly independent in Tx∗M.
4 Strict Complementarity. (z∗)i > 0 if gi(x∗) = 0 for all i = 1, · · · ,m.
5 Second-Order Sufficiency. ⟨Hessx L(w∗)ξ, ξ⟩ > 0 for all nonzero ξ ∈ Tx∗M satisfying

⟨ξ, grad hi(x∗)⟩ = 0 for i = 1, · · · , l, and ⟨ξ, grad gi(x∗)⟩ = 0 for i ∈ A(x∗).

Proposition (L. 2022)
If assumptions (1)-(5) hold, then standard Newton assumptions (N1)-(N3) hold for
KKT vector field F.
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Riemannian Interior Point Methods
Superlinear and Quadratic Convergence

On the other hand, to keep (sk, zk) ≥ 0:
• Introducing the perturbed complementary equation,

Z∆s + S∆z = −ZSe + µe, (15)

so that we are able to keep the iterates far from the boundary.
• Compute the damped step sizes αk, e.g., choose γk ∈ (0, 1) and compute

αk := min
{
1, γk min

i

{
−

(sk)i

(∆sk)i
| (∆sk)i < 0

}
, γk min

i

{
−

(zk)i

(∆zk)i
| (∆zk)i < 0

}}
, (16)

such that (sk+1, zk+1) > 0.
The relation of αk and γk: [Yamashita and Yabe, 1996]

1 If γk → 1, then αk → 1.
2 If 1− γk = O (‖F (wk)‖), then 1− αk = O (‖F (wk)‖).
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History of Euclidean Interior Point Method

Interior Point (IP) Method for NONLINEAR, NONCONVEX (1990-)

Early phase (1990-1995)
• Local algorithms with superlinear/ quadratic convergence

[El-Bakry et al., 1996, Yamashita and Yabe, 1996].
• Global algorithms [El-Bakry et al., 1996]

Variations (1995-2010)
• Inexact Newton/ Quasi Newton IP Method
• Global strategy: many merit functions; linear search, or trust region, etc.
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Update by Retraction

At a current point w = (x, y, z, s) and direction ∆w = (∆x,∆y,∆z,∆s), the next
iterate is calculated along a curve on M , i.e.,

w(α) := R̄w(α∆w), (17)

for some step length α > 0.

By introducing
w(α) = (x(α), y(α), z(α), s(α)), (18)

we have
x(α) = Rx(α∆x),

and y(α) = y + α∆y, z(α) = z + α∆z, s(α) = s + α∆s.
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Centrality conditions

Given w0 = (x0, y0, z0, s0) with (z0, s0) > 0, let τ1 := min(Z0S0e)
zT
0s0/m , τ2 :=

zT
0s0

∥F(w0)∥ .

Let γ ∈ (0, 1) be a constant. Define centrality functions:

fI(α) := min(Z(α)S(α)e)− γτ1
z(α)Ts(α)

m , (19)

fII(α) := z(α)Ts(α)− γτ2‖F(w(α))‖. (20)

For i = I, II, let

αi := max
α∈(0,1]

{
α : fi(t) ≥ 0, for all t ∈ (0, α]

}
. (21)
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Global RIP Algorithm
1 Choose σk ∈ (0, 1); for wk, compute the perturbed Newton direction ∆wk with

µk = zT
k sk/m (22)

and by
∇F(w)∆w = −F(w) + σkµkê. (23)

2 Step length selection.
1 Centrality conditions: Choose 1/2 < γk < γk−1 < 1; compute αi, i = I, II, from

(21); and let
ᾱk = min(αI, αII). (24)

2 Sufficient decreasing: Choose θ ∈ (0, 1), and β ∈ (0, 1/2]. Let αk = θtᾱk,
where t is the smallest nonnegative integer such that αk satisfies

φ(R̄wk(αk∆wk))− φ(wk) ≤ αkβ〈gradφk,∆wk〉. (25)

3 Let wk+1 = R̄wk(αk∆wk) and k← k + 1.
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Auxiliary Results I: Boundedness of the sequences
Given ϵ ≥ 0, let us define the set

Ω(ϵ) :=
{

w ∈ M : ϵ ≤ φ(w) ≤ φ0,min(ZSe)/(zTs/m) ≥ τ1/2, zTs/∥F(w)∥ ≥ τ2/2
}
.

Lemma (Boundedness of the sequences I, L. 2022)
If ϵ > 0 and wk ∈ Ω(ϵ) for all k, then

1 the sequence {zT
k sk} and {(zk)i(sk)i} , i = 1, 2, . . . ,m, are all bounded above and below away

from zero.
2 the sequence {zk} and {sk} are bounded above and component-wise bounded away from zero;
3 the sequence {wk} is bounded;
4 the sequence {∥∇F(wk)

−1∥} is bounded;
5 the sequence {∆wk} is bounded.

Lemma (Boundedness of the sequences II, L. 2022)
If {σk} is bounded away from zero. Then, {ᾱk} is bounded away from zero.
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Auxiliary Results II: Continuity of Some Special Scalar Fields
Lemma (L. 2022)
Let x ∈ M and Ax be a linear operator on TxM. Then, the values ‖Âx‖2 and ‖Âx‖F
are invariant under a change of orthonormal basis; moreover,

‖Ax‖ = ‖Âx‖2 ≤ ‖Âx‖F. (26)

Lemma (L. 2022)

x 7→ ‖ ̂Hess f(x)‖ (27)

is a continuous scalar field on M. It is true for all hi, gi.

x 7→ ‖Hx‖ and x 7→ ‖Gx‖ (28)

are continuous scalar field on M.
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Global Convergence Theorem

This theorem, now, is only proved under exponential map exp.

Lemma (Gauss [Do Carmo and Flaherty Francis, 1992, Lemma 3.5])
Let p ∈ M and let v ∈ TpM such that expp(v) is well defined. Let
w ∈ TpM ≈ Tv (TpM). Then〈

D expp(v)[v],D expp(v)[w]
〉
= 〈v,w〉. (29)
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Conjugate Gradients (CG) on a tangent space

1 Exactly the same in form of usual CG.
2 Every vectors vn, rn, pn belong to tangent space V ≡ TxM.
3 Converges very fast if H is PD with small condition number.
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An Intuitive Barrier Method on Manifolds
Consider

min
x∈M

f(x) s.t. c(x) ≥ 0. (RCOP_Ineq)

Its logarithmic barrier function is

B(x;µ) := f(x)− µ
∑m

i=1 log ci(x),

where µ > 0. Note that the function x 7→ B(x;µ) is differentiable on,
strictF := {x ∈ M : c(x) > 0} . Its Riemannian gradient is

gradB(x;µ) = grad f(x)−
∑m

i=1
µ

ci(x) grad ci(x).

Barrier Method on Manifolds
1 Set x0 ∈ M to a strictly feasible point, i.e., c(x0) > 0, and set µ0 > 0 and k← 0.

2 Check whether xk satisfies a stopping test for (RCOP_Ineq).
3 Compute an unconstrained minimizer x(µk) of B(x;µk) with a warm starting point xk.
4 xk+1 ← x(µk); choose µk+1 < µk; k← k + 1. Return to Step 1.
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Barrier Method on Manifolds
Barrier Method
Consider the following simple problem on a sphere manifold,
S2 := {x ∈ R3 : ‖x‖2 = 1},

min
x∈S2

aTx s.t. x ≥ 0, (SP)

where a = [−1, 2, 1]T. Its solution is x∗ = [1, 0, 0]T.

Now, check the KKT conditions at x (asterisks omitted below):
grad f(x) = (In − xxT)a = [0, 2, 1]T.
The constraint x ≥ 0 implies ci(x) = eT

i x for i = 1, 2, 3;

grad c1(x) = (In − xxT)e1 = [0, 0, 0]T;

grad c2(x) = (In − xxT)e2 = [0, 1, 0]T;

grad c3(x) = (In − xxT)e3 = [0, 0, 1]T.

Clearly, the multipliers z∗ = [0, 2, 1]T, and LICQ and strict complementarity hold.
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Barrier Method on Manifolds

(a) (b) (c) (d)

Figure: Contour plots of logarithmic barrier function B(x;µ) of (SP) for (a) µ = 10 (b)
µ = 1 (c) µ = 0.5 (d) µ = 0.1. The blue area indicates low values.
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Barrier Method on Manifolds
Finally, we find that limk→∞ xk = x∗ and that

lim
k→∞

µk/c1 (xk) = 0 = z∗(1), lim
k→∞

µk/c2 (xk) = 2 = z∗(2), lim
k→∞

µk/c3 (xk) = 1 = z∗(3),

which are the notable features of the classical barrier method; see
[Forsgren et al., 2002, Theorem 3.10 & 3.12].

Figure: Iterates xk of barrier method for (SP).
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Barrier Method on Manifolds

Furthermore, if we denote the minimizer of B(x;µ) by either xµ or x(µ), it must be
that gradB(xµ;µ) = 0.

Figure: Existence of a central path for (SP).
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Dominant cost — Newton equation
Dominant cost is to solve

∇F(w)∆w = −F(w) + µê, (30)

where

F(w) =


Fx ≜ gradx L(x, y, z)
Fy ≜ h(x)
Fz ≜ g(x) + s
Fs ≜ ZSe

 , ê ≜


0x
0
0
e

 . (31)

Thus, we need to solve the following linear system on TxM× Rl × Rm × Rm:
Hessx L(w)∆x + Hx∆y + Gx∆z
H∗

x∆x
G∗

x∆x +∆s
Z∆s + S∆z

 =


−Fx
−Fy
−Fz
−Fs + µe

 . (32)
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Condensed form of Newton equation

It suffices to focus on condensed form on TxM× Rl:

T (∆x,∆y) :=
(
Aw∆x + Hx∆y
H∗

x∆x

)
=

(
c
q

)
, (33)

where
Aw := Hessx L(w) + GxS−1ZG∗

x ,

c := −Fx − GxS−1 (ZFz + µe− Fs) , q := −Fy.
(34)

• Aw is self-adjoint (but may indefinite) on TxM.
• T is self-adjoint (but may indefinite) on TxM× Rl. This is a saddle point

problems on Hilbert space.
• The Riemannian situation leaves us with no explicit matrix form available.
• A simple approach is to first find the representing matrix T̂ under some basis.

(Expensive !)
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Krylov subspace methods on Tangent space
An ideal approach is to use iterative methods, such as Krylov subspace methods
(e.g., Conjugate Gradients method), on TxM× Rl directly.

For simplicity, we consider the case of only inequality constraints, where ∆y
vanishes, thus we only needs to

solve Aw∆x = c for ∆x ∈ TxM. (35)

• It only needs to call an abstract linear operator v 7→ Awv. (matrix-vector
product)
• All the iterates vk are in TxM.
• Since operator Aw is self-adjoint but indefinite, we use Conjugate Residual

(CR) method to solve it.
The discussion of above can be naturally extended to the general case.
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