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Interior Point Methods also Succeed in Nonconvex Case

Interior Point Methods is default algorithm for constrained nonlinear
optimization in MATLAB:

x = fmincon(fun,x0®,A,b,Aeq,beq,1lb,ub)

Finds the minimum of a problem specified by
[ c(x) <0
ceq(x) =0
min f(x) such that A-x<bh
* Aeq - x = beq
b < x < ub,

@ Byrd, R. H., J. C. Gilbert, and J. Nocedal. “A Trust Region Method Based on
Interior Point Techniques for Nonlinear Programming.” Math. Program., 2000.
@ Byrd, R.H., Mary E. Hribar, and Jorge Nocedal, “An Interior Point Algorithm
for Large-Scale Nonlinear Programming.” SIAM J. Optim., 1999.
@ Waltz, R. A.,J. L. Morales, J. Nocedal, and D. Orban. “An interior algorithm
Jor nonlinear optimization that combines line search and trust region steps.”
Math. Program., 2006.
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Riemannian Interior Point Methods (RIPM)

@ Introduction
@ Background
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Riemannian Manifold

Roughly speaking, a Riemannian manifold M is a set that can be
locally linearizable, with a smooth mapping x — (-, ), where (-, ),
is an inner product on the tangent spaces 7M.

R 5

_/

g

Figure: Example of sphere manifold M = {x € R" : ||x|| = 1} and
TM={veR": (x,v) =0}
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Riemannian Optimization (RO)

Givenf : M — R, solve

min £(x) (RO)

where M is a Riemannian
manifold. Figure: Iteration on unit
sphere.

In a popular Riemannian optimization solver “Manopt’:
o 40+ available manifolds M, e.g.,
o Stiefel manifold, St(n,k) = {X € R"™*: XTx =1}
o Fixed rank manifold, R"*" = {X € R™*" : rank(X) = r}.
@ 9 available Riemannian algorithms, e.g.,
steepest decent
e conjugate gradient
o trust region
o BFGS and more.
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https://www.manopt.org/index.html

Advantages of Riemannian Optimization (RO)

Givenf : M — R, solve

min £(x) (RO)

where M is a Riemannian
manifold. Figure: Iteration on unit
sphere.

Advantages of (RO):
@ Transfer the constrained problem to the unconstrained one.
@ Exploit the geometric structure of the constrained set.

© Convergence properties of like optimization on Euclidean space.
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Applications of (RO)

@ PCA on Stiefel manifold,
St(n, k) = {X e Rk XTX =1}

min — trace(X'ATAX)
XeSt(n,k)

@ Matrix Completion on fixed rank manifold,
R = {X € R™" : rank(X) = r}.

min Z (Xi' — Al‘]‘)z

mxn
XeRY (IJ)EQ

~ We can use the solver “Manopt” directly.
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More Requirements in Practical Applications

@ Nonnegative PCA on Stiefel manifold,
St(n, k) = {X e Rk XTX =1}
min — trace(X'ATAX)
XeSt(n,k)

s.t. X >0

e Nonnegative Matrix Completion on fixed rank manifold,
R = {X € R™" : rank(X) = r}.

min >, (X; - Ay)’
)(Gﬂgr (iJ)ES)
s.t. X >0

~> Um..., can we use the solver ‘“Manopt” directly? Answer is NO.
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Some Limitations of Riemannian Optimization (RO)

Given f : M — R, solve

%1;[1 f(x) (RO)

where M is a Riemannian manifold.

Some limitations of (RO):

@ (RO) requires that the whole feasible region to your problem

forms a manifold. Unfortunately, the much common scenario is:
“some of the constraints form a manifold that already exists in
‘Manopt’, but we have additional constraints.”

@ If your feasible region happens to form a new manifold (not
available in “Manopt”), you will need to find its geometric tools
by yourself.

~> To address these challenges, We aims to develop a new model
instead of (RO).
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New Topic — Riemannian Constrained Optimization

Problem

We consider
min f(x)
xeM (RCOP)
s.t.  h(x) =0, and g(x) <0,

wheref: M - R,h: M — R/ andg : M — R™.
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New Topic — Riemannian Constrained Optimization

Problem

We consider

miy &) (RCOP)

s.t.  h(x) =0, and g(x) <0,
wheref: M - R,h: M — R/ andg : M — R™.

Advantages of (RCOP):

@ Still using the geometric structure of M, i.e., the advantages of
(RO) are preserved.

© Flexible! It only requires that a portion of the constraints in your
problem form a manifold.

© Easy programming! Because we can still use the existing
geometric tools of M if it is available in “Manopt”.
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New Topic — Riemannian Constrained Optimization

Problem

We consider

min f(x)
xeEM (RCOP)
s.t.  h(x) =0, and g(x) <0,

wheref: M - R,h: M — R/ andg : M — R™.

Riemannian version of classical algorithms:

o Augmented Lagrangian Method
[Liu and Boumal, 2020, Yamakawa and Sato, 2022]

e Exact Penalty Method [Liu and Boumal, 2020]

@ Sequential Quadratic Programming Method
[Schiela and Ortiz, 2020, Obara et al., 2022]

@ ~~ In this talk, we propose Riemannian version of Interior Point
Method.
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Riemannian Interior Point Methods (RIPM)

@ Introduction

@ Preliminaries
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Q1: How to move on manifolds? Retraction!

A retraction R maps tangent vectors back to the manifold.

R, : TxM — M for any x.

f:R2-sR R?

Euclidean Riemannian
X1 = X + apdy | X1 = Ry, (onedy)
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Q2: In which direction do we move?? Riemannian

Gradient!

For an embedded submanifold M, Riemannian gradient of
f : M — R is the orthogonal projection onto 7, M of the Euclidean
gradient,

gradf(x) = Proj,(egradf(x)).

f:MCR?-5R Projy(-) R?

grad f(x)

Tangehtial

component Normal component

T.M
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Supplementary: Vector fields on Manifolds

A vector field is a mapping F defined on M such that F(x) € T,.M for
allx e M.

Riemannian gradient,
x — grad f(x),

is a vector field generated by scalar field f : M — R.

Figure: A vector field on a unit sphere. Source: Wikipedia.
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https://en.wikipedia.org/wiki/Vector_field

Covariant derivative & Hessian & Riemannian Newton

method

Covariant derivative of a vector field F:

Riemannian connection
VE(x): TyM — T,M, linear operator.
general vector field

Specially, Hessf(x) £ V gradf(x) is called Riemannian Hessian.
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Covariant derivative & Hessian & Riemannian Newton

method

Covariant derivative of a vector field F:

Riemannian connection
VE(x): TyM — T,M, linear operator.
general vector field

Specially, Hessf(x) £ V gradf(x) is called Riemannian Hessian.

Riemannian Newton method: To find singularity x* € M such that
F ()C*) = Uyx*.
(Step 1.) Solve a linear system on Ty M > vy :
VF(xk)vk = —F(Xk), (1)

(Step 2.) xx+1 = Ry, (vk). Return to Step 1.
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Riemannian Interior Point Methods (RIPM)

© Our Proposal: Riemannian Interior Point Methods
@ Formulation of RIPM
@ Global Algorithms
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Riemannian Interior Point Methods (RIPM)

© Our Proposal: Riemannian Interior Point Methods
@ Formulation of RIPM
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Formulation of RIPM

We consider

min f(x)
M (RCOP)
s.t.  h(x) =0, and g(x) <0,

where f : M - R,h: M — R/ and g : M — R™.

Lagrangian function is

L(x,y,2) £ f(x) + y"h(x) + 2" g(x). 2)

x — L(x,y,z) is a real-valued function on M, then we have

e grad, L(x,y,z) =
grad f(x) + Zle yigrad hi(x) + >0, zi grad gi(x),

e Hess, L(x,y,z) =
Hessf(x) + 25:1 yiHess hi(x) + Y1 | z; Hess gi(x).
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KKT Vector Field

Riemannian KKT conditions [Liu and Boumal, 2020] are

grad, L(x,y,z

=0,
( 0
g(x) <0, (3)
(x) =0,(Z :=diag (z1,---,2m))

0

Definition (KKT Vector Field, L. 2022)

Using s := —g(x), the above becomes
grad, £(x,y,2) 0,
A h(x) 0
= = =] >
F(w) 2(x) + s 0,, 0 , and (z,5) >0, (4)
ZSe 0

where w := (x,y,2,5) € # = M x R' x R™ x R™, Note that
T, M =T.M x R x R™ x R™.
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Covariant Derivative of KKT Vector Field

For each x € M, we define

I
H. :R' - T.M, Hy=2 Z v; grad h;(x). %)
i=1

Hence, the adjoint operator is

H:T,M =R, H¢=[(grad(x),€), -, (grad by(x),€),] . (©6)

Lemma (L. 2022)
The linear operator VE(w) : Tyl — T, is given by

Hess, L(w)Ax + H,Ay + G, Az

HAx
VF(w)Aw = G*Ax + As ) @)

ZAs + SAz

where Aw = (Ax, Ay, As,Az) € T.M x R x R" x R" = T,,. /4.
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Riemannian Interior Point Method (RIPM)

Step 0. Initial wy with (29, s9) > 0.
Step 1. Solve
VF(wi)Awg = —F(wy) + e, (8)
where ¢ = (0,,0,0, ¢).
Step 2. Compute the step sizes ay such that (zgy1, Sg+1) > 0.
Step 3. Update:

Wit = Ry, (0 Awy). 9
Step 4. Let px — 0. Returnto 1.

Theorem (Local Convergence, L. 2022)

Under some standard assumptions.

@ If =o(||Fw)l), ax — 1, then {wy} locally, superlinearly
converges to w*.

@ If i = O(IF(wi)[?), 1 — cu = O(||F (wi)
quadratically converges to w*.

), then {wy} locally,
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Riemannian Interior Point Methods (RIPM)

© Our Proposal: Riemannian Interior Point Methods

@ Global Algorithms
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Global Line Search RIPM Algorithm

Merit function: Choose o(w) = ||[F(w)]%.
Backtracking for step size ay:
@ Centrality conditions.

© Sufficient decreasing condition.
With a slight abuse of notation, we also let

o(a) = p(Ry, (Awy)) for fixed wy and Awy, (10)
H,—/
new 1terate
then ¢(0) = p(wy) =: ¢ and ¢’ (0) = (grad p(wy), Awy). Sufficient
decreasing asks
p(aw) — 9(0) < kB (0).
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Global Line Search RIPM Algorithm

Merit function: Choose o(w) = ||[F(w)]%.

Backtracking for step size ay:
@ Centrality conditions.
© Sufficient decreasing condition.

With a slight abuse of notation, we also let

o(a) 2 ©(Ry, (Awy)) for fixed wy and Awy, (10)
—_————

new iterate

then ¢(0) = p(wy) =: ¢ and ¢’ (0) = (grad p(wy), Awy). Sufficient
decreasing asks
() — (0) < By (0).

Descent direction:
Let Awy be the solution of VF(wy)Awy = —F(wy) + proge, then
©'(0) < 0if we set p := 5] zi/m, 01 € (0,1). Then, {¢,} is monotonically
decreasing.
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Global Convergence

C.f. El-Bakry, A., Tapia, R. A., Tsuchiya, T., and Zhang, Y. (1996).
On the formulation and theory of the Newton interior-point method for
nonlinear programming. J Optim Theory Appl, 1996.

Assumptions:

@ the functions f(x), h(x), g(x) are smooth; the set {grad h,-(x)}gz1

is linearly independent in T, M for all x; and w — VF(w) is
Lipschitz continuous;

@ the sequences {x;} and {z;} are bounded,;

@ the operator VF(w) is nonsingular.

Theorem (Global Convergence, L. 2022)

Let {0} C (0, 1) bounded away from zero and one. If Assumptions
1~3 hold, then {F(wy)} converges to zero; and for any limit point
w* = (x*,¥*,2%,5*) of {wi} , x* is a Riemannian KKT point of
problem (RCOP).
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Riemannian Interior Point Methods (RIPM)

© Numerical Experiments
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Numerical Experiments

We compare with the other Riemannian methods:!
o RALM : Riemannian augmented Lagrangian method.

o REPM._Igh : Riemannian exact penalty method with smoothing
function LQH.

o REPM Ise : Riemannian exact penalty method with smoothing
function LSE.

@ RSQP : Riemannian sequential quadratic programming.

@ RIPM (Our method): Riemannian interior point method.
KKT residual is defined by

m 1
J llgrad, L(w)|* + > {min (0,z)* + max (0, 8(x))* + |zigi(x)[*} + Y _ |hi(x)|* + Manvio(x),

i=1 i=1

where Manvio measures the violation of manifold constraints.

IThe numerical experiments were performed in Matlab R2022a on a computer

equipped with an Intel Core i7-10700 at 2.90GHz with 16GB of RAM.
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Problem I — Nonnegative Low Rank Matrix

Approximation (NLRM)

Problem I [Song and Ng, 2020]
proposed

min ||A - X||% st X >0,
XER;"X"

where R =
{X e R™*" : rank(X) =r}.

Data setting:

B = rand(m, r);

C = rand(r, n);

A = B*C+sigma*randn(m,n) ;

10?
10'
10°
107
102
10
104
102
10®
107
108 F
10°

1031%03
10,11

1012 F
1013 \

RALM
REPM(LQH)
REPM(LSE)
RSQP
RIPM

KKT residual

—

1074 ¢

@
N
w

Time [s]

Figure: m = 10,n = 8,r = 3 and
o =0.01.
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Problem II — Projection onto Nonnegative Stiefel Manifold

Problem II[Jiang et al., 2022] Given C € R"*k we consider

min ||X — C||}, st X >0, (Model_Stiefel)
X€ESt(n k)

which can be equivalently reformulated into

min || X — C||# st X >0, and |[XV|F = 1.
XeOB(n,k)
(Model_Oblique)
Here,
o Stiefel manifold, St(n, k) £ {X € R™* . XTX =I}.

@ Oblique manifold,
OB(n, k) = {X € R™* : all columns have unit norm}.

@ V is an arbitrary constant matrix satisfying ||V||r = 1 and
VVT > 0 (irrelevant to X, C).
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Problem II — Projection onto Nonnegative Stiefel Manifold

@ For each Model, we conducted 20 random trials.

@ Each experiment terminated successfully if solution with KKT
residual < 107 was found.

o It failed if the maximum iteration 10,000 or maximum time 600
[s] was reached.?

Table: Model_St Table: Model_Ob

(n, k) (60,12) (70,14) (n, k) (60,12) (70,14)

Rate Time [s] Iter.|Rate Time [s] Iter. Rate Time [s] Iter.|Rate Time [s] Iter.
RALM 1 4.097 34 |1 6.234 37 RALM 0.6 5725 49 |0.6 8223 52
REPM(LQH) [0 0 - REPM(LQH) [0 - - |0 - -
REPM(LSE) |0 - - |0 - - REPM(LSE) |0 - - |0 - -
RSQP 0.65 78.02 7 ]0.85 166.1 7 RSQP 0.7 4446 5 |05 9138 5
RIPM 1 5,555 32 |1 7.574 33 RIPM 1 7134 23 |1 9.268 24

2The success rate (Rate) over the total number of trials, the average time in
seconds (Time [s]) and the average iteration number (Iter.) among the successful

trials.
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Riemannian Interior Point Methods (RIPM)

© Concluding
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Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

Riemannian Constrained Optimization Problem

min f(x)
xEM (RCOP)
s.t.  h(x) =0, and g(x) <0,
where M is a Riemannian manifold, f : M — R, 4 : M — R, and
g: M — R™
Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)
@ RIPM inherits the advantages of Riemannian optimization.
@ EIPM is a special case of RIPM when M = R” or R"**,

@ RIPM solves Newton equation (12) of smaller order on T,M x R’ :

AuAx + HA
T(Ax,Ay);:<H*A§+ y):(é). 11

© RIPM can solve some problems that EIPM cannot. For example,
rank(X) = r is not continuous, we can not apply EIPM.
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Concluding Remarks

Riemannian Constrained Optimization Problem

‘We consider
min  f(x)
xeM (RCOP)
s.t.  h(x) =0, and g(x) <0,
where M is a Riemannian manifold, f : M — R, h: M — R, and
g:M—R™

Our contributions:
@ We proposed a Riemannian version of the interior point method.
@ We proved the local superlinear/quadratic and global
convergence.
© We established some foundational concepts, such as the KKT
vector field and its covariant derivative.
Future work:
© The more sophisticated and robust global strategies are often

based on the trust region or filter line-search method.
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The End

Questions? Comments?
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Appendix.



Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

RIPM can solve a condensed equation (12) of smaller order.

wAX + H A
T(Ax,Ay):=<ﬁ*Aj+ y>=<;> (12)

For example, the Stiefel manifold can be used as the equality
constraints; i.e., we set 4 : M = R™* — Sym(k), where

h(X) = X "X — I;. Here, EIPM requires us to solve (12) of order
nk + k(k+ 1) /2.

But RIPM only requires us to solve a problem of order

nk — k(k +1)/2, i.e., the dimension of St(n, k).
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Riemannian Newton method

Riemannian Newton method: Consider
F(x) =0. (13)
Solve a linear system on T, M > vy :
VF(xi)vik = —F(xz),
then xg1 = Ry, (k).

Standard Newton assumptions & Local Convergence Results:

(N1)There exists x* : F(x*) = 0. .
(N2)VF(x*) is IlOl’lSiIlgEllat? operator. = superlinear[Fernandes et al., 2017]
(N3)VF is locally Lipschitz cont. at x*.

= quadr
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Riemannian Interior Point Methods

Superlinear and Quadratic Convergence

@ Existence. There exists w* satisfying the KKT conditions.
© Smoothness. The functions f, g, h are smooth on M.

© Regularity. The set
{grad h;(x*) :i=1,--- [} U{grad g;(x*) : i € A(x)} is
linearly independent in 7« M.

© Strict Complementarity. (z*); > 0if g;(x*) = 0 for all
i=1,---,m

© Second-Order Sufficiency. (Hess, £(w*),€) > 0 for all nonzero £ € Tox M
satisfying (&, grad h;(x*)) = 0fori=1,--- ,/, and (£, grad g;(x*)) = 0 for
i€ Ax*).

Proposition (L. 2022)

If assumptions (1)-(5) hold, then standard Newton assumptions
(N1)-(N3) hold for KKT vector field F.

4/21



Riemannian Interior Point Methods

Superlinear and Quadratic Convergence

On the other hand, to keep (s, zx) > 0:
o Introducing the perturbed complementary equation,

ZAs + SAz = —ZSe + e, (14)

so that we are able to keep the iterates far from the boundary.

e Compute the damped step sizes oy, e.g., choose ;. € (0, 1) and
compute
(sK)i (zk)i

o = min {1,7,( miin {f (s | (Asg)i < O} ) Yk m,in {* (Azp)i | (Azg)i <((ﬁ)} )

such that (sgt1,2x+1) > 0.
The relation of o and v;: [Yamashita and Yabe, 1996]
Q Ify — 1,then oy — 1.
Q If1 — v = O(||F (wi)]|), then 1 — e = O (||F (wi)]])-
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History of Euclidean Interior Point Method

Interior Point (IP) Method for NONLINEAR, NONCONVEX (1990-)

Early phase (1990-1995)

@ Local algorithms with superlinear/ quadratic convergence
[El-Bakry et al., 1996, Yamashita and Yabe, 1996].

o Global algorithms [El-Bakry et al., 1996]
Variations (1995-2010)
@ Inexact Newton/ Quasi Newton IP Method

o Global strategy: many merit functions; linear search, or trust
region, etc.
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Update by Retraction

At a current point w = (x,y, z, s) and direction
Aw = (Ax, Ay, Az, As), the next iterate is calculated along a curve
on.Z,ie.,

w(a) := Ry, (aAw), (16)

for some step length o > 0.

By introducing

w(a) = (x(@),y(a),z(a), s(a)), (17)

we have
x(a) = Ry(aAx),

and y(a) =y + @Ay, z(a) = z + @Az, s(a) = s + aAs.

7/21



Centrality conditions

Given wo = (xo, Yo, 20, S0) With (z9,s9) > 0, let
min(ZySpe) . ks

“so/m 0 2T TR

Let v € (0, 1) be a constant. Define centrality functions:

T =

F/(0) 1= min(Z(@)S(@)e) ~yn 4L gy

£(0) 1= 2(@)s(0) ~ A FOx(@)]. (19
Fori = I, 11, let

o := max {a:f(t) >0, forallt € (0,a]}. (20)

a€(0,1]
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Global RIP Algorithm

@ Choose oy € (0, 1); for wy, compute the perturbed Newton
direction Awy with

[k = 74 Sk/m @21)
and by
VFE(w)Aw = —F(w) + oy pue. (22)
@ Step length selection.

@ Centrality conditions: Choose 1/2 < v < 74—1 < 1; compute
o, i =1, I, from (20); and let

a; = min(o/, o). (23)

© Sufficient decreasing: Choose 6 € (0, 1), and 5 € (0, 1/2]. Let
oy = 0'ay., where ¢ is the smallest nonnegative integer such that
oy, satisfies

O(Ry, (0xAwp)) — p(wi) < aufB(grad pr, Awr).  (24)

Q Letwiy = ka (OékAWk) and k <+ k+ 1.
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Auxiliary Results I: Boundedness of the sequences

Given € > 0, let us define the set
Qe) :=={w e A : e < p(w) < o, min(ZSe)/(z"s/m) > 71 /2,2 s/|[FW)|| > 72/2} -

Lemma (Boundedness of the sequences I, L. 2022)

If e > 0 and wy. € Q(€) for all k, then

@ the sequence {z} si} and {(z¢)i(sx)i} ,i = 1,2,...,m, are all bounded above
and below away from zero.

© ihe sequence {zx} and {s¢} are bounded above and component-wise bounded
away from zero;

@ the sequence {wi} is bounded;
Q the sequence {||VF(wi) ™|} is bounded;
@ the sequence { Awy} is bounded.

Lemma (Boundedness of the sequences II, L. 2022)
If {o+} is bounded away from zero. Then, {ay} is bounded away from

Zero.
10/21



Auxiliary Results II: Continuity of Some Special Scalar

Fields

Lemma (L. 2022)

Let x € M and A, be a linear operator on TyM. Then, the values
|Ax|l2 and ||Ax||F are invariant under a change of orthonormal basis;
moreover,

1A = llAx]l2 < 1|As|F- (25)
Lemma (L. 2022)
x v |[Hessf(x)| (26)

is a continuous scalar field on M. It is true for all h;, g;.

x — ||Hy|| and x — ||Gy|] 27

are continuous scalar field on M.
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Global Convergence Theorem

This theorem, now, is only proved under exponential map exp.

Lemma (Gauss [Do Carmo and Flaherty Francis, 1992, Lemma
3.5)

Let p € M and let v € TyM such that exp,,(v) is well defined. Let
w € T,M ~ T, (T,M). Then

(D exp,,(v)[v], D exp,(v) W) = (v, w). (28)
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Conjugate Gradients (CG) on a tangent space

Input: positive definite map H on T, M and b € T, M, b# 0
Set vo = 0,79 =b,po =10
Forn=1,2,...

Compute Hp,,—1 (this is the only call to H)

an = ¢ lrn—1l12

Pn—1,Hpn_1),

Un = Un—1 + QnPn—1

Tn =Tpn—-1— aann—l

If r, =0, output s = v,: the solution of Hs = b

lirnllZ

A
Pn="Tn+ ﬁnpn—l

@ Exactly the same in form of usual CG.
@ Every vectors vy, 1, p, belong to tangent space V = T, M.

© Converges very fast if H is PD with small condition number.
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An Intuitive Barrier Method on Manifolds

Consider

HélAI} f(x) st c(x)>0. (RCOP_Ineq)

Its logarithmic barrier function is

B(x; p) = f(x) — p Y it log ci(x),

where 11 > 0. Note that the function x — B(x; i) is differentiable on,
strict F := {x € M : ¢(x) > 0} . Its Riemannian gradient is

grad B(x; ) = gradf(x) — > i, % grad ¢;(x).

Barrier Method on Manifolds

@ Setxy € M to a strictly feasible point, i.e., c(xo) > 0, and set uo > 0 and
k < 0.

© Check whether x; satisfies a stopping test for (RCOP_Ineq).

@ Compute an unconstrained minimizer x(g) of B(x; u) with a warm starting
point x.

© xit1 < x(w); choose 1 < pu;k < k + 1. Return to Step 1.
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Barrier Method on Manifolds

Barrier Method

Consider the following simple problem on a sphere manifold,
STi={xcR3: x| = 1},

min a’x st x>0, (SP)
xeS?
where a = [—1,2, 1]7. Its solution is x* = [1,0,0]”.

Now, check the KKT conditions at x (asterisks omitted below):
gradf(x) = (I, — xx")a = [0,2,1]T.
The constraint x > 0 implies ¢;(x) = el-Tx fori=1,2,3;
gradc;(x) = (I, — xx")e; = [0,0,0]";
gradea(x) = (I, —xx")ex = [0, 1,0]"
grad cz(x) = (I, — xx7)e3 = [0,0, 1]7.
Clearly, the multipliers z* = [0,2, 1]7, and LICQ and strict

complementarity hold. 15/21



Barrier Method on Manifolds

(a) (b) (© (d

Figure: Contour plots of logarithmic barrier function B(x; 1) of (SP) for (a)
pw=10(0b) u=1(c) x=0.5(d) u = 0.1. The blue area indicates low
values.
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Barrier Method on Manifolds

Finally, we find that limy_, ., xx = x* and that
Jim pfer () = 0= z(yy, Um pue/ex () = 2 = 25), lim p/e3 (ue) =1

which are the notable features of the classical barrier method; see
[Forsgren et al., 2002, Theorem 3.10 & 3.12].

Figure: Iterates x; of barrier method for (SP).
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Barrier Method on Manifolds

Furthermore, if we denote the minimizer of B(x; i) by either x,, or
x(), it must be that grad B(x,,; i) = 0.

Figure: Existence of a central path for (SP).
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Dominant cost — Newton equation

Dominant cost is to solve

VF(w)Aw = —F(w) + pe, (29)
where
F. % grad, L(x,y,2) 0,
F, £ h(x) A A 0
=5 2 30
F(W) Fgég()C)-i-S 9 e 0 ( )
F, £ ZSe e

Thus, we need to solve the following linear system on
T.M x R x R™ x R™:

Hess, L(w)Ax + H Ay + G Az —F,
H;Ax =
GiAx+ As | -F; - G

ZAs + SAz —Fs + pe
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Condensed form of Newton equation

It suffices to focus on condensed form on 7,.M x R!:

wAX + H A
T(Ax,Ay>:=(ﬁ*Aj+ y)=(§) (32)

where

A, := Hess, L(w) + G,S™'ZG*,
ci=—Fy—GS " (ZF, + pe — F,), q:=—F,.

e A, is self-adjoint (but may indefinite) on 7M.

o 7T is self-adjoint (but may indefinite) on 7,M x R!. This is a
saddle point problems on Hilbert space.

o The Riemannian situation leaves us with no explicit matrix form
available.

e A simple approach is to first find the representing matrix 7 under

some basis. (Expensive !)
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Krylov subspace methods on Tangent space

An ideal approach is to use iterative methods, such as Krylov
subspace methods (e.g., Conjugate Gradients method), on T,M x R/
directly.

For simplicity, we consider the case of only inequality constraints,
where Ay vanishes, thus we only needs to

solve A,,Ax = c for Ax € T,M. (34)

@ It only needs to call an abstract linear operator v — A,,v.
(matrix-vector product)

@ All the iterates vy are in T,M.

@ Since operator .4,, is self-adjoint but indefinite, we use
Conjugate Residual (CR) method to solve it.

The discussion of above can be naturally extended to the general case.
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