Riemannian Interior Point Methods for Constrained Optimization on Manifolds

*Zhijian Lai Akiko Yoshise

University of Tsukuba

10th International Congress on Industrial and Applied Mathematics Tokyo - Aug. 24, 2023

Interior Point Methods also Succeed in Nonconvex Case

Interior Point Methods is **default algorithm** for constrained nonlinear optimization in MATLAB:

$$x = fmincon(fun, x0, A, b, Aeq, beq, lb, ub)$$

Finds the minimum of a problem specified by

$$\min_{x} f(x) \text{ such that} \begin{cases} c(x) \le 0 \\ ceq(x) = 0 \\ A \cdot x \le b \\ Aeq \cdot x = beq \\ lb \le x \le ub, \end{cases}$$

- Byrd, R. H., J. C. Gilbert, and J. Nocedal. "A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming." Math. Program., 2000.
- Byrd, R.H., Mary E. Hribar, and Jorge Nocedal, "An Interior Point Algorithm for Large-Scale Nonlinear Programming." SIAM J. Optim., 1999.
- Waltz, R. A., J. L. Morales, J. Nocedal, and D. Orban. "An interior algorithm for nonlinear optimization that combines line search and trust region steps."
 Math. Program., 2006.

Overview

- Introduction
 - Background
 - Preliminaries
- 2 Our Proposal: Riemannian Interior Point Methods
 - Formulation of RIPM
 - Global Algorithms
- 3 Numerical Experiments
- 4 Concluding

- Introduction
 - Background
 - Preliminaries
- 2 Our Proposal: Riemannian Interior Point Methods
 - Formulation of RIPM
 - Global Algorithms
- 3 Numerical Experiments
- 4 Concluding

- Introduction
 - Background
 - Preliminaries
- 2 Our Proposal: Riemannian Interior Point Methods
 - Formulation of RIPM
 - Global Algorithms
- 3 Numerical Experiments
- 4 Concluding

Riemannian Manifold

Roughly speaking, a **Riemannian manifold** M is a set that can be locally linearizable, with a smooth mapping $x \mapsto \langle \cdot, \cdot \rangle_x$, where $\langle \cdot, \cdot \rangle_x$ is an inner product on the tangent spaces T_xM .

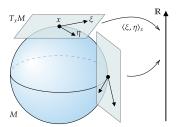


Figure: Example of sphere manifold $M = \{x \in \mathbb{R}^n : ||x||_2 = 1\}$ and $T_x M = \{v \in \mathbb{R}^n : \langle x, v \rangle = 0\}.$

Riemannian Optimization (RO)

Given $f: M \to \mathbb{R}$, solve

$$\min_{x \in M} f(x) \tag{RO}$$

where *M* is a Riemannian manifold.

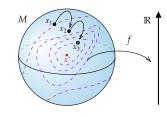


Figure: Iteration on unit sphere.

In a popular Riemannian optimization solver "Manopt":

- 40+ available manifolds M, e.g.,
 - Stiefel manifold, $\operatorname{St}(n,k) = \{X \in \mathbb{R}^{n \times k} : X^{\top}X = I\}.$
 - Fixed rank manifold, $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r\}.$
- 9 available Riemannian algorithms, e.g.,
 - steepest decent
 - conjugate gradient
 - trust region
 - BFGS and more.

Advantages of Riemannian Optimization (RO)

Given
$$f: M \to \mathbb{R}$$
, solve

$$\min_{x \in M} f(x) \tag{RO}$$

where *M* is a Riemannian manifold.

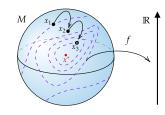


Figure: Iteration on unit sphere.

Advantages of (RO):

- Transfer the constrained problem to the unconstrained one.
- 2 Exploit the geometric structure of the constrained set.
- **③** Convergence properties of like optimization on Euclidean space.

Applications of (RO)

• PCA on Stiefel manifold,

$$\mathrm{St}(n,k) = \{ X \in \mathbb{R}^{n \times k} : X^{\top}X = I \}.$$

$$\min_{X \in \operatorname{St}(n,k)} - \operatorname{trace}(X^{\top} A^{\top} A X)$$

• Matrix Completion on fixed rank manifold, $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r\}.$

$$\min_{X \in \mathbb{R}_r^{m \times n}} \sum_{(i,j) \in \Omega} (X_{ij} - A_{ij})^2$$

→ We can use the solver "Manopt" directly.

More Requirements in Practical Applications

• Nonnegative PCA on Stiefel manifold,

$$\operatorname{St}(n,k) = \{X \in \mathbb{R}^{n \times k} : X^{\top}X = I\}.$$

$$\min_{X \in \operatorname{St}(n,k)} - \operatorname{trace}(X^{\top}A^{\top}AX)$$
s.t. $X \ge 0$

• Nonnegative Matrix Completion on fixed rank manifold, $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r\}.$

$$\min_{X \in \mathbb{R}_r^{m \times n}} \sum_{(i,j) \in \Omega} (X_{ij} - A_{ij})^2$$
s.t. $X > 0$

→ Um..., can we use the solver "Manopt" directly? Answer is NO.

Some Limitations of Riemannian Optimization (RO)

Given
$$f: M \to \mathbb{R}$$
, solve
$$\min_{x \in M} f(x) \tag{RO}$$

where *M* is a Riemannian manifold.

Some limitations of (RO):

- (RO) requires that the *whole* feasible region to your problem forms a manifold. Unfortunately, the much common scenario is: "some of the constraints form a manifold that already exists in
 - 'Manopt', but we have additional constraints."
- ② If your feasible region *happens* to form a new manifold (not available in "Manopt"), you will need to find its geometric tools by yourself.
- \leadsto To address these challenges, We aims to develop a new model instead of (RO).

New Topic — Riemannian Constrained Optimization Problem

$$\min_{x \in M} \quad f(x) \\ \text{s.t.} \quad h(x) = 0, \text{ and } g(x) \le 0,$$
 (RCOP)

where $f: M \to \mathbb{R}, h: M \to \mathbb{R}^l$, and $g: M \to \mathbb{R}^m$.

New Topic — Riemannian Constrained Optimization Problem

We consider

$$\min_{x \in M} f(x)$$
s.t. $h(x) = 0$, and $g(x) \le 0$, (RCOP)

where $f: M \to \mathbb{R}, h: M \to \mathbb{R}^l$, and $g: M \to \mathbb{R}^m$.

Advantages of (RCOP):

- Still using the geometric structure of *M*, i.e., the advantages of (RO) are preserved.
- Plexible! It only requires that a portion of the constraints in your problem form a manifold.
- **Solution** Easy programming! Because we can still use the existing geometric tools of *M* if it is available in "Manopt".

New Topic — Riemannian Constrained Optimization Problem

$$\min_{x \in M} f(x)$$

s.t. $h(x) = 0$, and $g(x) \le 0$, (RCOP)

where $f: M \to \mathbb{R}, h: M \to \mathbb{R}^l$, and $g: M \to \mathbb{R}^m$.

Riemannian version of classical algorithms:

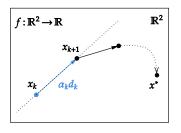
- Augmented Lagrangian Method
 [Liu and Boumal, 2020, Yamakawa and Sato, 2022]
- Exact Penalty Method [Liu and Boumal, 2020]
- Sequential Quadratic Programming Method [Schiela and Ortiz, 2020, Obara et al., 2022]
- \sim In this talk, we propose *Riemannian version of Interior Point Method*.

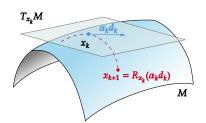
- Introduction
 - Background
 - Preliminaries
- 2 Our Proposal: Riemannian Interior Point Methods
 - Formulation of RIPM
 - Global Algorithms
- 3 Numerical Experiments
- 4 Concluding

Q1: How to move on manifolds? Retraction!

A **retraction** *R* maps tangent vectors back to the manifold.

$$R_x: T_xM \to M$$
 for any x .



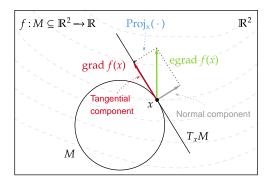


Euclidean	Riemannian			
$x_{k+1} = x_k + \alpha_k d_k$	$x_{k+1} = R_{x_k}(\alpha_k d_k)$			

Q2: In which direction do we move?? Riemannian Gradient!

For an embedded submanifold M, **Riemannian gradient of** $f: M \to \mathbb{R}$ is the orthogonal projection onto T_xM of the Euclidean gradient,

$$\operatorname{grad} f(x) = \operatorname{Proj}_x(\operatorname{egrad} f(x)).$$



Supplementary: Vector fields on Manifolds

A **vector field** is a mapping F defined on M such that $F(x) \in T_x M$ for all $x \in M$.

Riemannian gradient,

$$x \mapsto \operatorname{grad} f(x),$$

is a vector field generated by scalar field $f: M \to \mathbb{R}$.

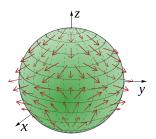
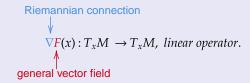


Figure: A vector field on a unit sphere. Source: Wikipedia.

Covariant derivative & Hessian & Riemannian Newton method

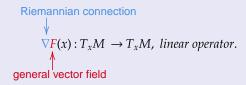
Covariant derivative of a vector field *F*:



Specially, $\operatorname{Hess} f(x) \triangleq \nabla \operatorname{grad} f(x)$ is called **Riemannian Hessian**.

Covariant derivative & Hessian & Riemannian Newton method

Covariant derivative of a vector field *F*:



Specially, $\operatorname{Hess} f(x) \triangleq \nabla \operatorname{grad} f(x)$ is called **Riemannian Hessian**.

Riemannian Newton method: To find singularity $x^* \in M$ such that $F(x^*) = 0_{x^*}$.

(Step 1.) Solve a linear system on $T_{x_k}M \ni v_k$:

$$\nabla F(x_k)v_k = -F(x_k),\tag{1}$$

(Step 2.) $x_{k+1} = R_{x_k}(v_k)$. Return to Step 1.

- Introduction
 - Background
 - Preliminaries
- 2 Our Proposal: Riemannian Interior Point Methods
 - Formulation of RIPM
 - Global Algorithms
- 3 Numerical Experiments
- 4 Concluding

- Introduction
 - Background
 - Preliminaries
- 2 Our Proposal: Riemannian Interior Point Methods
 - Formulation of RIPM
 - Global Algorithms
- 3 Numerical Experiments
- 4 Concluding

Formulation of RIPM

We consider

$$\min_{\substack{x \in M} \\ \text{s.t.}} f(x)$$
s.t. $h(x) = 0$, and $g(x) \le 0$, (RCOP)

where $f: M \to \mathbb{R}, h: M \to \mathbb{R}^l$, and $g: M \to \mathbb{R}^m$.

Lagrangian function is

$$\mathcal{L}(x, y, z) \triangleq f(x) + y^{T} h(x) + z^{T} g(x).$$
 (2)

 $x \mapsto \mathcal{L}(x, y, z)$ is a real-valued function on M, then we have

•
$$\operatorname{grad}_{x} \mathcal{L}(x, y, z) = \operatorname{grad} f(x) + \sum_{i=1}^{l} y_{i} \operatorname{grad} h_{i}(x) + \sum_{i=1}^{m} z_{i} \operatorname{grad} g_{i}(x),$$

•
$$\operatorname{Hess}_{x} \mathcal{L}(x, y, z) = \operatorname{Hess} f(x) + \sum_{i=1}^{l} y_{i} \operatorname{Hess} h_{i}(x) + \sum_{i=1}^{m} z_{i} \operatorname{Hess} g_{i}(x).$$

KKT Vector Field

Riemannian KKT conditions [Liu and Boumal, 2020] are

$$\begin{cases}
\operatorname{grad}_{x} \mathcal{L}(x, y, z) = 0_{x}, \\
h(x) = 0, \\
g(x) \leq 0, \\
Zg(x) = 0, (Z := \operatorname{diag}(z_{1}, \dots, z_{m})) \\
z \geq 0.
\end{cases} \tag{3}$$

Definition (KKT Vector Field, L. 2022)

Using s := -g(x), the above becomes

$$F(w) \triangleq \begin{pmatrix} \operatorname{grad}_{x} \mathcal{L}(x, y, z) \\ h(x) \\ g(x) + s \\ ZSe \end{pmatrix} = 0_{w} := \begin{pmatrix} 0_{x} \\ 0 \\ 0 \\ 0 \end{pmatrix}, \text{ and } (z, s) \geq 0, \quad (4)$$

where $w := (x, y, z, s) \in \mathcal{M} \triangleq M \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m$. Note that $T_w \mathcal{M} \equiv T_x M \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m$.

Covariant Derivative of KKT Vector Field

For each $x \in M$, we define

$$H_x: \mathbb{R}^l \to T_x M, \quad H_x v \triangleq \sum_{i=1}^l v_i \operatorname{grad} h_i(x).$$
 (5)

Hence, the adjoint operator is

$$H_x^*: T_xM \to \mathbb{R}^l, \quad H_x^*\xi = \left[\langle \operatorname{grad} h_1(x), \xi \rangle_x, \cdots, \langle \operatorname{grad} h_l(x), \xi \rangle_x \right]^T.$$
 (6)

Lemma (L. 2022)

The linear operator $\nabla F(w): T_w \mathcal{M} \to T_w \mathcal{M}$ is given by

$$\nabla F(w)\Delta w = \begin{pmatrix} \operatorname{Hess}_{x} \mathcal{L}(w)\Delta x + H_{x}\Delta y + G_{x}\Delta z \\ H_{x}^{*}\Delta x \\ G_{x}^{*}\Delta x + \Delta s \\ Z\Delta s + S\Delta z \end{pmatrix}, \tag{7}$$

where $\Delta w = (\Delta x, \Delta y, \Delta s, \Delta z) \in T_x M \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m \equiv T_w \mathcal{M}$.

Step 0. Initial w_0 with $(z_0, s_0) > 0$.

Step 1. Solve

$$\nabla F(w_k) \Delta w_k = -F(w_k) + \mu_k \hat{\mathbf{e}}, \tag{8}$$

where $\hat{e} \triangleq (0_x, 0, 0, e)$.

Step 2. Compute the step sizes α_k such that $(z_{k+1}, s_{k+1}) > 0$.

Step 3. Update:

$$w_{k+1} = \bar{R}_{w_k}(\alpha_k \Delta w_k). \tag{9}$$

Step 4. Let $\mu_k \to 0$. Return to 1.

Theorem (Local Convergence, L. 2022)

Under some standard assumptions.

- ① If $\mu_k = o(||F(w_k)||), \alpha_k \to 1$, then $\{w_k\}$ locally, superlinearly converges to w^* .
- ② If $\mu_k = O(\|F(w_k)\|^2)$, $1 \alpha_k = O(\|F(w_k)\|)$, then $\{w_k\}$ locally, quadratically converges to w^* .

- Introduction
 - Background
 - Preliminaries
- 2 Our Proposal: Riemannian Interior Point Methods
 - Formulation of RIPM
 - Global Algorithms
- 3 Numerical Experiments
- 4 Concluding

Global Line Search RIPM Algorithm

Merit function: Choose $\varphi(w) \triangleq ||F(w)||^2$.

Backtracking for step size α_k :

- Centrality conditions.
- 2 Sufficient decreasing condition.

With a slight abuse of notation, we also let

$$\varphi(\alpha) \triangleq \varphi(\underline{\bar{R}_{w_k}(\alpha \Delta w_k)}) \text{ for fixed } w_k \text{ and } \Delta w_k,$$
 (10)

then $\varphi(0) = \varphi(w_k) =: \varphi_k$ and $\varphi'(0) = \langle \operatorname{grad} \varphi(w_k), \Delta w_k \rangle$. Sufficient decreasing asks

$$\varphi(\alpha_k) - \varphi(0) \le \alpha_k \beta \varphi'(0).$$

Global Line Search RIPM Algorithm

Merit function: Choose $\varphi(w) \triangleq ||F(w)||^2$.

Backtracking for step size α_k :

- Centrality conditions.
- 2 Sufficient decreasing condition.

With a slight abuse of notation, we also let

$$\varphi(\alpha) \triangleq \varphi(\underline{\bar{R}_{w_k}(\alpha \Delta w_k)}) \text{ for fixed } w_k \text{ and } \Delta w_k,$$
 (10)

then $\varphi(0) = \varphi(w_k) =: \varphi_k$ and $\varphi'(0) = \langle \operatorname{grad} \varphi(w_k), \Delta w_k \rangle$. Sufficient decreasing asks

$$\varphi(\alpha_k) - \varphi(0) \le \alpha_k \beta \varphi'(0).$$

Descent direction:

Let Δw_k be the solution of $\nabla F(w_k) \Delta w_k = -F(w_k) + \rho_k \sigma_k \hat{e}$, then $\varphi'(0) < 0$ if we set $\rho_k := s_k^T z_k / m$, $\sigma_k \in (0, 1)$. Then, $\{\varphi_k\}$ is monotonically decreasing.

Global Convergence

C.f. El-Bakry, A., Tapia, R. A., Tsuchiya, T., and Zhang, Y. (1996). *On the formulation and theory of the Newton interior-point method for nonlinear programming.* J Optim Theory Appl, 1996.

Assumptions:

- the functions f(x), h(x), g(x) are smooth; the set $\{\operatorname{grad} h_i(x)\}_{i=1}^l$ is linearly independent in T_xM for all x; and $w \mapsto \nabla F(w)$ is Lipschitz continuous;
- 2 the sequences $\{x_k\}$ and $\{z_k\}$ are bounded;
- **3** the operator $\nabla F(w)$ is nonsingular.

Theorem (Global Convergence, L. 2022)

Let $\{\sigma_k\} \subset (0,1)$ bounded away from zero and one. If Assumptions $1 \sim 3$ hold, then $\{F(w_k)\}$ converges to zero; and for any limit point $w^* = (x^*, y^*, z^*, s^*)$ of $\{w_k\}$, x^* is a Riemannian KKT point of problem (RCOP).

- Introduction
 - Background
 - Preliminaries
- 2 Our Proposal: Riemannian Interior Point Methods
 - Formulation of RIPM
 - Global Algorithms
- 3 Numerical Experiments
- 4 Concluding

Numerical Experiments

We compare with the other Riemannian methods:1

- RALM: Riemannian augmented Lagrangian method.
- REPM_lqh: Riemannian exact penalty method with smoothing function LQH.
- REPM_lse: Riemannian exact penalty method with smoothing function LSE.
- RSQP : Riemannian sequential quadratic programming.
- RIPM (Our method): Riemannian interior point method.

KKT residual is defined by

$$\sqrt{\|\operatorname{grad}_{x} \mathcal{L}(w)\|^{2} + \sum_{i=1}^{m} \{\min(0, z_{i})^{2} + \max(0, g_{i}(x))^{2} + |z_{i}g_{i}(x)|^{2}\} + \sum_{i=1}^{l} |h_{i}(x)|^{2}} + \operatorname{Manvio}(x),$$

where Manvio measures the violation of manifold constraints.

¹The numerical experiments were performed in Matlab R2022a on a computer equipped with an Intel Core i7-10700 at 2.90GHz with 16GB of RAM.

Problem I — Nonnegative Low Rank Matrix Approximation (NLRM)

Problem I [Song and Ng, 2020] proposed

$$\min_{X \in \mathbb{R}_r^{m \times n}} \|A - X\|_F^2 \quad \text{ s.t. } X \ge 0,$$

where
$$\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \operatorname{rank}(X) = r\}$$
.

Data setting:

```
B = rand(m, r);
C = rand(r, n);
A = B*C+sigma*randn(m,n);
```

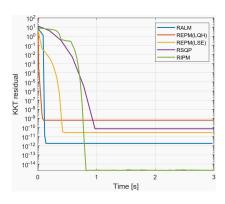


Figure:
$$m = 10, n = 8, r = 3$$
 and $\sigma = 0.01$.

Problem II — Projection onto Nonnegative Stiefel Manifold

Problem II[Jiang et al., 2022] Given $C \in \mathbb{R}^{n \times k}$, we consider

$$\min_{X \in \operatorname{St}(n,k)} \|X - C\|_F^2, \quad \text{ s.t. } X \ge 0, \tag{Model_Stiefel} \label{eq:Model_Stiefel}$$

which can be equivalently reformulated into

$$\min_{X \in \mathrm{OB}(n,k)} \|X - C\|_F^2 \quad \text{s.t. } X \ge 0, \text{ and } \|XV\|_F = 1.$$
 (Model_Oblique)

Here,

- Stiefel manifold, $\operatorname{St}(n,k) \triangleq \{X \in \mathbb{R}^{n \times k} : X^{\top}X = I\}.$
- Oblique manifold, $OB(n, k) \triangleq \{X \in \mathbb{R}^{n \times k} : \text{ all columns have unit norm}\}.$
- V is an arbitrary constant matrix satisfying $||V||_F = 1$ and $VV^{\top} > 0$ (irrelevant to X, C).

Problem II — Projection onto Nonnegative Stiefel Manifold

- For each Model, we conducted 20 random trials.
- Each experiment terminated successfully if solution with KKT residual $< 10^{-6}$ was found.
- It failed if the maximum iteration 10,000 or maximum time 600 [s] was reached.²

Table: Model_St

(n,k)	(60,12)			(70,14)		
	Rate	Time [s]	Iter.	Rate	Time [s]	Iter.
RALM	1	4.097	34	1	6.234	37
REPM(LQH)	0	-	-	0	-	-
REPM(LSE)	0	-	-	0	-	-
RSQP	0.65	78.02	7	0.85	166.1	7
RIPM	1	5.555	32	1	7.574	33

Table: Model_Ob

	-						
(n,k)		(60,12)		(70,14)			
	Rate	Time [s]	Iter.	Rate	Time [s]	Iter.	
RALM	0.6	5.725	49	0.6	8.223	52	
REPM(LQH)	0	-	-	0	-	-	
REPM(LSE)	0	-	-	0	-	-	
RSQP	0.7	44.46	5	0.5	91.38	5	
RIPM	1	7.134	23	1	9.268	24	

²The success rate (Rate) over the total number of trials, the average time in seconds (Time [s]) and the average iteration number (Iter.) among the successful trials.

- Introduction
 - Background
 - Preliminaries
- 2 Our Proposal: Riemannian Interior Point Methods
 - Formulation of RIPM
 - Global Algorithms
- 3 Numerical Experiments
- 4 Concluding

Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

Riemannian Constrained Optimization Problem

$$\min_{\substack{x \in \mathbb{M} \\ \text{s.t.}}} f(x)$$
s.t. $h(x) = 0$, and $g(x) \le 0$, (RCOP)

where \mathbb{M} is a Riemannian manifold, $f : \mathbb{M} \to \mathbb{R}, h : \mathbb{M} \to \mathbb{R}^l$, and $g : \mathbb{M} \to \mathbb{R}^m$.

Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

- RIPM inherits the advantages of Riemannian optimization.
- ② EIPM is a special case of RIPM when $\mathbb{M} = \mathbb{R}^n$ or $\mathbb{R}^{n \times k}$.
- **3** RIPM solves Newton equation (12) of smaller order on $T_x \mathbb{M} \times \mathbb{R}^l$:

$$\mathcal{T}(\Delta x, \Delta y) := \begin{pmatrix} A_w \Delta x + H_x \Delta y \\ H_x^* \Delta x \end{pmatrix} = \begin{pmatrix} c \\ q \end{pmatrix}. \tag{11}$$

③ RIPM can solve some problems that EIPM cannot. For example, rank(X) = r is not continuous, we can not apply EIPM.

Concluding Remarks

Riemannian Constrained Optimization Problem

We consider

$$\begin{aligned} & \min_{x \in M} & f(x) \\ & \text{s.t.} & h(x) = 0, \text{ and } g(x) \leq 0, \end{aligned}$$
 (RCOP)

where M is a Riemannian manifold, $f: M \to \mathbb{R}, h: M \to \mathbb{R}^l$, and $g: M \to \mathbb{R}^m$.

Our contributions:

- We proposed a Riemannian version of the interior point method.
- We proved the local superlinear/quadratic and global convergence.
- We established some foundational concepts, such as the KKT vector field and its covariant derivative.

Future work:

• The more sophisticated and robust global strategies are often based on the trust region or filter line-search method.

Reference I

- [Do Carmo and Flaherty Francis, 1992] Do Carmo, M. P. and Flaherty Francis, J. (1992). *Riemannian geometry*, volume 6. Springer.
- [El-Bakry et al., 1996] El-Bakry, A., Tapia, R. A., Tsuchiya, T., and Zhang, Y. (1996). On the formulation and theory of the Newton interior-point method for nonlinear programming. *Journal of Optimization Theory and Applications*, 89(3):507–541.
- Fernandas et al. 2017. Fernandas T.A. Fernandas O.B. and Vivan I
- [Fernandes et al., 2017] Fernandes, T. A., Ferreira, O. P., and Yuan, J. (2017). On the superlinear convergence of Newton's method on Riemannian manifolds. *Journal of Optimization Theory and Applications*, 173(3):828–843.
- [Ferreira and Silva, 2012] Ferreira, O. P. and Silva, R. C. (2012). Local convergence of Newton's method under a majorant condition in Riemannian manifolds.
 - IMA Journal of Numerical Analysis, 32(4):1696–1713.
- [Forsgren et al., 2002] Forsgren, A., Gill, P. E., and Wright, M. H. (2002). Interior methods for nonlinear optimization. SIAM Review, 44(4):525–597.
- [Jiang et al., 2022] Jiang, B., Meng, X., Wen, Z., and Chen, X. (2022).
 An exact penalty approach for optimization with nonnegative orthogonality constraints.
 Mathematical Programming, pages 1–43.

Reference II

[Liu and Boumal, 2020] Liu, C. and Boumal, N. (2020).

Simple algorithms for optimization on Riemannian manifolds with constraints.

Applied Mathematics & Optimization, 82(3):949-981.

[Obara et al., 2022] Obara, M., Okuno, T., and Takeda, A. (2022).

Sequential quadratic optimization for nonlinear optimization problems on riemannian manifolds.

SIAM Journal on Optimization, 32(2):822-853.

[Schiela and Ortiz, 2020] Schiela, A. and Ortiz, J. (2020).

An SQP method for equality constrained optimization on manifolds.

arXiv preprint arXiv:2005.06844.

[Song and Ng, 2020] Song, G.-J. and Ng, M. K. (2020).

Nonnegative low rank matrix approximation for nonnegative matrices.

Applied Mathematics Letters, 105:106300.

[Yamakawa and Sato, 2022] Yamakawa, Y. and Sato, H. (2022).

Sequential optimality conditions for nonlinear optimization on Riemannian manifolds and a globally convergent augmented lagrangian method.

Computational Optimization and Applications, pages 1–25.

Reference III

[Yamashita and Yabe, 1996] Yamashita, H. and Yabe, H. (1996).

Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimization.

Mathematical Programming, 75(3):377–397.

The End

Questions? Comments?

Appendix.

Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

RIPM can solve a condensed equation (12) of smaller order.

$$\mathcal{T}(\Delta x, \Delta y) := \begin{pmatrix} A_w \Delta x + H_x \Delta y \\ H_x^* \Delta x \end{pmatrix} = \begin{pmatrix} c \\ q \end{pmatrix}, \tag{12}$$

For example, the Stiefel manifold can be used as the equality constraints; i.e., we set $h: M \equiv \mathbb{R}^{n \times k} \to \operatorname{Sym}(k)$, where $h(X) = X^{\top}X - I_k$. Here, EIPM requires us to solve (12) of order nk + k(k+1)/2.

But RIPM only requires us to solve a problem of order nk - k(k+1)/2, i.e., the dimension of St(n, k).

Riemannian Newton method

Riemannian Newton method: Consider

$$F(x) = 0. (13)$$

Solve a linear system on $T_{x_k}M \ni v_k$:

$$\nabla F(x_k)v_k = -F(x_k),$$

then $x_{k+1} = R_{x_k}(v_k)$.

Standard Newton assumptions & Local Convergence Results:

$$\begin{array}{l} \text{(N1)There exists } x^* : F(x^*) = 0. \\ \text{(N2)} \nabla F(x^*) \text{ is nonsingular operator.} \\ \text{(N3)} \nabla F \text{ is locally Lipschitz cont. at } x^*. \end{array} \right\} \Rightarrow \text{superlinear[Fernandes et al., 2017]} \quad \right\} \Rightarrow \text{quadr}$$

Riemannian Interior Point Methods

Superlinear and Quadratic Convergence

- **1** Existence. There exists w^* satisfying the KKT conditions.
- **Smoothness.** The functions f, g, h are smooth on M.
- **Solution** Regularity. The set $\{\operatorname{grad} h_i(x^*): i=1,\cdots,l\} \cup \{\operatorname{grad} g_i(x^*): i\in \mathcal{A}(x)\}$ is linearly independent in $T_{x^*}M$.
- **Strict Complementarity.** $(z^*)_i > 0$ if $g_i(x^*) = 0$ for all $i = 1, \dots, m$.
- **Second-Order Sufficiency.** $\langle \operatorname{Hess}_x \mathcal{L}(w^*)\xi, \xi \rangle > 0$ for all nonzero $\xi \in T_{x^*}M$ satisfying $\langle \xi, \operatorname{grad} h_i(x^*) \rangle = 0$ for $i = 1, \dots, l$, and $\langle \xi, \operatorname{grad} g_i(x^*) \rangle = 0$ for $i \in \mathcal{A}(x^*)$.

Proposition (L. 2022)

If assumptions (1)-(5) hold, then standard Newton assumptions (N1)-(N3) hold for KKT vector field F.

Riemannian Interior Point Methods

Superlinear and Quadratic Convergence

On the other hand, to keep $(s_k, z_k) \ge 0$:

• Introducing the **perturbed** complementary equation,

$$Z\Delta s + S\Delta z = -ZSe + \mu e, \tag{14}$$

so that we are able to keep the iterates far from the boundary.

• Compute the **damped** step sizes α_k , e.g., choose $\gamma_k \in (0,1)$ and compute

$$\alpha_{k} := \min \left\{ 1, \gamma_{k} \min_{i} \left\{ -\frac{(s_{k})_{i}}{(\Delta s_{k})_{i}} \mid (\Delta s_{k})_{i} < 0 \right\}, \gamma_{k} \min_{i} \left\{ -\frac{(z_{k})_{i}}{(\Delta z_{k})_{i}} \mid (\Delta z_{k})_{i} < 0 \right\} \right\},$$
such that $(s_{k+1}, z_{k+1}) > 0$.

The relation of α_k and γ_k : [Yamashita and Yabe, 1996]

- ② If $1 \gamma_k = O(\|F(w_k)\|)$, then $1 \alpha_k = O(\|F(w_k)\|)$.

History of Euclidean Interior Point Method

Interior Point (IP) Method for NONLINEAR, NONCONVEX (1990-)

Early phase (1990-1995)

- Local algorithms with superlinear/ quadratic convergence [El-Bakry et al., 1996, Yamashita and Yabe, 1996].
- Global algorithms [El-Bakry et al., 1996]

Variations (1995-2010)

- Inexact Newton/ Quasi Newton IP Method
- Global strategy: *many* merit functions; linear search, or trust region, etc.

Update by Retraction

At a current point w = (x, y, z, s) and direction $\Delta w = (\Delta x, \Delta y, \Delta z, \Delta s)$, the next iterate is calculated along a curve on \mathcal{M} , i.e.,

$$w(\alpha) := \bar{R}_w(\alpha \Delta w), \tag{16}$$

for some step length $\alpha > 0$.

By introducing

$$w(\alpha) = (x(\alpha), y(\alpha), z(\alpha), s(\alpha)), \tag{17}$$

we have

$$x(\alpha) = R_x(\alpha \Delta x),$$

and
$$y(\alpha) = y + \alpha \Delta y, z(\alpha) = z + \alpha \Delta z, s(\alpha) = s + \alpha \Delta s.$$

Centrality conditions

Given
$$w_0 = (x_0, y_0, z_0, s_0)$$
 with $(z_0, s_0) > 0$, let

$$\tau_1 := \frac{\min(Z_0 S_0 e)}{z_0^T s_0 / m}, \quad \tau_2 := \frac{z_0^T s_0}{\|F(w_0)\|}.$$

Let $\gamma \in (0,1)$ be a constant. Define centrality functions:

$$f^{I}(\alpha) := \min(Z(\alpha)S(\alpha)e) - \gamma \tau_{1} \frac{z(\alpha)^{T}s(\alpha)}{m}, \tag{18}$$

$$f^{II}(\alpha) := z(\alpha)^T s(\alpha) - \gamma \tau_2 ||F(w(\alpha))||.$$
(19)

For i = I, II, let

$$\alpha^{i} := \max_{\alpha \in (0,1]} \left\{ \alpha : f^{i}(t) \ge 0, \text{ for all } t \in (0,\alpha] \right\}.$$
 (20)

Global RIP Algorithm

• Choose $\sigma_k \in (0,1)$; for w_k , compute the perturbed Newton direction Δw_k with

$$\mu_k = z_k^T s_k / m \tag{21}$$

and by

$$\nabla F(w)\Delta w = -F(w) + \sigma_k \mu_k \hat{e}. \tag{22}$$

- 2 Step length selection.
 - Centrality conditions: Choose $1/2 < \gamma_k < \gamma_{k-1} < 1$; compute $\alpha^i, i = I, II$, from (20); and let

$$\bar{\alpha}_k = \min(\alpha^I, \alpha^{II}). \tag{23}$$

9 Sufficient decreasing: Choose $\theta \in (0, 1)$, and $\beta \in (0, 1/2]$. Let $\alpha_k = \theta^t \bar{\alpha}_k$, where t is the smallest nonnegative integer such that α_k satisfies

$$\varphi(\bar{R}_{w_k}(\alpha_k \Delta w_k)) - \varphi(w_k) \le \alpha_k \beta \langle \operatorname{grad} \varphi_k, \Delta w_k \rangle.$$
 (24)

Auxiliary Results I: Boundedness of the sequences

Given $\epsilon \geq 0$, let us define the set

$$\Omega(\epsilon) := \left\{ w \in \mathcal{M} : \epsilon \leq \varphi(w) \leq \varphi_0, \min(ZSe) / (z^T s / m) \geq \tau_1 / 2, z^T s / \|F(w)\| \geq \tau_2 / 2 \right\}.$$

Lemma (Boundedness of the sequences I, L. 2022)

If $\epsilon > 0$ and $w_k \in \Omega(\epsilon)$ for all k, then

- the sequence $\{z_k^T s_k\}$ and $\{(z_k)_i(s_k)_i\}$, i = 1, 2, ..., m, are all bounded above and below away from zero.
- ② the sequence $\{z_k\}$ and $\{s_k\}$ are bounded above and component-wise bounded away from zero;
- **1** the sequence $\{w_k\}$ is bounded;
- the sequence $\{\|\nabla F(w_k)^{-1}\|\}$ is bounded;
- **5** *the sequence* $\{\Delta w_k\}$ *is bounded.*

Lemma (Boundedness of the sequences II, L. 2022)

If $\{\sigma_k\}$ is bounded away from zero. Then, $\{\bar{\alpha}_k\}$ is bounded away from zero.

Auxiliary Results II: Continuity of Some Special Scalar Fields

Lemma (L. 2022)

Let $x \in M$ and A_x be a linear operator on T_xM . Then, the values $\|\widehat{A}_x\|_2$ and $\|\widehat{A}_x\|_F$ are invariant under a change of orthonormal basis; moreover,

$$||A_x|| = ||\hat{A}_x||_2 \le ||\hat{A}_x||_F.$$
 (25)

Lemma (L. 2022)

$$x \mapsto \|\widehat{\operatorname{Hess} f(x)}\|$$
 (26)

is a continuous scalar field on M. It is true for all h_i , g_i .

$$x \mapsto \|H_x\| \text{ and } x \mapsto \|G_x\|$$
 (27)

are continuous scalar field on M.

Global Convergence Theorem

This theorem, now, is only proved under exponential map exp.

Lemma (Gauss [Do Carmo and Flaherty Francis, 1992, Lemma 3.5])

Let $p \in M$ and let $v \in T_pM$ such that $\exp_p(v)$ is well defined. Let $w \in T_pM \approx T_v(T_pM)$. Then

$$\langle \mathcal{D} \exp_p(v)[v], \mathcal{D} \exp_p(v)[w] \rangle = \langle v, w \rangle.$$
 (28)

Conjugate Gradients (CG) on a tangent space

```
Input: positive definite map H on T_x\mathcal{M} and b \in T_x\mathcal{M}, b \neq 0

Set v_0 = 0, r_0 = b, p_0 = r_0

For n = 1, 2, \dots

Compute Hp_{n-1} (this is the only call to H)

\alpha_n = \frac{\|r_{n-1}\|_x^2}{\langle p_{n-1}, Hp_{n-1} \rangle_x}
v_n = v_{n-1} + \alpha_n p_{n-1}
r_n = r_{n-1} - \alpha_n Hp_{n-1}
If r_n = 0, output s = v_n: the solution of Hs = b
\beta_n = \frac{\|r_n\|_x^2}{\|r_{n-1}\|_x^2}
p_n = r_n + \beta_n p_{n-1}
```

- Exactly the same in form of usual CG.
- ② Every vectors v_n, r_n, p_n belong to tangent space $V \equiv T_x M$.
- Onverges very fast if H is PD with small condition number.

An Intuitive Barrier Method on Manifolds

Consider

$$\min_{x \in M} f(x) \quad \text{s.t.} \quad c(x) \ge 0. \tag{RCOP_Ineq}$$

Its logarithmic barrier function is

$$B(x; \mu) := f(x) - \mu \sum_{i=1}^{m} \log c_i(x),$$

where $\mu > 0$. Note that the function $x \mapsto B(x; \mu)$ is differentiable on, strict $\mathcal{F} := \{x \in M : c(x) > 0\}$. Its Riemannian gradient is

$$\operatorname{grad} B(x; \mu) = \operatorname{grad} f(x) - \sum_{i=1}^{m} \frac{\mu}{c_i(x)} \operatorname{grad} c_i(x).$$

Barrier Method on Manifolds

- ① Set $x_0 \in M$ to a strictly feasible point, i.e., $c(x_0) > 0$, and set $\mu_0 > 0$ and $k \leftarrow 0$.
- ② Check whether x_k satisfies a stopping test for (RCOP_Ineq).
- **3** Compute an unconstrained minimizer $x(\mu_k)$ of $B(x; \mu_k)$ with a warm starting point x_k .
- \bullet $x_{k+1} \leftarrow x(\mu_k)$; choose $\mu_{k+1} < \mu_k; k \leftarrow k+1$. Return to Step 1.

Barrier Method

Consider the following simple problem on a sphere manifold, $\mathbb{S}^2 := \{x \in \mathbb{R}^3 : ||x||_2 = 1\},$

$$\min_{x \in \mathbb{S}^2} \quad a^T x \quad \text{s.t.} \quad x \ge 0, \tag{SP}$$

where $a = [-1, 2, 1]^T$. Its solution is $x^* = [1, 0, 0]^T$.

Now, check the KKT conditions at x (asterisks omitted below):

$$\operatorname{grad} f(x) = (I_n - xx^T)a = [0, 2, 1]^T.$$

The constraint $x \ge 0$ implies $c_i(x) = e_i^T x$ for i = 1, 2, 3;

grad
$$c_1(x) = (I_n - xx^T)e_1 = [0, 0, 0]^T;$$

grad $c_2(x) = (I_n - xx^T)e_2 = [0, 1, 0]^T;$
grad $c_3(x) = (I_n - xx^T)e_3 = [0, 0, 1]^T.$

Clearly, the multipliers $z^* = [0, 2, 1]^T$, and LICQ and strict complementarity hold.

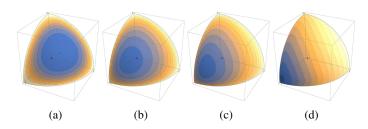


Figure: Contour plots of logarithmic barrier function $B(x;\mu)$ of (SP) for (a) $\mu=10$ (b) $\mu=1$ (c) $\mu=0.5$ (d) $\mu=0.1$. The blue area indicates low values.

Finally, we find that $\lim_{k\to\infty} x_k = x^*$ and that

$$\lim_{k \to \infty} \mu_k / c_1 \left(x_k \right) = 0 = z_{(1)}^*, \lim_{k \to \infty} \mu_k / c_2 \left(x_k \right) = 2 = z_{(2)}^*, \lim_{k \to \infty} \mu_k / c_3 \left(x_k \right) = 1$$

which are the notable features of the classical barrier method; see [Forsgren et al., 2002, Theorem 3.10 & 3.12].

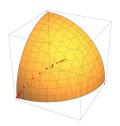


Figure: Iterates x_k of barrier method for (SP).

Furthermore, if we denote the minimizer of $B(x; \mu)$ by either x_{μ} or $x(\mu)$, it must be that grad $B(x_{\mu}; \mu) = 0$.

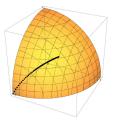


Figure: Existence of a central path for (SP).

Dominant cost — Newton equation

Dominant cost is to solve

$$\nabla F(w)\Delta w = -F(w) + \mu \hat{e},\tag{29}$$

where

$$F(w) = \begin{pmatrix} F_x \triangleq \operatorname{grad}_x \mathcal{L}(x, y, z) \\ F_y \triangleq h(x) \\ F_z \triangleq g(x) + s \\ F_s \triangleq ZSe \end{pmatrix}, \quad \hat{e} \triangleq \begin{pmatrix} 0_x \\ 0 \\ 0 \\ e \end{pmatrix}. \quad (30)$$

Thus, we need to solve the following linear system on $T_xM \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m$:

$$\begin{pmatrix} \operatorname{Hess}_{x} \mathcal{L}(w) \Delta x + H_{x} \Delta y + G_{x} \Delta z \\ H_{x}^{*} \Delta x \\ G_{x}^{*} \Delta x + \Delta s \\ Z \Delta s + S \Delta z \end{pmatrix} = \begin{pmatrix} -F_{x} \\ -F_{y} \\ -F_{z} \\ -F_{s} + \mu e \end{pmatrix}. \quad (31)$$

Condensed form of Newton equation

It suffices to focus on condensed form on $T_xM \times \mathbb{R}^l$:

$$\mathcal{T}(\Delta x, \Delta y) := \begin{pmatrix} A_w \Delta x + H_x \Delta y \\ H_x^* \Delta x \end{pmatrix} = \begin{pmatrix} c \\ q \end{pmatrix}, \quad (32)$$

where

$$\mathcal{A}_{w} := \operatorname{Hess}_{x} \mathcal{L}(w) + G_{x} S^{-1} Z G_{x}^{*},$$

$$c := -F_{x} - G_{x} S^{-1} (Z F_{z} + \mu e - F_{s}), \quad q := -F_{y}.$$
(33)

- A_w is self-adjoint (but may indefinite) on $T_x M$.
- \mathcal{T} is self-adjoint (but may indefinite) on $T_xM \times \mathbb{R}^l$. This is a saddle point problems on Hilbert space.
- The Riemannian situation leaves us with no explicit matrix form available.
- A simple approach is to first find the representing matrix \hat{T} under some basis. (Expensive!)

Krylov subspace methods on Tangent space

An ideal approach is to use iterative methods, such as **Krylov** subspace methods (e.g., Conjugate Gradients method), on $T_xM \times \mathbb{R}^l$ directly.

For simplicity, we consider the case of only inequality constraints, where Δy vanishes, thus we only needs to

solve
$$A_w \Delta x = c$$
 for $\Delta x \in T_x M$. (34)

- It only needs to call an abstract linear operator $v \mapsto \mathcal{A}_w v$. (matrix-vector product)
- All the iterates v_k are in $T_x M$.
- Since operator A_w is self-adjoint but indefinite, we use Conjugate Residual (CR) method to solve it.

The discussion of above can be naturally extended to the general case.