

Graduate School of Science and Technology Degree Programs in Systems and Information Engineering University of Tsukuba

Riemannian Optimization Algorithms for Applications and Their Theoretical Properties

Zhijian Lai

2024/01/22

PhD Thesis Final Defense

Supervisor: Prof. Akiko Yoshise Committees: Prof. Hiroyuki Sato Prof. Ying Miao Prof. Masahiro Hachimori Prof. Takahito Kuno

Publication List

Published:

This talk

covers

1. <u>Lai, Z.</u>, Yoshise, A. "Completely positive factorization by a Riemannian smoothing method." *Computational Optimization and Applications*, 83, 933-966 (2022).

Under Review:

- Lai, Z., Yoshise, A. "Riemannian Interior Point Methods for Constrained Optimization on Manifolds." *Journal of Optimization Theory and Applications*.
- (2nd round with minor revision)

Background: What is the Riemannian Optimization? (10 min)

Preliminaries of Riemannian Optimization (10 min)

Our Proposal I - Riemannian Smoothing Methods (5 min)

Our Proposal II - Riemannian Interior Point Methods (20 min)

Proposal - I

Proposal - II

Conclusions

• Section 1

Background: What is the Riemannian Optimization?

Goal of This Section: To Show the Position of Our Works

Start from Unconstrained Euclidean Optimization (UEO)

Can line search framework be used for **constrained optimization**?

Conclusions

Constrained Euclidean Optimization (CEO) is Hard!

But if the **feasible region is a manifold** \mathcal{M} , we can use line search framework to solve it.

This is the **Riemannian Optimization** --- optimization on manifold \mathcal{M} , instead of Euclidean space \mathbb{R}^n .

A Glance at Riemannian Manifold/Optimization (Details are presented in the next section)

Preliminaries

Proposal - I

Proposal - II

Conclusions

• What is Riemannian manifold?

Riemannian manifold = manifold + Riemannian metric.

A set \mathcal{M} that can be locally linearized.

- $T_x \mathcal{M}$ is tangent space at x.
- $\xi \in T_x \mathcal{M}$ is tangent vector at x.

A Riemannian metric assigns a smooth inner product $\langle \cdot, \cdot \rangle_x$ to each tangent space.

Line Search Framework for Riemannian Optimization (Details are presented in the next section) Unconstrained Riemannian Optimization (URO) Unconstrained Euclidean Optimization (UEO) min f(x)min f(x)Background s.t. $x \in \mathcal{M}$ s.t. $x \in \mathbb{R}^n$ General Line Search Framework for (URO) General Line Search Framework for (UEO) **Preliminaries** 1. Compute a search direction $d_k \in T_{x_k}\mathcal{M}$; . Compute a search direction $d_k \in \mathbb{R}^n$; 2. Compute a step length $t_k > 0$; Compute a step length $t_k > 0$; **Proposal - I** Compute the next point as $x_{k+1} := x_k + t_k d_k$; 3. Compute the next point $x_{k+1} = R_{x_k}(t_k d_k)$ 4. $k \leftarrow k + 1;$!4. k ← k + 1; $T_{x_k}\mathcal{M}$ **Proposal - II** $x_{k+1} = x_k + t_k d_k$ $x_{k+1} = \mathbf{R}_{x_k}(t_k d_k)$ Conclusions \mathcal{M} \mathbb{R}^n Use Retraction to back to \mathcal{M} .

Advantages in Comparison to Euclidean Optimization

Background

Preliminaries

Proposal - I

Proposal - II

Conclusions

Riemannian version of classical methods (2002-): Riemannian steepest decent, Riemannian conjugate gradient, Riemannian trust region, Riemannian Newton, Riemannian BFGS, Riemannian proximal gradient, Riemannian stochastic algorithms, Riemannian ADMM and more.

Advantages of Riemannian Optimization:

- 1. All iterates on the manifold.
- 2. Transform constrained problems into unconstrained ones.
- 3. Use of the geometric structure of the feasible region.
- 4. Convergence properties of like optimization on Euclidean space.

Unconstrained Riemannian Optimization (URO) min f(x)s.t. $x \in \mathcal{M}$ **General Line Search Framework for (URO)** Compute a search direction $d_k \in T_{\chi_k} \mathcal{M}$; $\langle \Box$ Compute a step length $t_k > 0$; 3. Compute the next point $x_{k+1} = R_{x_k}(t_k d_k)$ 4. $k \leftarrow k + 1;$ $T_{x_k}\mathcal{M}$ tıdı $\boldsymbol{x_k}$ $x_{k+1} = \mathbf{R}_{x_k}(t_k d_k)$ \mathcal{M}

Current Manifolds & Applications & Citation

Source: Web of Science Core Collection. Topic : Riemannian optimization. Publication Year: 1990-01-01 to 2022-12-31.

New Challenges and Variant I: Nonsmooth Riemannian Optimization (NRO)

	Variant I						
Background	Unconstrained Riemannian Optimization (URO) min $f(x)$ s.t. $x \in \mathcal{M}$ If f is nonsmoothNonsmooth Riemannian Optimization (NRO) min $f(x)$ s.t. $x \in \mathcal{M}$						
Preliminaries	Why is (NRO) important? Case 1: Use nonsmooth objective to replace smooth one for improving robustness. Case 2: Add nonsmooth regularization terms to objective function. Case 3: Treat the additional constraints as exact penalty terms.						
Proposal - I	E.g., Robust Low-Rank Matrix Completion: $\min_{X \in \mathcal{M}} \ \mathcal{P}_{\Omega}(X - A)\ _{F}^{2} \implies \min_{X \in \mathcal{M}} \ \mathcal{P}_{\Omega}(X - A)\ _{1}$						
1 TOPOSai - 11	E.g., Riemannian Exact Penalty Method (REPM) solve following subproblem at each iteration: $\min_{x \in \mathcal{M}} f(x) + \rho(\sum_{i} \max\{0, g_i(x)\} + \sum_{j} h_j(x))$						
Conclusions	Existing algorithms for (NRO) : derivative-free techniques; subgradient techniques; <u>smoothing techniques</u> .						
	Our Contributions: We proposed general framework of Riemannian Smoothing Method!						

Our Contributions: We proposed Riemannian Interior Point Methods!

Summary: Position of Our Works

Background Preliminaries Proposal - I

Proposal - II

Conclusions

• Section 2

Preliminaries of Riemannian Optimization

What is the Manifold? (Strict definitions)

A *d*-dimensional (smooth) manifold is a topological space \mathcal{M} satisfying the following three properties:

How to Optimize a Function on Manifold?

Optimization problem on a manifold \mathcal{M} : min f(x)s.t. $x \in \mathcal{M}$ where $f: \mathcal{M} \to \mathbb{R}$.

To find a local optimal solution $x^* \in \mathcal{M}$.

The iterative methods can still be used.

But there are questions that we need to address:

(In general, \mathcal{M} is nonconvex.)

Preliminaries

Goal:

Method:

Proposal - I

Proposal - II

Conclusions

Manifold x 1	R 🛉
f	
x.	

Q1: What is the <u>direction</u> of movement?	Tangent vector (Page 19)			
Q2: What is a good direction?	Riemannian gradient (Page 20)			
Q3: What is the <u>optimal condition</u> ?	Singularity of gradient vector field (Page 21)			
Q4: How to move on manifolds?	Using retraction to create a curve (Page 22)			

Q1: What is the Direction of Movement? Tangent Vector

Embedded submanifold \mathcal{M} of \mathbb{R}^n = manifold + subset of \mathbb{R}^n . $T_{x}\mathcal{M}$ γ'(0) **As the velocity of curve:** Background Consider a curve $\gamma: I \subseteq \mathbb{R} \to \mathcal{M}$ passing through point x with $\gamma(0) = x$. Then $\gamma(t)$ $\gamma'(0) := \lim_{t \to 0} \frac{\gamma(t) - \gamma(0)}{t} = \frac{d}{dt} \gamma(t)$ **Preliminaries** is a tangent vector at point x. Notice: But in general, the $\gamma(t)-\gamma(0)$ is not defined. (1) $T_x \mathcal{M}$ are linear spaces sharing **Proposal - I ↓** ◆As the differential operator: the same dimension. $\mathfrak{F}_{x}(\mathcal{M})$: the set of all smooth real-valued functions defined in a (2) In general, $T_r \mathcal{M}$ is determined neighborhood of $x \in \mathcal{M}$. **Proposal - II** A map $\xi: \mathfrak{F}_x(\mathcal{M}) \to \mathbb{R}$ is called a tangent vector at x on \mathcal{M} if there by x, except for $\mathbb{R}^n \cong T_x \mathbb{R}^n$. exists a curve $\gamma: I \subseteq \mathbb{R} \to \mathcal{M}$ such that $\gamma(0) = x$ and For embedded $\mathcal{M}, T_{x}\mathcal{M}$ is a (3) $\xi f = \frac{d}{dt} f(\gamma(t)) \bigg|_{t=0}$, $\forall f \in \mathfrak{F}_{x}(\mathcal{M}).$ Conclusions subspace of \mathbb{R}^n . We often write $\xi \equiv \gamma'(0)$. The tangent space, $T_{\chi}\mathcal{M}$, is the set of all E.g., $T_x S^{n-1} = \{ u \in \mathbb{R}^n : x^\top u = 0 \}.$ possible tangent vectors at that point.

Q2: What is a Good Direction? Riemannian Gradient

Preliminaries

Proposal - I

Q3: What is the Optimal Condition? Singularity of **Gradient Vector Field**

Recall that $T\mathcal{M} = \{(x, v) : x \in \mathcal{M} \text{ and } v \in T_x \mathcal{M}\}$ is called the tangent bundle of \mathcal{M} .

Definition (vector field)

A vector field on \mathcal{M} is a map $V: \mathcal{M} \to T\mathcal{M}$ such that $V(x) \in T_x\mathcal{M}$ for all $x \in \mathcal{M}$.

Riemannian gradient,

is a special vector field generated by a real-valued function f.

- $-\operatorname{grad} f(x)$ is the direction of steepest descent at x.
- If x^* is a local minimizer/maximizer, then grad $f(x^*) = 0_{x^*}$.

Proposal - II

Conclusions

Riemannian gradient field of $f(x) = -x_1 + 2x_2 + x_3$ on 2-dim sphere.

Preliminaries

Q4: How to Move on Manifolds? Using Retraction to Create a Curve

Definition (Retraction). A retraction on a manifold \mathcal{M} is a smooth map $R: T\mathcal{M} \to \mathcal{M}: (x, \xi) \mapsto R_x(\xi)$ such that for each $(x, \xi) \in T\mathcal{M}$ the curve $\gamma(t):= R_x(t\xi)$ has $\gamma'(0) = \xi$.

Retractions are not uniquely determined. E.g., on the unit sphere \mathbb{S}^{n-1} ,

$$R_{x}(\xi) = \frac{x+\xi}{\|x+\xi\|}, \text{ or } R_{x}(\xi) = \cos(\|\xi\|)x + \frac{\sin(\|\xi\|)}{\|\xi\|}\xi.$$

Proposal - I

Proposal - II

Conclusions

General Line Search Framework for solve min_{x∈M} f(x).
Choose an initial point x₀ ∈ M, a retraction R, and k ← 0;
while ||gradf(x_k)||_{x_k} is not close to 0 do:
1. Compute a direction d_k ∈ T_{x_k}M, e.g., d_k = -gradf(x);
2. Compute a step length t_k > 0, e.g., Armijo condition;

3. Compute the next point $x_{k+1} := R_{x_k}(t_k d_k);$

4. Set $k \leftarrow k + 1$;

Preliminaries

Proposal - I

Proposal - II

Conclusions

• Section 3

Our Proposal I - Riemannian Smoothing Methods

Position of Our Proposal I - Riemannian Smoothing Methods

General Riemannian Smoothing Method (RSM)

	Variant I						
Background	Unconstrained Riemannian Optimization (URO) min $f(x)$ s.t. $x \in \mathcal{M}$ If f is nonsmoothNonsmooth Riemannian Optimization (NRO) min $f(x)$ s.t. $x \in \mathcal{M}$						
reliminaries	Algorithm 1. General Riemannian Smoothing Method for (NRO) Take $x_0 \in \mathcal{M}$ and set $k = 0$. A nonnegative sequence $\{\delta_k\} \to 0$.						
Proposal - I	Choose a smoothing function \tilde{f} . Choose an arbitrary Riemannian algorithm. While stopping criterion not satisfied do: Solve Sol						
Proposal - II	$x^{k} := \arg \min_{x \in \mathcal{M}} \tilde{f}(x, \mu_{k})$ approximately by using the chosen algorithm, starting at x^{k-1} , such that $\ \text{grad } \tilde{f}(x^{k}, \mu_{k})\ < \delta_{k}$; Choose $0 < \mu_{k+1} < \mu_{k}$;						
Conclusions	$k \leftarrow k + 1;$ End						

Our contributions: The first study on a **general** smoothing framework for (NRO). (Zhang et al., 2023) only used Steepest Descent (SD) method for subproblem.

The numerical experiments showed that our method is better than Euclidean methods.

Experiment 1 - Randomly Generated Instances

CP factorization problem: Given a completely positive matrix *A*. Find $B \in \mathbb{R}^{n \times r}$ s.t. $A = BB^{\top}$ and $B \ge 0$.

Experiments Settings:

Let $A := HH^T$, where $H \in \mathbb{R}^{n \times n}$ with entries randomly generated by MATLAB command **rand**. We take $n \in \{20, 30, 40, 100, 200, 400, 600, 800\}$ and set r = 1.5n.

For each n, we generated 10 instances to examine.

Ø	

Experiment 2 - Specifical Structured Instances

	CP factorization problem: Given a completely positive matrix <i>A</i> . Find $B \in \mathbb{R}^{n \times r}$ s.t. $A = BB^{\top}$ and $B \ge 0$.				Experiments Settings: Let 1_n denote the all-ones vector in \mathbb{R}^n and consider the matrix $A = \begin{bmatrix} 0 & 1_{n-1}^T \\ 1_{n-1} & I_{n-1} \end{bmatrix}^T \begin{bmatrix} 0 & 1_{n-1}^T \\ 1_{n-1} & I_{n-1} \end{bmatrix}.$					
Background										
Preliminaries	We take $n \in \{10, 20, 50, 75, 100, 150\}$ and set $r = n$. For each n, we generated 50 starting points to examine.									
		Our Smo	oothing Metho	ds (SM)	Euc	lidean Metho	ds			
Proposal - I	Size n	SM_SD	SM_CG	SM_TR	SpFeasDC_ls	RIPG_mod	APM_mod			
Proposal - II	10	1	1	1	1	1	0.8			
	20	1	1	1	0.98	0.74	0.9		~ ~ ~ ~ ~	
	50	1	1	1	0.98	0	0.76		Success Rate $= 1$	
	75	1	1	1	0.98	0	0.64		- In cach row.	
Conclusions	100	1	1	1	0.8	0	0.6			
	150	1	1	1	0.7	0	0.35			

The above table shows that in all cases our methods are always successful; whereas the Success Rates of the Euclidean methods decreased as n increased.

Preliminaries

Proposal - I

Proposal - II

Conclusions

• Section 4

Our Proposal II - **Riemannian Interior Point Methods**

Position of Our Proposal II - Riemannian Interior Point Methods

2nd Order Geometry: Differentiating Vector Fields

Recall that:

- $\mathfrak{X}(\mathcal{M})$ denotes the set of all smooth vector fields on \mathcal{M} .
- $T\mathcal{M} = \{(x, v) : x \in \mathcal{M} \text{ and } v \in T_x \mathcal{M}\} \text{ is tangent bundle.}$

(*): Smoothness; Linearity in *u*; Linearity in *V*; Leibniz rule; Symmetry; Compatibility.

2nd Order Geometry: Riemannian Newton Method

Definition (Singularity) Recall: the optimal condition of Let $F: \mathcal{M} \to T\mathcal{M}$ be a smooth vector field. A point $p \in \mathcal{M}$ is call $\min_{x \in \mathcal{M}} f(x)$ Background singularity of F if is $F(p) = 0_p \in T_p \mathcal{M}$ grad $f(x^*) = 0_{x^*}$. where 0_p is the zero element of $T_p \mathcal{M}$. **Preliminaries** Algorithm 2 Riemannian Newton method Goal: To find the singularity of the given vector field *F*. Take $x_0 \in \mathcal{M}$ and set k = 0. **Proposal -**I While stopping criterion not satisfied **do**: Solve the Newton equation $\nabla F(x_{\nu})v_{\nu} = -F(x_{\nu}),$ **Proposal - II** Update $x_{k+1} := R_{x_k}(v_k);$ $k \leftarrow k + 1;$ End Conclusions

- It is a natural extension of the famous Newton method.
- Well-known convergence: the local superlinear/quadratic convergence also hold. (See appendix in Page 64)

A New Concept: KKT Vector Field

Constrained Riemannian Optimization (CRO) Lagrangian function of (CRO) is min f(x) $\mathcal{L}(x, y, z) := f(x) + \sum_{i=1}^{l} y_i h_i(x) + \sum_{i=1}^{m} z_i g_i(x),$ s.t. $g_i(x) \le 0, i = 1, ..., m$ Background $h_i(x) = 0, j = 1, ..., l$ where $y \in \mathbb{R}^l$ and $z \in \mathbb{R}^m$ are Lagrange multipliers. Then we have $x \in \mathcal{M}$. $\operatorname{grad}_{x}\mathcal{L}(x, y, z) = \operatorname{grad}_{f}(x) + \sum_{i=1}^{l} y_{i} \operatorname{grad}_{h_{i}}(x) + \sum_{i=1}^{m} z_{i} \operatorname{grad}_{g_{i}}(x),$ where $f: \mathcal{M} \to \mathbb{R}$, $h: \mathcal{M} \to \mathbb{R}^l$, and $g: \mathcal{M} \to$ \mathbb{R}^{m} . $\operatorname{Hess}_{x}\mathcal{L}(x, y, z) = \operatorname{Hess} f(x) + \sum_{i=1}^{l} y_{i} \operatorname{Hess} h_{i}(x) + \sum_{i=1}^{m} z_{i} \operatorname{Hess} g_{i}(x).$ **Preliminaries** $(\operatorname{grad}_{x} \mathcal{L}(x, y, z))$ $= 0_x, 1$ First order optimal condition (Yang et al., 2014) If x is a local minimizer of (CRO) and Linear Independence Constraint h(x)= 0, 1**Proposal - I** $g(x) \leq 0,$ Qualification (LICQ) holds at x, then x satisfies Riemannian KKT conditions: = 0, Zg(x)KKT conditions becomes $F(w) \triangleq \begin{pmatrix} \operatorname{grad}_{x}\mathcal{L}(x, y, z) \\ h(x) \\ g(x) + s \\ Z \subseteq z \end{pmatrix} = 0 := \begin{pmatrix} 0_{x} \\ 0 \\ 0 \\ 0 \end{pmatrix}, \text{ and } (z, s) \ge 0, \qquad Z = \begin{pmatrix} z_{1} \\ \vdots \\ z_{n} \end{pmatrix}$ Using s := -g(x), the KKT conditions becomes **Proposal - II** Conclusions where $w := (x, y, z, s) \in \overline{\mathcal{M}} \triangleq \mathcal{M} \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m$. We called *F* the KKT Vector Field defined on $\overline{\mathcal{M}}$ with $T_{w}\bar{\mathcal{M}} \equiv T_{x}\mathcal{M} \times \mathbb{R}^{l} \times \mathbb{R}^{m} \times \mathbb{R}^{m}.$ Our goal: Just to find singularity w such that F(w) = 0, and $(z, s) \ge 0$. Newton method is a good idea, but we need $\nabla F(w)$!

Covariant Derivative of KKT Vector Field

Constrained Riemannian Optimization (CRO) Lagrangian function of (CRO) is min f(x) $\mathcal{L}(x, y, z) := f(x) + \sum_{i=1}^{l} y_i h_i(x) + \sum_{i=1}^{m} z_i g_i(x),$ s.t. $g_i(x) \le 0, i = 1, ..., m$ Background $h_i(x) = 0, j = 1, \dots, l$ where $y \in \mathbb{R}^l$ and $z \in \mathbb{R}^m$ are Lagrange multipliers. Then we have where $f: \mathcal{M} \to \mathbb{R}, h: \mathcal{M} \to \mathbb{R}^l$, and $g: \mathcal{M} \to \mathbb{R}^l$ $\operatorname{grad}_{x}\mathcal{L}(x, y, z) = \operatorname{grad}_{f}(x) + \sum_{i=1}^{l} y_{i} \operatorname{grad}_{h_{i}}(x) + \sum_{i=1}^{m} z_{i} \operatorname{grad}_{g_{i}}(x),$ \mathbb{R}^{m} . $\operatorname{Hess}_{x}\mathcal{L}(x, y, z) = \operatorname{Hess} f(x) + \sum_{i=1}^{l} y_{i} \operatorname{Hess} h_{i}(x) + \sum_{i=1}^{m} z_{i} \operatorname{Hess} g_{i}(x).$ **Preliminaries** For each $x \in \mathcal{M}$, we define $H_{\mathbf{x}}: \mathbb{R}^{l} \to T_{\mathbf{x}} \mathcal{M}, \ H_{\mathbf{x}} v \triangleq \sum_{i} v_{i} \operatorname{grad} h_{i}(x).$ **Proposal - I** Similarly, there are G_{χ}, G_{χ}^* . Hence, the adjoint operator is $H_{\chi}^*: T_{\chi}\mathcal{M} \to \mathbb{R}^l, \ H_{\chi}^* \xi = [\langle \operatorname{grad} h_1(\chi), \xi \rangle_{\chi}, \cdots, \langle \operatorname{grad} h_l(\chi), \xi \rangle_{\chi}]^T.$ **Proposal - II** Then, the covariant derivative of KKT vector field is a linear operator $\nabla F(w): T_w \overline{\mathcal{M}} \to T_w \overline{\mathcal{M}}$ is given by $(\operatorname{Hess}_{x} \mathcal{L}(w) \Delta x + H_{x} \Delta y + G_{x} \Delta z)$ $\nabla F(w)\Delta w = \begin{pmatrix} H_x^*\Delta x \\ G_x^*\Delta x + \Delta s \\ Z\Delta s + S\Delta z \end{pmatrix}$ Conclusions where $\Delta w = (\Delta x, \Delta y, \Delta s, \Delta z) \in T_x \mathcal{M} \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m \equiv T_w \overline{\mathcal{M}}.$

Riemannian Interior Point Method (RIPM)

	Algorithm 3 Prototype Algorithm of RIPM for (CRO)
Background	Goal: To find singularity $w^* \in \overline{\mathcal{M}}$ such that $F(w^*) = 0, (z^*, s^*) \ge 0$. Given initial w_0 with $(z_0, s_0) > 0$, barrier parameter $\mu_0 > 0$; While stopping criterion not satisfied do :
Preliminaries Proposal - I	Solve the perturbed Newton equation $\nabla F(w_k) \Delta w_k = -F(w_k) + \mu_k \hat{e},$ where $\hat{e} \triangleq (0_x, 0, 0, e);$ Compute the step sizes α_k such that $(z_{k+1}, s_{k+1}) > 0;$ Update $w_{k+1} = \bar{R}_{w_k} (\alpha_k \Delta w_k);$ Choose $0 < \mu_{k+1} < \mu_k;$ $k \leftarrow k + 1;$
Proposal - II	End
Conclusions	Theorem (Local Convergence, L. 2022) Under some standard assumptions. (1) If $\mu_k = o(F(w_k)), \alpha_k \to 1$, then $\{w_k\}$ locally, superlinearly converges to w^* . (2) If $\mu_k = O(F(w_k) ^2), 1 - \alpha_k = O(F(w_k))$, then $\{w_k\}$ locally, quadratically converges to w^* .

Next, we proposal a global convergent RIPM.

Global Algorithm for RIPM

(1) Merit function: Choose $\varphi(w) \triangleq || F(w) ||^2$. **Backtracking for step size** α_k : (2)Background (1) Centrality conditions (See appendix in Page 74). (2) Sufficient decreasing condition: Let $\varphi(\alpha) \triangleq \varphi(\bar{R}_{w_k}(\alpha \Delta w_k))$ for fixed w_k and Δw_k , then $\varphi(0) = \varphi(w_k) =: \varphi_k$ and $\varphi'(0) =$ **Preliminaries** new iterate $\langle \operatorname{grad} \varphi(w_k), \Delta w_k \rangle$. Sufficient decreasing asks $\varphi(\alpha_k) - \varphi(0) \leq \alpha_k \beta \varphi'(0)$. How to ensure the descent direction? **Proposal - I** Let Δw_k be the solution of $\nabla F(w_k) \Delta w_k = -F(w_k) + \rho_k \sigma_k \hat{e}$, then $\varphi'(0) < 0$ if we set $\rho_k :=$ $s_k^T z_k / m, \sigma_k \in (0,1)$. Then, $\{\varphi_k\}$ is monotonically decreasing. In context of nonconvex! **Proposal - II Assumptions:** 1. the functions f(x), h(x), g(x) are smooth; the Theorem (Globa) Convergence, L. 2022) set {grad $h_i(x)$ }^{*l*}_{*i*=1} is linearly independent in ! If Assumptions 1 ~ 3 hold, then $\{F(w_k)\}$ $\langle \Box \rangle$ | converges to zero; and for any limit point $w^* =$ $T_x \mathcal{M}$ for all x; and $w \mapsto \nabla F(w)$ is Lipschitz Conclusions (x^*, y^*, z^*, s^*) of $\{w_k\}, x^*$ is a Riemannian KKT continuous: 2.the sequences $\{x_k\}$ and $\{z_k\}$ are bounded; point of problem (CRO). 3.the operator $\nabla F(w)$ is nonsingular. c.f. (El-Bakry et al., 1996)

Implementation: Condensed Form of Newton Equation

Dominant cost of RIPM is to solve **Newton equation:** $\nabla F(w)\Delta w = -F(w) + \mu \hat{e}$ That is the following linear equation on $T_x \mathcal{M} \times \mathbb{R}^l \times \mathbb{R}^m \times \mathbb{R}^m$: $F(w) = \begin{pmatrix} F_x \\ F_y \\ F_z \\ F_z \end{pmatrix}, \hat{e} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ e \end{pmatrix}$ Background $\begin{pmatrix} \operatorname{Hess}_{x}\mathcal{L}(w)\Delta x + H_{x}\Delta y + G_{x}\Delta z \\ H_{x}^{*}\Delta x \\ G_{x}^{*}\Delta x + \Delta s \\ Z\Delta s + S\Delta z \end{pmatrix} = \begin{pmatrix} -F_{x} \\ -F_{y} \\ -F_{z} \\ -F_{s} + \mu e \end{pmatrix}.$ **Preliminaries** Using two substitutions $\Delta s = Z^{-1}(\mu e - F_S - S\Delta z)$, $\Delta z = S^{-1}[Z(G_x^*\Delta x + F_z) + \mu e - F_s]$ from 3rd and 4th rows. It suffices to focus on **condensed form** on $T_x \mathcal{M} \times \mathbb{R}^l$: **Proposal - I** $\mathcal{T}(\Delta x, \Delta y) := \begin{pmatrix} \mathcal{A}_{w} \Delta x + H_{x} \Delta y \\ H_{w}^{*} \Delta x \end{pmatrix} = \begin{pmatrix} c \\ q \end{pmatrix},$ where $\mathcal{A}_{w}:=Hess_{x}\mathcal{L}(w)+G_{x}S^{-1}ZG_{x}^{*}, \qquad c:=-F_{x}-G_{x}S^{-1}(ZF_{z}+\mu e-F_{s}), \ q:=-F_{v}.$ **Proposal - II** \mathcal{T} is self-adjoint (but may indefinite) operator on $T_x \mathcal{M} \times \mathbb{R}^l$. The difficulty lies in... Conclusions the Riemannian setting leaves us with no explicit matrix form available. a natural way is to find the representing matrix $\hat{\mathcal{T}}$ under some basis of tangent space. (Expensive!) An ideal approach is to use iterative methods, e.g., Krylov subspace methods

Background

Preliminaries

Proposal - I

Proposal - II

Conclusions

Implementation: Krylov Subspace Methods on Tangent Space

For simplicity, we consider the case of **only inequality** constraints, where Δy vanishes and only a linear operator equation (Let $\mathcal{A} \equiv \mathcal{A}_w: T_x \mathcal{M} \to T_x \mathcal{M}$):

 $\mathcal{A}\Delta x = c.$ (OpEquation)

- Krylov subspace method only needs to call $v \mapsto Av$ once at each iteration.
- All the iterates v_k are in $T_x \mathcal{M}$.

end

• Since \mathcal{A} is self-adjoint but indefinite, we use Conjugate Residual (CR) method to solve it.

Algorithm 4: Conjugate Residual (CR) Method on Tangent Spaces for (OpEquation) **Input:** Symmetric invertible linear operator $\mathcal{A}: T_x \mathcal{M} \to T_x \mathcal{M}$, nonzero $c \in T_x \mathcal{M}$ and an initial point $v_0 \in T_x \mathcal{M}$. **Output:** Sequence $\{v_n\} \subset T_x \mathcal{M}$ such that $\{v_n\} \to v^*$ and $\mathcal{A}v^* = c$. Set $n \leftarrow 0$, $r_0 := c - Av_0$, $p_0 := r_0$ and compute Ar_0 , Ap_0 ; while stopping criterion not satisfied do Update number $\alpha_n := \langle r_n, \mathcal{A}r_n \rangle_x / \langle \mathcal{A}p_n, \mathcal{A}p_n \rangle_x$; // step length // Iterate point $v_{n+1} := v_n + \alpha_n p_n;$ $r_{n+1} := r_n - \alpha_n \mathcal{A} p_n ;$ // Residual Compute Ar_{n+1} ; // This is the only call to A in while loop Update number $\beta_n := \langle r_{n+1}, \mathcal{A}r_{n+1} \rangle_x / \langle r_n, \mathcal{A}r_n \rangle_x$; $p_{n+1} := r_{n+1} + \beta_n p_n$; // Conjugate direction $\mathcal{A}p_{n+1} := \mathcal{A}r_{n+1} + \beta_n \mathcal{A}p_n ;$ // No need to call ${\cal A}$ here $n \leftarrow n+1;$

Comparison: Riemannian IPM (RIPM) is Better than Euclidean IPM (EIPM)

Numerical Experiments

Background

Preliminaries

Proposal - I

Environment: MATLAB R2022a on a computer equipped with an Intel Core i7-10700 at 2.90G Hz with 16 GB of RAM.

We compare with the other Riemannian methods:

- RALM : Riemannian augmented Lagrangian method. (Liu & Boumal, 2020)
 - REPM(LQH) : Riemannian exact penalty method with smoothing function LQH. (Liu & Boumal, 2020)
 - REPM(LSE) : Riemannian exact penalty method with smoothing function LSE. (Liu & Boumal, 2020)
- RSQP : Riemannian sequential quadratic programming. (Obara et al., 2022)
- RIPM (Our method): Riemannian interior point method.

KKT residual is defined by

Proposal - II

Conclusions

$$\int \|\operatorname{grad}_{x} \mathcal{L}(w)\|^{2} + \sum_{i=1}^{m} \{\min(0, z_{i})^{2} + \max(0, g_{i}(x))^{2} + |z_{i}g_{i}(x)|^{2}\} + \sum_{j=1}^{l} |h_{j}(x)|^{2}.$$

Code: https://github.com/GALVINLAI/RIPM

Background

Problem I — Nonnegative Low Rank Matrix Approximation (*m* varies under fixed *n*, *r*)

Problem I (Song & Ng, 2020) $\min_{X \in \mathbb{R}_r^{m \times n}} \| A - X \|_F^2 \quad \text{s.t. } X \ge 0,$ where $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \text{rank } (X) = r\}.$ **Experiments settings:**

Fix n = 20, r = 2; we take $m \in \{8,16,24,32\}$. For each m, we generated 20 random instances* A to examine.

Each experiment stopped successfully if solution with KKT residual $< 10^{-8}$ was found before the maximum time 10 (s) was reached.

						\frown	
	Row Num. m	RALM	REPM (LQH)	REPM (LSE)	RSQP	RIPM	
	8	0.1	0.2	0	1	1	
Success	16	0.05	0.25	0.1	0.85	1	Success Rate = 1
Rate	24	0	0.3	0.15	0.35	1	in each row.
	32	0.05	0.3	0.25	0	1	
	8	0.68	0.28	-	2.57	0.28	
Average	16	1.13	0.48	2.58	7.14	0.68	The first two
Time (s)	24	-	0.70	3.89	10.12	0.96	in each row.
	32	2.37	0.95	5.05	-	1.63	
	Success Rate Average Time (s)	Row Num. m8Success Rate16243232Average Time (s)1632	$\begin{tabular}{ c c c c } \hline Row Num. \\ m \\ \hline RALM \\ \hline M \\ \hline \hline M \\ \hline M \\ \hline M \\ \hline \hline M \\ \hline \hline M \\ \hline \hline M \\ \hline \hline \hline M \\ \hline \hline \hline M \\ \hline \hline M \\ \hline \hline \hline \hline$	Row Num. mRALMREPM (LQH) 8 0.10.2Success Rate160.050.25 24 00.3 32 0.050.3Average Time (s)161.130.48 32 2.370.95	Row Num. mRALMREPM (LQH)REPM (LSE)80.10.20Success Rate160.050.250.1320.050.30.15320.050.30.25Average Time (s)161.130.482.58322.370.955.05	Row Num. mRALMREPM (LQH)REPM (LSE)RSQPSuccess Rate80.10.201Success Rate160.050.250.10.85320.050.30.150.35320.050.30.250Average Time (s)161.130.482.587.14322.370.955.05-	Row Num. mRALMREPM (LQH)REPM (LSE)RSQPRIPM80.10.2011Success Rate160.050.250.10.851320.050.30.150.351320.050.30.2501400.30.150.351320.050.30.250180.680.28-2.570.28Average Time (s)161.130.482.587.140.68322.370.955.05-1.631.63

The results are similar when we vary the value of only one of m, n, r, so they are omitted here. (See appendix in Page 65-66 for more results)

(*): Let B = rand(m, r); C = rand(r, n); A = B * C + 0.001 * randn(m, n).

Background

Preliminaries

Problem I — **Nonnegative Low Rank Matrix Approximation (Impacts of parameters** *m*, *n*, *r* **in RIPM)**

Problem I (Song & Ng, 2020) $\min_{X \in \mathbb{R}_r^{m \times n}} \| A - X \|_F^2 \quad \text{s.t. } X \ge 0,$ where $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \text{rank } (X) = r\}.$

Experiments settings:

For each case, we generated 10 random instances* to examine. Each experiment stopped successfully if solution with KKT residual $< 10^{-6}$ was found before the maximum time 5 (s) was reached.

Problem II — Projection onto Nonnegative Stiefel Manifold

Background	Problem II (Jiang et al., 2022) Given $C \in \mathbb{R}^{n \times k}$, we consider $\min_{X \in St(n,k)} X - C _F^2, \text{ s.t. } X \ge 0, (Model_Stiefel)$										 Stiefel manifold, St(n, k) ≜ {X ∈ ℝ^{n×k}: X^TX = I} Oblique manifold, OB(n, k) ≜ {X ∈ ℝ^{n×k}: all columns have unit norm } V is arbitrary satisfying V _F = 1 and VV^T > 0. 					
Preliminaries	which mi <i>x</i> ∈0B	which can be equivalently reformulated into $\min_{X \in OB(n,k)} X - C _F^2 \text{s.t. } X \ge 0, \text{ and } XV _F = 1,$ (Model_Oblique) (Model_Oblique) (Model_Oblique) (Superiments settings: For each model, we tested 20 random trials. It stopped successfully if solution with KKT residual < 10 ⁻⁶ was found before the maximum time 600 (s) was reached.														
Proposal - I		Size (<i>n</i> , <i>k</i>)	RALM	REPM (LQH)	REPM (LSE)	RSQP	RIPM			Size (<i>n</i> , <i>k</i>)	RALM	REPM (LQH)	REPM (LSE)	RSQP	RIPM	
Proposal - II	Success Rate	(60,12)	1	0	0	0.65	1		Success Rate	(60,12)	0.6	0	0	0.7	1	Success Rate $= 1$ in each row.
Conclusions	Average	(70,14)	1 4.10	-	-	0.85 78.02	1 5.56		Average	(70,14)	0.6 5.73	-	-	0.5 44.46	1 7.13	The first two
	Time (s)	(70,14)	6.23	-	-	166.1	7.57		Time (s)	(70,14)	8.22	-	-	91.38	9.27	fastest results in each row.
		Resu	lts for (Mode	l_Stief	fel)				Result	ts for (I	Model	_Oblic	que)		15

Background

Preliminaries

Proposal - I

Proposal - II

Conclusions

• Section 5

Conclusion

46

- 2. Proposal II: Riemannian version of the interior point method
 - > We proved the local superlinear/quadratic and global convergence.
 - ➢ We established some foundational concepts, such as the KKT vector field.

Future Works

Finally, we discuss 3 promising future topics about Riemannian Interior Point Method (RIPM).

Preconditioner for linear operator equation. (1)

Due to complementary condition, as $k \to \infty$, the values of

Preliminaries

Background

Proposal - I

Proposal - II

Conclusions

 $S_k^{-1} Z_k = \begin{pmatrix} \frac{(z_k)_1}{(s_k)_1} & \longrightarrow & 0\\ & \ddots & \\ & & \frac{(z_k)_n}{(s_k)_n} \end{pmatrix} \text{ display a huge difference in}$

Condensed form on
$$T_x \mathcal{M} \times \mathbb{R}^l$$
:
 $\mathcal{T}(\Delta x, \Delta y) := \begin{pmatrix} \mathcal{A}_w \Delta x + H_x \Delta y \\ H_x^* \Delta x \end{pmatrix} = \begin{pmatrix} c \\ q \end{pmatrix},$
where
 $\mathcal{A}_w := Hess_x \mathcal{L}(w) + \Theta,$

magnitude.

Hence, the operator $\Theta := G_x S^{-1} Z G_x^*$ in the condensed system (Above) makes it ill-conditioned, so the iterative method will likely fail unless it is carefully preconditioned. No matrix form available!

$(\mathbf{2})$ **Treatment of more state-of-the-art interior point methods.**

Our current global algorithm uses the simplest strategy. How about, e.g., the trust region?

Quasi-Newton RIPM (3)

The quasi-Newton RIPM can approximate the Hessian of Lagrangian in $\nabla F(w_k)$ with gradient information while ensuring its local convergence. (See appendix in Page 68)

Thank you for your attention! Questions?

Zhijian Lai

2024/01/22

PhD Thesis Final Defense

References

- Berman, A., Dur, M., & Shaked-Monderer, N. (2015). Open problems in the theory of completely positive and copositive matrices. *The Electronic Journal of Linear Algebra*, 29, 46–58. <u>https://doi.org/10.13001/1081-3810.2943</u>
- Boţ, R. I., & Nguyen, D.-K. (2021). Factorization of completely positive matrices using iterative projected gradient steps. *Numerical Linear Algebra with Applications*, 28(6), e2391. <u>https://doi.org/10.1002/nla.2391</u>
- Boumal, N. (2023). An Introduction to Optimization on Smooth Manifolds (2023) (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009166164
- Boumal, N., Mishra, B., Absil, P.-A., & Sepulchre, R. (2014). Manopt, a Matlab Toolbox for Optimization on Manifolds. *Journal of Machine Learning Research*, *15*(42), 1455–1459.
- Chen, C., Pong, T. K., Tan, L., & Zeng, L. (2020). A difference-of-convex approach for split feasibility with applications to matrix factorizations and outlier detection. *Journal of Global Optimization*, 78(1), 107–136. <u>https://doi.org/10.1007/s10898-020-00899-8</u>
- Chen, F., Yang, Y., Xu, L., Zhang, T., & Zhang, Y. (2019). *Big-Data Clustering: K-Means or K-Indicators?* (arXiv:1906.00938). arXiv. https://doi.org/10.48550/arXiv.1906.00938
- El-Bakry, A. S., Tapia, R. A., Tsuchiya, T., & Zhang, Y. (1996). On the formulation and theory of the Newton interior-point method for nonlinear programming. 89(3), 35.
- Fernandes, T. A., Ferreira, O. P., & Yuan, J. (2017). On the Superlinear Convergence of Newton's Method on Riemannian Manifolds. *Journal of Optimization Theory and Applications*, 173(3), 828–843. <u>https://doi.org/10.1007/s10957-017-1107-2</u>
- Ferreira, O. P., & Silva, R. C. M. (2012). Local convergence of Newton's method under a majorant condition in Riemannian manifolds. *IMA Journal of Numerical Analysis*, 32(4), 1696–1713. <u>https://doi.org/10.1093/imanum/drr048</u>
- Groetzner, P., & Dür, M. (2020). A factorization method for completely positive matrices. *Linear Algebra and Its Applications*, 591, 1–24. <u>https://doi.org/10.1016/j.laa.2019.12.024</u>

References

- Hu, J., Liu, X., Wen, Z.-W., & Yuan, Y.-X. (2020). A Brief Introduction to Manifold Optimization. *Journal of the Operations Research Society of China*, 8(2), 199–248. <u>https://doi.org/10.1007/s40305-020-00295-9</u>
- Jiang, B., Meng, X., Wen, Z., & Chen, X. (2022). An exact penalty approach for optimization with nonnegative orthogonality constraints. *Mathematical Programming*. <u>https://doi.org/10.1007/s10107-022-01794-8</u>
- Lai, Z., & Yoshise, A. (2022). Completely positive factorization by a Riemannian smoothing method. *Computational Optimization and Applications*. <u>https://doi.org/10.1007/s10589-022-00417-4</u>
- Lee, J. M. (2012). Introduction to Smooth Manifolds—2nd ed. 2012. https://math.berkeley.edu/~jchaidez/materials/reu/lee_smooth_manifolds.pdf
- Liu, C., & Boumal, N. (2020). Simple Algorithms for Optimization on Riemannian Manifolds with Constraints. *Applied Mathematics & Optimization*, 82(3), 949–981. <u>https://doi.org/10.1007/s00245-019-09564-3</u>
- Montanari, A., & Richard, E. (2016). Non-Negative Principal Component Analysis: Message Passing Algorithms and Sharp Asymptotics. *IEEE Transactions on Information Theory*, 62(3), 1458–1484. <u>https://doi.org/10.1109/TIT.2015.2457942</u>
- Nosaka, K., & Yoshise, A. (2023). Creating Collaborative Data Representations Using Matrix Manifold Optimal Computation and Automated Hyperparameter Tuning. 2023 IEEE 3rd International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB), 180–185. <u>https://doi.org/10.1109/ICEIB57887.2023.10170466</u>
- Obara, M., Okuno, T., & Takeda, A. (2022). Sequential Quadratic Optimization for Nonlinear Optimization Problems on Riemannian Manifolds. *SIAM Journal on Optimization*, 32(2), 822–853. <u>https://doi.org/10.1137/20M1370173</u>
- Sato, H. (2021). Riemannian Optimization and Its Applications. Springer International Publishing. https://doi.org/10.1007/978-3-030-62391-3
- Schiela, A., & Ortiz, J. (2021). An SQP Method for Equality Constrained Optimization on Hilbert Manifolds. *SIAM Journal on Optimization*, 31(3), 2255–2284. <u>https://doi.org/10.1137/20M1341325</u>

References

- Song, G.-J., & Ng, M. K. (2020). Nonnegative low rank matrix approximation for nonnegative matrices. *Applied Mathematics Letters*, 105, 106300. <u>https://doi.org/10.1016/j.aml.2020.106300</u>
- Yamashita, H., & Yabe, H. (1996). Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimization. *Mathematical Programming*, 75(3), 377–397. <u>https://doi.org/10.1007/BF02592190</u>
- Yang, W. H., Zhang, L.-H., & Song, R. (2014). Optimality conditions for the nonlinear programming problems on Riemannian manifolds. *Pacific Journal of Optimization*, 10(2), 415–434.
- Zhang, C., Chen, X., & Ma, S. (2023). A Riemannian Smoothing Steepest Descent Method for Non-Lipschitz Optimization on Embedded Submanifolds of Rn. *Mathematics of Operations Research*, moor.2022.0286. <u>https://doi.org/10.1287/moor.2022.0286</u>

Summary: Position of Our Works

Grassmannian Manifold as a Quotient Manifold

Grassmannian manifold is the set of linear subspaces of dimension p in \mathbb{R}^n .

$$\operatorname{Gr}(n,p) = \left\{\operatorname{span}(X): X \in \mathbb{R}^{n \times p}, X^{\mathsf{T}}X = I_p\right\}$$

We define an equivalence relation $\sim \text{over St}(n, p)$:

 $X \sim Y \Leftrightarrow \operatorname{span}(X) = \operatorname{span}(Y) \Leftrightarrow X = YQ$ for some $Q \in O(p)$,

 $[X] = \{Y \in \operatorname{St}(n, p) \colon Y \sim X\}$

where O(p) is the orthogonal group. Formally, if L = span(X), we identify L with

Appendix

This identification establishes a one-to-one correspondence between Gr(n, p) and the quotient set

 $\operatorname{St}(n,p)/{\sim} = \{ [X] \colon X \in \operatorname{St}(n,p) \}.$

Optimization over Grassmannian Manifold

Principal Component Analysis (PCA)

Given k points $y_1, ..., y_k \in \mathbb{R}^n$, the goal of PCA is to find a linear subspace $L \in Gr(n, p)$ which fits the data $y_1, ..., y_k$ as well as possible, in the sense that it solves

$$\min_{L\in Gr(n,p)}\sum_{i=1}^k \operatorname{dist}(L,y_i)^2,$$

where dist(L, y) is the Euclidean distance between y and the point in L closest to y.

This objective function admits an explicit solution involving the SVD of the data matrix $M = [y_1, ..., y_k]$. However, this is not the case for other objective functions.

For these, we may need more general optimization algorithms to address:

 $\min_{L\in \mathrm{Gr}(n,p)}f(L),$

where objective function $f: Gr(n, p) \rightarrow \mathbb{R}$.

Clearly, Euclidean optimization cannot solve these problems unless we convert the problem into some equivalent Euclidean problem.

Applications of Constrained Riemannian Optimization (CRO)

Background

Preliminaries

Proposal - I

Proposal - II

Conclusions

Nonnegative Principal Component Analysis (Montanari & Richard, 2016) Find the nonnegative principal component vector of some data matrix $A \in \mathbb{R}^{n \times r}$:

 $\min_{X \in \operatorname{St}(n,k)} - \operatorname{tr}(X^{\mathsf{T}}AA^{\mathsf{T}}X) \text{ s. t. } X \ge 0.$

Data Collaboration Analysis (Nosaka & Yoshise, 2023)Nosaka and Yoshise created the collaborative data representations using fixed-rank manifolds.To improve the performance, recently, Nosaka and me are trying to solve the new model:

$$\min_{G_i \in M_i} \frac{1}{2} \sum_{i,i'=1}^N \|\tilde{A}_i G_i - \tilde{A}_{i'} G_{i'}\|_F^2 \text{ s.t. } \|G_i\|_F^2 - \hat{m} = 0, \forall i \in N,$$

where $M_i = \{X \in \mathbb{R}^{\hat{m}_i \times \hat{m}} \mid \text{Rank}(X) = \hat{m}\}$ and data matrices $\tilde{A}_i \in \mathbb{R} \times \tilde{m}_i.$

Appendix

Riemannian Gradient (Strict definitions)

Definition (differential DF (x))

For manifolds $\mathcal{M}_1, \mathcal{M}_2$ and a mapping $F: \mathcal{M}_1 \to \mathcal{M}_2$, the differential of F at a point $x \in \mathcal{M}_1$, denoted as $DF(x): T_x \mathcal{M}_1 \to T_{F(x)} \mathcal{M}_2$, is defined as

 $(DF(x)[\xi])h = \xi(h \circ F), \forall h \in \mathfrak{F}_{F(x)}(\mathcal{M}_2).$

Note that if $F: \mathcal{M}_1 \to \mathcal{M}_2$ and $h \in \mathfrak{F}_{F(x)}(\mathcal{M}_2)$, then $h \circ F \in \mathfrak{F}_x(\mathcal{M}_1)$. We can show that $DF(x): T_x \mathcal{M}_1 \to T_{F(x)} \mathcal{M}_2$ is a linear map.

Special case. Consider the differential of $f: \mathcal{M} \to \mathbb{R}$ at a point $x \in \mathcal{M}$. If we identify $T_{f(x)}\mathbb{R} \cong \mathbb{R}$, for $\xi \in T_x\mathcal{M}$, we have

 $\mathrm{D}f(x)[\xi] = \xi f.$

 \longrightarrow Df(x): $T_x \mathcal{M} \to \mathbb{R}$ is linear functional.

¦ Definition (Riemannian gradient)

The Riemannian gradient of a function $f: \mathcal{M} \to \mathbb{R}$ at a point $x \in \mathcal{M}$, denoted as grad f(x), is a unique element* in $T_x \mathcal{M}$ that satisfies

 $\langle \operatorname{grad} f(x), \xi \rangle_{\chi} = \mathrm{D} f(x)[\xi], \ \forall \xi \in T_{\chi} \mathcal{M}.$

(*) Riesz Theorem: For an inner product space $(V, \langle \cdot, \cdot \rangle)$, if $T: V \to \mathbb{R}$ is a linear, then there is a unique $y \in V$ such that $T(x) = \langle v, x \rangle$ for all $x \in V$.

Calculation of Gradient on Embedded Submanifold

Riemannian Metric Induces the Distance Space

The norm of a tangent vector ξ at any point x on \mathcal{M} can be defined as $\|\xi\|_{x} := \sqrt{\langle \xi, \xi \rangle_{x}}$ Furthermore, the length L(c) of a curve $c : [a, b] \to \mathcal{M}$ on \mathcal{M} can be defined as $L(c) := \int_{a}^{b} \|c'(t)\|_{c(t)} dt.$ A natural distance on \mathcal{M} , called the Riemannian distance, $\operatorname{dist}(x, y) := \inf_{c} L(c)$ where the infimum is taken over all curve segments which connect x to y, and thus \mathcal{M} becomes a distance space.

Equivalent Definitions of Retraction

Definition (retraction). A smooth mapping $R: T\mathcal{M} \to \mathcal{M}$ is called a retraction if for all $x \in \mathcal{M}$, the restriction $R_x: T_x\mathcal{M} \to \mathcal{M}$ satisfies

 $R_{\chi}(0) = \chi, DR_{\chi}(0) = id_{T_{\chi}\mathcal{M}}.$

Here, $T\mathcal{M} = \{(x, v) : x \in \mathcal{M} \text{ and } v \in T_x \mathcal{M}\}$ is called the tangent bundle of \mathcal{M} , and $\mathrm{id}_{T_x \mathcal{M}}$ represents the identity mapping in $T_x \mathcal{M}$.

Appendix

Definition (Retraction). A retraction on a manifold \mathcal{M} is a smooth map $R: T\mathcal{M} \to \mathcal{M}: (x, \xi) \mapsto R_x(\xi)$ such that for each $(x, \xi) \in T\mathcal{M}$ the curve $\gamma(t):= R_x(t\xi)$ satisfies $\dot{\gamma}(0) = \xi$.

Numerical Experiments of CP factorization

- SpFeasDC_ls (Chen et al., 2020): A difference-of-convex functions approach for solving the split feasibility problem.
- RIPG_mod (Boţ & Nguyen, 2021): This is a projected gradient method with relaxation and inertia parameters for solving (4.4).
- APM_mod (Groetzner & Dür, 2020): A modified alternating projection method for CP factorization.

2nd Order Geometry: Calculation of Hessian on Embedded Submanifold

Hess f(x) is self-adjoint (i.e., symmetric) operator from and to $T_x \mathcal{M}$.

Proposition: For any embedded submanifold \mathcal{M} , Hess $f(x)[u] = \operatorname{Proj}_x(\operatorname{D}\operatorname{grad} f(x)[u])$.

Example: For $f(x) = x^{T}Ax$ on \mathbb{S}^{n-1} , we have egrad f(x) = 2Ax, and

 $\operatorname{Proj}_{x}(u) = (I_n - xx^{\mathsf{T}})u.$

It follows that grad $f(x) = \operatorname{Proj}_{x}(\operatorname{egrad} f(x)) = 2(I_{n} - xx^{\top})Ax$.

Example: For $f(x) = \frac{1}{2}x^{T}Ax$ on \mathbb{S}^{n-1} , we have grad $f(x) = (I_n - xx^{T})Ax$. Its differential is D grad $f(x)[u] = Au - (u^{T}Ax + x^{T}Au)x - (x^{T}Ax)u$

project to the tangent space at x to reveal

Hess $f(x)[u] = Au - (x^{\top}Au)x - (x^{\top}Ax)u$. Note that Hess $f(x): T_x \mathbb{S}^{n-1} \to T_x \mathbb{S}^{n-1}$ is true for $x \in T_x \mathbb{S}^{n-1} = \{u \in \mathbb{R}^n : x^T u = 0\}$.

Appendix

Local Convergence — Riemannian Newton Method

Definition (singularity)

Let $F: \mathcal{M} \to T\mathcal{M}$ be a smooth vector field. A point $p \in \mathcal{M}$ is call singularity of *F* if

 $F(p) = 0_p \in T_p \mathcal{M}$

where 0_p is the zero element of $T_p \mathcal{M}$.

Algorithm 2 Riemannian Newton method

Goal: To find the singularity of the given vector field F.

Take $x_0 \in \mathcal{M}$ and set k = 0.

While stopping criterion not satisfied do:

Solve the Newton equation

 $\nabla F(x_k)v_k = -F(x_k),$ Update $x_{k+1} := \mathbb{R}_{x_k}(v_k);$ $k \leftarrow k + 1;$

End

Standard Newton assumptions: (N1) There exists x^* : $F(x^*) = 0$. (N2) $\nabla F(x^*)$ is nonsingular operator. (N3) ∇F is locally Lipschitz cont. at x^* .

Local Convergence Rate: $(N1)-(N2) \Rightarrow$ superlinear (Fernandes et al., 2017) $(N1)-(N3) \Rightarrow$ quadratic (Ferreira & Silva, 2012)

Problem I — **Nonnegative Low Rank Matrix Approximation (Appendix:** *n* **varies under fixed** *m*,*r*)

Problem I (Song & Ng, 2020) $\min_{X \in \mathbb{R}_r^{m \times n}} \| A - X \|_F^2 \quad \text{s.t. } X \ge 0,$ where $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \text{rank } (X) = r\}.$

Experiments settings:

Fix m = 20, r = 2; we take $n \in \{8, 16, 24, 32\}$. For each n, we generated 20 random instances* to examine.

Each experiment stopped successfully if solution with KKT residual $< 10^{-8}$ was found before the maximum time 10 (s) was reached.

	Column Num. n	RALM	REPM (LQH)	REPM (LSE)	RSQP	RIPM	
Success Rate	8	0.05	0.25	0	0.9	1	
	16	0.2	0.2	0.15	0.85	1	Success Rate – 1
	24	0.05	0.45	0.15	0.15	1	in each row.
	32	0.1	0.2	0.2	0	1	
	8	0.57	0.29	-	2.54	0.30	
Average Time (s)	16	1.27	0.54	2.91	6.83	0.47	The first two
	24	1.59	0.71	3.93	10.44	0.90	> fastest results
	32	2.35	0.92	5.13	-	1.85	In each row.

Appendix

Problem I — **Nonnegative Low Rank Matrix Approximation (Appendix:** *r* **varies under fixed** *m*, *n*)

Problem I (Song & Ng, 2020) $\min_{X \in \mathbb{R}_r^{m \times n}} \| A - X \|_F^2 \quad \text{s.t. } X \ge 0,$ where $\mathbb{R}_r^{m \times n} = \{X \in \mathbb{R}^{m \times n} : \text{rank } (X) = r\}.$

Experiments settings:

Fix m = 20, n = 20; we take $r \in \{2,4,8,16\}$. For each r, we generated 20 random instances* to examine.

Each experiment stopped successfully if solution with KKT residual $< 10^{-8}$ was found before the maximum time 10 (s) was reached.

	Rank r	RALM	REPM (LQH)	REPM (LSE)	RSQP	RIPM	
	2	0.15	0.2	0.25	0.75	1	
Success	4	0.15	0.15	0	0	1	Success Rate – 1
Rate	8	0.15	0.05	0.1	0	1	in each row.
	16	0.05	0.05	0.05	0	1	
	2	1.60	0.60	3.57	9.26	0.64	
Average Time (s)	4	0.92	0.57	-	-	1.28	The first two
	8	0.70	0.56	1.86	-	3.79	> fastest results
	16	0.71	0.62	1.93	-	3.41	

RIPM vs. EIPM: RIPM Solves Newton Equation of Smaller Order

Constrained Riemannian Optimization (CRO) min f(x)s.t. $g_i(x) \le 0, i = 1, ..., m$ $h_j(x) = 0, j = 1, ..., l$ $x \in \mathcal{M},$ where $f: \mathcal{M} \to \mathbb{R}, h: \mathcal{M} \to \mathbb{R}^l$, and $g: \mathcal{M} \to \mathbb{R}^m$.

- RIPM inherits the all advantages of Riemannian optimization.
- EIPM is a special case of RIPM when $\mathcal{M} \equiv \mathbb{R}^n$ or $\mathbb{R}^{n \times k}$.
- RIPM can solve some problems that EIPM cannot.
- RIPM solves condensed Newton equation of smaller order on $T_x \mathcal{M} \times \mathbb{R}^l$:

$$\mathcal{T}(\Delta x, \Delta y) := \begin{pmatrix} \mathcal{A}_w \Delta x + H_x \Delta y \\ H_x^* \Delta x \end{pmatrix} = \begin{pmatrix} c \\ q \end{pmatrix}.$$

E.g., the Stiefel manifold can be used as the equality constraints; i.e., we set $h: \mathcal{M} \equiv \mathbb{R}^{n \times k} \to \text{Sym}(k)$, where $h(X) = X^{\top}X - I_k$. Here, EIPM requires us to solve an equation of order nk + k(k+1)/2. But RIPM only requires us to solve an equation of order nk - k(k+1)/2, i.e., the dimension of St(n, k).

Future Works: Quasi-Newton RIPM

♦ Quasi-Newton RIPM

The quasi-Newton RIPM can approximate the Hessian of Lagrangian in $\nabla F(w_k)$ with gradient information while ensuring its local convergence.

Solve the perturbed Newton equation $\nabla F(w_k)\Delta w_k = -F(w_k) + \mu_k \hat{e}, \longrightarrow \nabla F(w)\Delta w = \begin{pmatrix} \text{Hess}_x \mathcal{L}(w) \Delta x + H_x \Delta y + G_x \Delta z \\ H_x^* \Delta x \\ G_x^* \Delta x + \Delta s \\ Z \wedge s \perp S \wedge s \\ Update w_{k+1} = \bar{R}_{w_k} (\alpha_k \Delta w_k): \end{cases}$ Algorithm of RIPM for (CRO) Quasi-Newton method, Choose $0 < |\mu_{k+1} < \mu_k;$ BFGS formulate, etc. $B(w_k)\Delta w_k = -F(w_k) + \mu_k \hat{e}, \qquad B(w)\Delta w = \begin{pmatrix} G(w)\Delta x + H_x\Delta y + G_x\Delta z \\ H_x^*\Delta x \\ G_x^*\Delta x + \Delta s \\ Z\Delta s + S\Delta z \end{pmatrix}$

As the last chapter of my thesis, we only give some theoretical results. There is still a great deal of work to be done to refine the quasi-Newton RIPM.

<u>Primal</u> Interior Point Method on Manifold

Riemannian Interior Point Methods

Superlinear and Quadratic Convergence

- Existence. There exists w^* satisfying the KKT conditions.
- **2** Smoothness. The functions f, g, h are smooth on M.
- 3 Regularity. The set $\{\operatorname{grad} h_i(x^*) : i = 1, \dots, l\} \cup \{\operatorname{grad} g_i(x^*) : i \in \mathcal{A}(x)\}$ is linearly independent in $T_{x^*}M$.
- Strict Complementarity. $(z^*)_i > 0$ if $g_i(x^*) = 0$ for all $i = 1, \dots, m$.
- Second-Order Sufficiency. $\langle \text{Hess}_x \mathcal{L}(w^*)\xi, \xi \rangle > 0$ for all nonzero $\xi \in T_{x^*}M$ satisfying $\langle \xi, \text{grad } h_i(x^*) \rangle = 0$ for $i = 1, \dots, l$, and $\langle \xi, \text{grad } g_i(x^*) \rangle = 0$ for $i \in \mathcal{A}(x^*)$.

Proposition (L. 2022)

If assumptions (1)-(5) hold, then standard Newton assumptions (N1)-(N3) hold for KKT vector field F.

Riemannian Interior Point Methods

Superlinear and Quadratic Convergence

On the other hand, to keep $(s_k, z_k) \ge 0$:

• Introducing the **perturbed** complementary equation,

$$Z\Delta s + S\Delta z = -ZSe + \mu e, \tag{15}$$

so that we are able to keep the iterates far from the boundary.

• Compute the **damped** step sizes α_k , e.g., choose $\gamma_k \in (0, 1)$ and compute

$$\boldsymbol{\alpha}_{k} := \min\left\{1, \boldsymbol{\gamma}_{k}\min_{i}\left\{-\frac{(s_{k})_{i}}{(\Delta s_{k})_{i}} \mid (\Delta s_{k})_{i} < 0\right\}, \boldsymbol{\gamma}_{k}\min_{i}\left\{-\frac{(z_{k})_{i}}{(\Delta z_{k})_{i}} \mid (\Delta z_{k})_{i} < 0\right\}\right\},\tag{16}$$

such that $(s_{k+1}, z_{k+1}) > 0$.

The relation of α_k and γ_k : [Yamashita and Yabe, 1996]

If γ_k → 1, then α_k → 1.
If 1 − γ_k = O (||F (w_k)||), then 1 − α_k = O (||F (w_k)||).

History of Euclidean Interior Point Method

Interior Point (IP) Method for NONLINEAR, NONCONVEX (1990-)

Early phase (1990-1995)

- Local algorithms with superlinear/ quadratic convergence [El-Bakry et al., 1996, Yamashita and Yabe, 1996].
- Global algorithms [El-Bakry et al., 1996]

Variations (1995-2010)

- Inexact Newton/ Quasi Newton IP Method
- Global strategy: many merit functions; linear search, or trust region, etc.

vppendix

Update by Retraction

At a current point w = (x, y, z, s) and direction $\Delta w = (\Delta x, \Delta y, \Delta z, \Delta s)$, the next iterate is calculated along a curve on \mathcal{M} , i.e.,

$$w(\alpha) := \bar{R}_w(\alpha \Delta w), \tag{17}$$

for some step length $\alpha > 0$.

By introducing

$$w(\alpha) = (x(\alpha), y(\alpha), z(\alpha), s(\alpha)), \tag{18}$$

we have

 $x(\alpha)=R_x(\alpha\Delta x),$

and $y(\alpha) = y + \alpha \Delta y, z(\alpha) = z + \alpha \Delta z, s(\alpha) = s + \alpha \Delta s.$

Centrality conditions

Given $w_0 = (x_0, y_0, z_0, s_0)$ with $(z_0, s_0) > 0$, let $\tau_1 := \frac{\min(Z_0 S_0 e)}{z_0^T s_0/m}$, $\tau_2 := \frac{z_0^T s_0}{\|F(w_0)\|}$. Let $\gamma \in (0, 1)$ be a constant. Define centrality functions:

$$f^{I}(\alpha) := \min(Z(\alpha)S(\alpha)e) - \gamma\tau_1 \frac{z(\alpha)^T s(\alpha)}{m},$$
(19)
$$f^{II}(\alpha) := z(\alpha)^T s(\alpha) - \gamma\tau_1 \frac{\|E(w(\alpha))\|}{m},$$
(20)

$$f^{II}(\alpha) := z(\alpha)^T s(\alpha) - \gamma \tau_2 \|F(w(\alpha))\|.$$
(20)

For i = I, II, let

$$\alpha^{i} := \max_{\alpha \in (0,1]} \left\{ \alpha : f^{i}(t) \ge \mathbf{0}, \text{ for all } t \in (0,\alpha] \right\}.$$

$$(21)$$

Global RIP Algorithm

• Choose $\sigma_k \in (0, 1)$; for w_k , compute the perturbed Newton direction Δw_k with

$$\mu_k = z_k^T s_k / m \tag{22}$$

and by

$$\nabla F(w)\Delta w = -F(w) + \sigma_k \mu_k \hat{e}.$$
(23)

- Step length selection.
 - Centrality conditions: Choose $1/2 < \gamma_k < \gamma_{k-1} < 1$; compute α^i , i = I, II, from (21); and let

$$\bar{\alpha}_k = \min(\alpha^I, \alpha^{II}). \tag{24}$$

2 Sufficient decreasing: Choose $\theta \in (0, 1)$, and $\beta \in (0, 1/2]$. Let $\alpha_k = \theta^t \bar{\alpha}_k$, where *t* is the smallest nonnegative integer such that α_k satisfies

$$\varphi(\bar{R}_{w_k}(\alpha_k \Delta w_k)) - \varphi(w_k) \le \alpha_k \beta \langle \operatorname{grad} \varphi_k, \Delta w_k \rangle.$$
(25)

• Let $w_{k+1} = \overline{R}_{w_k}(\alpha_k \Delta w_k)$ and $k \leftarrow k+1$.

Auxiliary Results I: Boundedness of the sequences

Given $\epsilon \geq 0$, let us define the set

 $\Omega(\epsilon) := \left\{ w \in \mathscr{M} : \epsilon \leq \varphi(w) \leq \varphi_0, \min(ZSe) / (z^T s/m) \geq \tau_1/2, z^T s / \|F(w)\| \geq \tau_2/2 \right\}.$

Lemma (Boundedness of the sequences I, L. 2022)

If $\epsilon > 0$ and $w_k \in \Omega(\epsilon)$ for all k, then

- the sequence $\{z_k^T s_k\}$ and $\{(z_k)_i(s_k)_i\}$, i = 1, 2, ..., m, are all bounded above and below away from zero.
- 2 the sequence $\{z_k\}$ and $\{s_k\}$ are bounded above and component-wise bounded away from zero;
- **(3)** the sequence $\{w_k\}$ is bounded;
- the sequence $\{\|\nabla F(w_k)^{-1}\|\}$ is bounded;
- **(3)** the sequence $\{\Delta w_k\}$ is bounded.

Lemma (Boundedness of the sequences II, L. 2022)

If $\{\sigma_k\}$ is bounded away from zero. Then, $\{\bar{\alpha}_k\}$ is bounded away from zero.

Auxiliary Results II: Continuity of Some Special Scalar Fields

Lemma (L. 2022)

Let $x \in M$ and A_x be a linear operator on T_xM . Then, the values $\|\widehat{A}_x\|_2$ and $\|\widehat{A}_x\|_F$ are invariant under a change of orthonormal basis; moreover,

$$||A_x|| = ||\hat{A}_x||_2 \le ||\hat{A}_x||_F.$$
(26)

Lemma (L. 2022)

$$x \mapsto \|\widehat{\operatorname{Hess} f(x)}\|$$

is a continuous scalar field on M. It is true for all h_i , g_i .

$$x \mapsto \|H_x\| \text{ and } x \mapsto \|G_x\| \tag{28}$$

are continuous scalar field on M.

(27)

An Intuitive Barrier Method on Manifolds

Consider

$$\min_{x \in M} f(x) \quad \text{s.t.} \quad c(x) \ge 0. \tag{RCOP_Ineq}$$

Its logarithmic barrier function is

$$B(x;\mu) := f(x) - \mu \sum_{i=1}^{m} \log c_i(x),$$

where $\mu > 0$. Note that the function $x \mapsto B(x; \mu)$ is differentiable on, strict $\mathcal{F} := \{x \in M : c(x) > 0\}$. Its Riemannian gradient is

grad
$$B(x; \mu) = \operatorname{grad} f(x) - \sum_{i=1}^{m} \frac{\mu}{c_i(x)} \operatorname{grad} c_i(x).$$

Barrier Method on Manifolds

- Set $x_0 \in M$ to a strictly feasible point, i.e., $c(x_0) > 0$, and set $\mu_0 > 0$ and $k \leftarrow 0$.
- 2 Check whether x_k satisfies a stopping test for (RCOP_Ineq).
- **③** Compute an unconstrained minimizer $x(\mu_k)$ of $B(x; \mu_k)$ with a warm starting point x_k .
- ④ $x_{k+1} \leftarrow x(\mu_k)$; choose $\mu_{k+1} < \mu_k$; $k \leftarrow k+1$. Return to Step 1.

Barrier Method

Consider the following simple problem on a sphere manifold, $\mathbb{S}^2 := \{x \in \mathbb{R}^3 : ||x||_2 = 1\},\$

$$\min_{x \in \mathbb{S}^2} \quad a^T x \quad \text{s.t.} \quad x \ge 0, \tag{SP}$$

where $a = [-1, 2, 1]^T$. Its solution is $x^* = [1, 0, 0]^T$.

Now, check the KKT conditions at *x* (asterisks omitted below): grad $f(x) = (I_n - xx^T)a = [0, 2, 1]^T$. The constraint $x \ge 0$ implies $c_i(x) = e_i^T x$ for i = 1, 2, 3;

grad
$$c_1(x) = (I_n - xx^T)e_1 = [0, 0, 0]^T;$$

grad $c_2(x) = (I_n - xx^T)e_2 = [0, 1, 0]^T;$
grad $c_3(x) = (I_n - xx^T)e_3 = [0, 0, 1]^T.$

Clearly, the multipliers $z^* = [0, 2, 1]^T$, and LICQ and strict complementarity hold.

Figure: Contour plots of logarithmic barrier function $B(x; \mu)$ of (SP) for (a) $\mu = 10$ (b) $\mu = 1$ (c) $\mu = 0.5$ (d) $\mu = 0.1$. The blue area indicates low values.

Finally, we find that $\lim_{k\to\infty} x_k = x^*$ and that

$$\lim_{k \to \infty} \mu_k / c_1(x_k) = 0 = z_{(1)}^*, \lim_{k \to \infty} \mu_k / c_2(x_k) = 2 = z_{(2)}^*, \lim_{k \to \infty} \mu_k / c_3(x_k) = 1 = z_{(3)}^*,$$

which are the notable features of the classical barrier method; see [Forsgren et al., 2002, Theorem 3.10 & 3.12].

Figure: Iterates x_k of barrier method for (SP).

Furthermore, if we denote the minimizer of $B(x; \mu)$ by either x_{μ} or $x(\mu)$, it must be that grad $B(x_{\mu}; \mu) = 0$.

Figure: Existence of a central path for (SP).