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Goal of This Section: To Show the Position of Our Works

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝑥)
s.t. 𝑥 ∈ ℳ

Nonsmooth Riemannian Optimization (NRO)
min 𝑓 𝑥
s.t. 𝑥 ∈ ℳ

Constrained Euclidean Optimization (CEO)
min 𝑓(𝑥)

s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗 𝑥 = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℝ𝑛

Unconstrained Euclidean Optimization (UEO)
min 𝑓(𝑥)

s.t. 𝑥 ∈ ℝ𝑛

Constrained Riemannian Optimization (CRO)
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℳ

Add constraints

Generalize Generalize

Add constraints

If the entire feasible region 

forms a manifold.

Variant I

Variant II

If 𝑓 is nonsmooth

Proposal I: Riemannian Smoothing Method

Proposal II: 

Riemannian Interior Point Methods
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Start from Unconstrained Euclidean Optimization (UEO)

Unconstrained Euclidean Optimization (UEO)
min 𝑓(𝑥)

s.t. 𝑥 ∈ ℝ𝑛

General Line Search Framework for (UEO)

1. Compute a search direction 𝑑𝑘 ∈ ℝ𝑛;

2. Compute a step length 𝑡𝑘 > 0;

3. Compute the next point as 𝑥𝑘+1: = 𝑥𝑘 + 𝑡𝑘𝑑𝑘; 

4. Set 𝑘 ← 𝑘 + 1;

Use local information of 𝑓 at 𝑥𝑘:

• steepest descent direction: 𝑑𝑘 = −𝛻𝑓 𝑥𝑘

• Newton direction: 𝑑𝑘 = − 𝛻2𝑓 𝑥𝑘
−1𝛻𝑓 𝑥𝑘

For arbitrary 𝑑𝑘 , 𝑡𝑘, the new point 𝑥𝑘+1 ∈ ℝ𝑛. 

This is why we say that these types of problems 

are “unconstrained”.

Can line search framework be used for constrained optimization? 

Euclidean space ℝ𝑛



Background

Preliminaries

Proposal - I

Proposal - II

Conclusions

Background

7

Constrained Euclidean Optimization (CEO) is Hard!

But if the feasible region is a manifold ℳ, we can use line search framework to solve it. 

This is the Riemannian Optimization --- optimization on manifold ℳ, instead of Euclidean space ℝ𝑛.

Constrained Euclidean Optimization (CEO)
min 𝑓(𝑥)

s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗 𝑥 = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℝ𝑛

Add constraints

feasible region
General Line Search Framework for (UEO)

1. Compute a search direction 𝑑𝑘 ∈ ℝ𝑛;

2. Compute a step length 𝑡𝑘 > 0;

3. Compute the next point as 𝑥𝑘+1: = 𝑥𝑘 + 𝑡𝑘𝑑𝑘; 

4. Set 𝑘 ← 𝑘 + 1;

Unconstrained Euclidean Optimization (UEO)
min 𝑓(𝑥)

s.t. 𝑥 ∈ ℝ𝑛

Unable to solve! 

Because 𝑥𝑘+1: = 𝑥𝑘 + 𝑡𝑘𝑑𝑘 may not be 

feasible.

CEO algorithms are often more difficult than UEO:

Minimizing

objective

Keeping 

feasibility
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A Glance at Riemannian Manifold/Optimization 
(Details are presented in the next section) 

◆ What is Riemannian manifold?
Riemannian manifold = manifold + Riemannian metric.

A set ℳ that can be locally linearized.

• 𝑇𝑥ℳ is tangent space at 𝑥.

• 𝜉 ∈ 𝑇𝑥ℳ is tangent vector at 𝑥.

A Riemannian metric assigns a smooth inner product ⟨⋅,⋅⟩𝑥 to 

each tangent space.

𝑇𝑥ℳ

ℳ

 iemannian 

Manifold

◆ What is Riemannian Optimization?

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝑥)
s.t. 𝑥 ∈ ℳ

Constrained Euclidean 

optimization,

min
𝑥∈ℝ𝑛

𝑓(𝑥) s.t. 𝑥⊤𝑥 = 1.

Unconstrained Riemannian 

optimization,

min
𝑥∈𝕊𝑛−1= 𝑥∈ℝ𝑛:∥𝑥∥2=1

𝑓(𝑥).
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Line Search Framework for Riemannian Optimization 
(Details are presented in the next section) 

Unconstrained Euclidean Optimization (UEO)
min 𝑓(𝑥)

s.t. 𝑥 ∈ ℝ𝑛

General Line Search Framework for (UEO)

1. Compute a search direction 𝑑𝑘 ∈ ℝ𝑛;

2. Compute a step length 𝑡𝑘 > 0;

3. Compute the next point as 𝑥𝑘+1: = 𝑥𝑘 + 𝑡𝑘𝑑𝑘; 

4. 𝑘 ← 𝑘 + 1;

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝑥)
s.t. 𝑥 ∈ ℳ

General Line Search Framework for (URO)

1. Compute a search direction 𝑑𝑘 ∈ 𝑇𝑥𝑘
ℳ;

2. Compute a step length 𝑡𝑘 > 0;

3. Compute the next point 𝑥𝑘+1: = R𝑥𝑘
𝑡𝑘𝑑𝑘

4. 𝑘 ← 𝑘 + 1;

Use Retraction to back to ℳ.

𝑇𝑥𝑘
ℳ

ℳ
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Advantages in Comparison to Euclidean Optimization

Riemannian version of classical methods 

(2002-):

Riemannian steepest decent, 

Riemannian conjugate gradient, 

Riemannian trust region,

Riemannian Newton,

Riemannian BFGS, 

Riemannian proximal gradient, 

Riemannian stochastic algorithms,

Riemannian ADMM and more. 

Advantages of Riemannian Optimization:

1. All iterates on the manifold. 

2. Transform constrained problems into unconstrained ones.

3. Use of the geometric structure of the feasible region.

4. Convergence properties of like optimization on Euclidean space.

Use Retraction to back to ℳ.

General Line Search Framework for (URO)

1. Compute a search direction 𝑑𝑘 ∈ 𝑇𝑥𝑘
ℳ;

2. Compute a step length 𝑡𝑘 > 0;

3. Compute the next point 𝑥𝑘+1: = R𝑥𝑘
𝑡𝑘𝑑𝑘

4. 𝑘 ← 𝑘 + 1;

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝑥)
s.t. 𝑥 ∈ ℳ

𝑇𝑥𝑘
ℳ

ℳ
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Current Manifolds & Applications & Citation

◆ Applications of Riemannian optimization (Hu et al., 2020):

p-harmonic flow, low-rank nearest correlation matrix 

estimation, phase retrieval, Bose–Einstein condensates, cryo-

electron microscopy (cryo-EM), linear eigenvalue problem, 

nonlinear eigenvalue problem from electronic structure 

calculations, combinatorial optimization, deep learning, etc.

Source: Web of Science Core Collection. Topic : Riemannian optimization. Publication Year: 1990-01-01 to 2022-12-31.

◆ 𝟒𝟎 + available manifolds 𝓜 in Riemannian solver "Manopt" (Boumal et al., 2014):

Stiefel manifold, 𝑋 ∈ ℝ𝑛×𝑝: 𝑋⊤𝑋 = 𝐼𝑝 .

Fixed rank manifold, 𝑋 ∈ ℝ𝑛×𝑚: rank(𝑋) = 𝑟 .
Oblique manifold, 𝑋 ∈ ℝ𝑛×𝑚: 𝑋:1 = ⋯ = 𝑋:𝑚 = 1 .

Hyperbolic manifold, 𝑥 ∈ ℝ𝑛+1: 𝑥0
2 = 𝑥1

2 + ⋯ + 𝑥𝑛
2 + 1 .

Grassmann manifold, the set of all 𝑝-dimensional subspaces of ℝ𝑛 (a quotient  

manifold, for more see appendix in Page 55-56)

Subset of Euclidean 

spaces
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New Challenges and Variant I: Nonsmooth Riemannian 
Optimization (NRO)

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝑥)
s.t. 𝑥 ∈ ℳ

Nonsmooth Riemannian Optimization (NRO)
min 𝑓 𝑥
s.t. 𝑥 ∈ ℳ

Variant I

If 𝑓 is nonsmooth

Why is (NRO) important? 

Case 1: Use nonsmooth objective to replace smooth one for improving robustness.

Case 2: Add nonsmooth regularization terms to objective function.

Case 3: Treat the additional constraints as exact penalty terms. 

E.g., Robust Low-Rank Matrix Completion:

𝑚𝑖𝑛
𝑋∈ℳ

𝒫𝛺(𝑋 − 𝐴)
𝐹
2 ⟹ 𝑚𝑖𝑛

𝑋∈ℳ
𝒫𝛺(𝑋 − 𝐴)

1

E.g., Riemannian Exact Penalty Method (REPM) solve following subproblem at each 

iteration: min𝑥∈ℳ 𝑓(𝑥) + 𝜌 ∑𝑖 max 0, 𝑔𝑖(𝑥) + ∑𝑗 ℎ𝑗(𝑥)

Existing algorithms for (NRO) :

derivative-free techniques; subgradient techniques; smoothing techniques.

Our Contributions: We proposed general framework of Riemannian Smoothing Method!
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New Challenges and Variant II: Constrained Riemannian 
Optimization (CRO)

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝑥)
s.t. 𝑥 ∈ ℳ

Weakness of (URO)

1. It requires the entire feasible region to form exactly one manifold.

2. Adding new constraints does not necessarily guarantee that the entire feasible region is still a manifold.

3. Even if the entire feasible region is proven to be a manifold, there are no available software packages.

Euclidean optimization,

min
𝑥∈ℝ𝑛

𝑓 𝑥 s.t. 𝑥⊤𝑥 = 1, 𝑥 ≥ 0.

Riemannian optimization,

min
𝑥∈𝕊𝑛−1= 𝑥∈ℝ𝑛:∥𝑥∥2=1

𝑓 𝑥 s.t. 𝑥 ≥ 0.

Constrained Riemannian Optimization (CRO)
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℳ

Add constraints

Variant II

Resolve!

Applications of (CRO)

• nonnegative principal component analysis (Montanari & Richard, 2016);

• orthogonal nonnegative matrix factorization (Jiang et al., 2022);

• minimum balanced cut for graph bisection (Liu & Boumal, 2020);

• subproblem of 𝑘-indicators model for data clustering (Chen et al., 2019); etc.
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New Challenges and Variant II: Constrained Riemannian 
Optimization (CRO)

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝑥)
s.t. 𝑥 ∈ ℳ

Constrained Riemannian Optimization (CRO)
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℳ

Add constraints

Variant II

Data Collaboration Analysis: (Nosaka & Yoshise, 2023) created collaborative data representation by solving

min
𝐺𝑖∈𝑀𝑖

1

2


𝑖≠𝑖′

𝑁

ƿ𝐴𝑖𝐺𝑖 − ƿ𝐴𝑖′𝐺𝑖′
𝐹

2

where 𝑀𝑖 = 𝐺 ∈ ℝ ƶ𝑚𝑖× ƶ𝑚 ∣ 𝐺 is full rank and data matrices ƿ𝐴𝑖 ∈ ℝ𝑟× ƶ𝑚𝑖. 

Algorithmic research on (CRO) is still in its infancy — Started in 2020:

• Riemannian Augmented Lagrangian Method (Liu & Boumal, 2020)

• Riemannian Exact Penalty Method (Liu & Boumal, 2020)

• Riemannian Sequential Quadratic Programming Method (Schiela & Ortiz, 2021, Obara et al., 2022)

Our Contributions: We proposed Riemannian Interior Point Methods!

Recently, to improve performance, 

Nosaka is trying to solve the new model:

min
𝐺𝑖∈𝑀𝑖

1

2


𝑖,𝑖′=1

𝑁

ƿ𝐴𝑖𝐺𝑖 − ƿ𝐴𝑖′𝐺𝑖′
𝐹

2
s.t. 𝐺𝑖 𝐹

2 − ƶ𝑚 = 0, ∀𝑖 ∈ 𝑁.
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Summary: Position of Our Works

Unconstrained Euclidean Optimization (UEO)
min 𝑓(𝑥)

s.t. 𝑥 ∈ ℝ𝑛

Constrained Euclidean Optimization (CEO)
min 𝑓(𝑥)

s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗 𝑥 = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℝ𝑛

Add constraints

Generalize Generalize

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝑥)
s.t. 𝑥 ∈ ℳ

If the entire feasible region 

forms a manifold.

Constrained Riemannian Optimization (CRO)
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℳ

Add constraints

Variant II

Nonsmooth Riemannian Optimization (NRO)
min 𝑓 𝑥
s.t. 𝑥 ∈ ℳ

Variant I
If 𝑓 is nonsmooth

Proposal I: Riemannian Smoothing Method

Proposal II: 

Riemannian Interior Point Methods



Background Preliminaries Proposal - I Proposal - II Conclusions

Preliminaries of Riemannian Optimization 

16

• Section 2



Background

Preliminaries

Proposal - I

Proposal - II

Conclusions

Preliminaries

17

What is the Manifold? (Strict definitions) 

A 𝒅-dimensional (smooth) manifold is a topological space ℳ satisfying the following three properties:

𝜑𝛽𝜑𝛼

𝑈𝛽
𝑈𝛼

𝜑𝛽 ∘ 𝜑𝛼
−1

ℝ𝑑 ℝ𝑑

3. there is a family 𝑈𝜆, 𝜑𝜆 𝜆∈𝛬 with ℳ = 𝜆∈𝛬ڂ 𝑈𝜆

such that for any 𝛼, 𝛽 ∈ 𝛬 with 𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅, the 

coordinate transformation 

𝜑𝛽 ∘ 𝜑𝛼
−1: 𝜑𝛼 𝑈𝛼 ∩ 𝑈𝛽 ⊆ ℝ𝑑 → 𝜑𝛽 𝑈𝛼 ∩ 𝑈𝛽 ⊆ ℝ𝑑

is of class 𝐶∞.

Make the consistent smoothness 

across all charts.

𝑓 ∘ 𝜑𝛼
−1 = 𝑓 ∘ 𝜑𝛽

−1 ∘ 𝜑𝛽 ∘ 𝜑𝛼
−1 .

A function 𝑓: ℳ → ℝ is smooth at 𝑝 ∈ ℳ if there exists 

a chart (𝑈, 𝜑) such that 𝑓 ∘ 𝜑−1 is of class 𝐶∞ at 𝜑(𝑝).

Make sense.

Source: (Lee, 2012) Fig. 1.2 and Fig. 1.6.

1. ℳ is second-countable and Hausdorff. 

2. ℳ is locally Euclidean of dimension 𝑑 (i.e., each point 

of ℳ has a neighborhood 𝑈 and a homeomorphism 

𝜑: 𝑈 → 𝑉 from 𝑈 to an open set 𝑉 in ℝ𝑑).

The pair (𝑈, 𝜑) is called a chart.

𝑈

𝑉

ℝ𝑑
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How to Optimize a Function on Manifold?

Optimization problem on a manifold ℳ :
min 𝑓(𝑥)
s.t. 𝑥 ∈ ℳ

where 𝑓: ℳ → ℝ.

Goal: 

To find a local optimal solution 𝑥∗ ∈ ℳ . 

(In general, ℳ is nonconvex.)

Q1: What is the direction of movement? Tangent vector (Page 19)

Q2: What is a good direction? Riemannian gradient (Page 20)

Q3: What is the optimal condition? Singularity of gradient vector field (Page 21)

Q4: How to move on manifolds? Using retraction to create a curve (Page 22)

we need

 iemannian 

Manifold

Method: 

The iterative methods can still be used. 

But there are questions that we need to address:
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Q1: What is the Direction of Movement? Tangent Vector

Embedded submanifold ℳ of ℝ𝑛 = manifold + subset of ℝ𝑛.

◆As the differential operator:

𝔉𝑥(ℳ): the set of all smooth real-valued functions defined in a 

neighborhood of 𝑥 ∈ ℳ.
A map 𝜉: 𝔉𝑥(ℳ) → ℝ is called a tangent vector at 𝑥 on ℳ if there 

exists a curve 𝛾: 𝐼 ⊆ ℝ → ℳ such that 𝛾(0) = 𝑥 and

𝜉𝑓 = ቤ
𝑑

𝑑𝑡
𝑓(𝛾(𝑡))

𝑡=0

, ∀ 𝑓 ∈ 𝔉𝑥(ℳ).

We often write 𝜉 ≡ 𝛾′(0). The tangent space, 𝑇𝑥ℳ, is the set of all 

possible tangent vectors at that point.

But in general, the 𝛾(𝑡)−𝛾(0) is not defined.

Notice:

① 𝑇𝑥ℳ are linear spaces sharing 

the same dimension.

② In general, 𝑇𝑥ℳ is determined 

by 𝑥, except for ℝ𝑛 ≅ 𝑇𝑥ℝ𝒏.

③ For embedded ℳ, 𝑇𝑥ℳ is a 

subspace of ℝ𝑛. 

E.g., 𝑇𝑥𝕊𝑛−1 = 𝑢 ∈ ℝ𝑛: 𝑥⊤𝑢 = 0 .

◆As the velocity of curve:

Consider a curve 𝛾: 𝐼 ⊆ ℝ → ℳ passing through point 𝑥 with 

𝛾(0) = 𝑥. Then

𝛾′(0) ∶= lim
𝑡→0

𝛾(𝑡) − 𝛾(0)

𝑡
= ቤ

𝑑

𝑑𝑡
𝛾(𝑡)

𝑡=0

is a tangent vector at point 𝑥.

𝑇𝑥ℳ

ℳ
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Q2: What is a Good Direction? Riemannian Gradient

(*) Riesz Theorem: For an inner product space (𝑉, ⟨⋅,⋅⟩), if 𝑇: 𝑉 → ℝ is a linear, then there is a unique 𝑦 ∈ 𝑉 such that 𝑇(𝑥) =
⟨𝑣, 𝑥⟩ for all 𝑥 ∈ 𝑉.

Definition (Riemannian manifold)

A Riemannian metric ⟨⋅,⋅⟩ assigns an inner product 

⟨⋅,⋅⟩𝑥: 𝑇𝑥ℳ × 𝑇𝑥ℳ → ℝ
to each tangent space of the manifold in a way that varies 

smoothly from point to point. 

Then, (ℳ, ⟨⋅,⋅⟩) is called a Riemannian manifold.

𝑇𝑥ℳ

ℳ

10

30

40

20

ℳ

𝑇𝑥ℳ

grad 𝑓(𝑥) is the direction of 

fastest increase at 𝑥.

Definition (Riemannian gradient)

Riemannian gradient of a function 𝑓: ℳ → ℝ at a point 

𝑥 ∈ ℳ, denoted as grad𝑓(𝑥), is a unique element* in 𝑇𝑥ℳ
that satisfies

⟨grad𝑓(x), 𝜉⟩𝑥 = D𝑓(x)[ξ], ∀𝜉 ∈ 𝑇𝑥ℳ.

Assume D𝑓(𝑥): 𝑇𝑥ℳ → ℝ is well-defined. 
(See appendix in Page 58)
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Q3: What is the Optimal Condition? Singularity of 
Gradient Vector Field
Recall that 𝑇ℳ = ሼ(𝑥, 𝑣): 𝑥 ∈ ℳ and ሽ𝑣 ∈ 𝑇𝑥ℳ is called the tangent bundle of ℳ.

Definition (vector field)

A vector field on ℳ is a map 𝑉: ℳ → 𝑇ℳ such that 𝑉(𝑥) ∈ 𝑇𝑥ℳ
for all 𝑥 ∈ ℳ. 

Riemannian gradient,

𝑥 ↦ grad 𝑓(𝑥), 

is a special vector field generated by a real-valued function 𝑓.

• −grad𝑓(𝑥) is the direction of steepest descent at 𝑥. 

• If 𝑥∗ is a local minimizer/maximizer, then grad 𝑓 𝑥∗ = 0𝑥∗.

Riemannian gradient field of 

𝑓(𝑥) = −𝑥1 + 2𝑥2 + 𝑥3

on 2-dim sphere.

Contours of 

𝑓(𝑥) = −𝑥1 + 2𝑥2 + 𝑥3

on 2-dim sphere.
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Q4: How to Move on Manifolds? Using Retraction to 
Create a Curve

Retractions are not uniquely determined. 

E.g., on the unit sphere 𝕊𝑛−1, 

R𝑥 𝜉 =
𝑥 + 𝜉

∥ 𝑥 + 𝜉 ∥
, or R𝑥 𝜉 = cos ∥ 𝜉 ∥ 𝑥 +

sin ∥ 𝜉 ∥

∥ 𝜉 ∥
𝜉.

Definition (Retraction). A retraction on a manifold ℳ is a smooth map

R: 𝑇ℳ → ℳ: (𝑥, 𝜉) ↦ R𝑥(𝜉)
such that for each (𝑥, 𝜉) ∈ 𝑇ℳ the curve 𝛾(𝑡): = R𝑥(𝑡𝜉) has 𝛾′ 0 = 𝜉.

𝑇𝑥ℳ

𝑇𝑥𝑘
ℳ

ℳ

General Line Search Framework for solve min𝑥∈ℳ 𝑓 𝑥 .

Choose an initial point 𝑥0 ∈ ℳ, a retraction R, and 𝑘 ← 0;

while grad𝑓(𝑥𝑘) 𝑥𝑘
is not close to 0 do:

1. Compute a direction 𝑑𝑘 ∈ 𝑇𝑥𝑘
ℳ, e.g., 𝑑𝑘 = −grad𝑓(𝑥);

2. Compute a step length 𝑡𝑘 > 0, e.g., Armijo condition;

3. Compute the next point 𝑥𝑘+1: = R𝑥𝑘
𝑡𝑘𝑑𝑘 ;

4. Set 𝑘 ← 𝑘 + 1;



Background Preliminaries Proposal - I Proposal - II Conclusions

Our Proposal I 
- Riemannian Smoothing Methods

23

• Section 3
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Position of Our Proposal I - Riemannian Smoothing 
Methods

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝑥)
s.t. 𝑥 ∈ ℳ

Nonsmooth Riemannian Optimization (NRO)
min 𝑓 𝑥
s.t. 𝑥 ∈ ℳ

Constrained Euclidean Optimization (CEO)
min 𝑓(𝑥)

s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗 𝑥 = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℝ𝑛

Unconstrained Euclidean Optimization (UEO)
min 𝑓(𝑥)

s.t. 𝑥 ∈ ℝ𝑛

Constrained Riemannian Optimization (CRO)
min 𝑓(𝐱)
s.t. 𝑔𝑖(𝐱) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝐱) = 0, 𝑗 = 1, … , 𝑙

𝐱 ∈ ℳ

Generalize Generalize

Add constraints

Proposal I: Riemannian Smoothing Method

Proposal II: 

Riemannian Interior Point Methods

Variant I

Variant II

If 𝑓 is nonsmooth
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Smoothing Function

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝑥)
s.t. 𝑥 ∈ ℳ

Nonsmooth Riemannian Optimization (NRO)
min 𝑓 𝑥
s.t. 𝑥 ∈ ℳ

Variant I

If 𝑓 is nonsmooth

Choose a smoothing function ƿ𝑓 for the nonsmooth 𝑓 such that

lim𝜇→0+ | ƿ𝑓(𝑥, 𝜇) − 𝑓(𝑥)| = 0 for any 𝑥.
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General Riemannian Smoothing Method (RSM)

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝑥)
s.t. 𝑥 ∈ ℳ

Nonsmooth Riemannian Optimization (NRO)
min 𝑓 𝑥
s.t. 𝑥 ∈ ℳ

Variant I

If 𝑓 is nonsmooth

Our contributions: The first study on a general smoothing framework for (NRO). 

(Zhang et al., 2023) only used Steepest Descent (SD) method for subproblem.

Take 𝑥0 ∈ ℳ and set 𝑘 = 0. A nonnegative sequence 𝛿𝑘 → 0.

Choose a smoothing function ƿ𝑓.

Choose an arbitrary Riemannian algorithm.

While stopping criterion not satisfied do:

Solve

𝑥𝑘: = arg min𝑥∈ℳ
ƿ𝑓 𝑥, 𝜇𝑘

approximately by using the chosen algorithm, starting at 𝑥𝑘−1, such that grad ƿ𝑓 𝑥𝑘 , 𝜇𝑘 < 𝛿𝑘;

Choose 0 < 𝜇𝑘+1 < 𝜇𝑘;

𝑘 ← 𝑘 +1;

End

Algorithm 1. General Riemannian Smoothing Method for (NRO)

Many options:

• Steepest Descent (SD)

• Conjugate Gradient (CG)

• Trust Regions (TR)
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Application: Completely Positive (CP) Factorization 

Our contributions: The first study to apply Riemannian algorithms to CP factorization problem. 

The numerical experiments showed that our method is better than Euclidean methods.

An open problem in conic optimization theory 

(Berman et al., 2015).

Reformulation of CP factorization problem (Groetzner & Dür, 2020): 

Given a completely positive matrix 𝐴.

Find 𝑋 s.t. ᪄𝐵𝑋 ≥ 0 and 𝑋𝑇𝑋 = 𝐼,
where ᪄𝐵 is an initial factorization of 𝐴.

Our proposal: Transform it into a Riemannian model:

min
𝑋∈St(𝑟,𝑟)

max − ᪄𝐵𝑋 ,

where orthogonal group St 𝑟, 𝑟 = 𝑋 ∈ ℝ𝑟×𝑟 ∣ 𝑋𝑇𝑋 = 𝐼 .

Use LogSumExp 𝐿𝑆𝐸𝜇(𝑥): ℝ𝑛 → ℝ,

𝐿𝑆𝐸𝜇 𝑥 = 𝜇 𝑙𝑜𝑔 

𝑖=1

𝑛

𝑒𝑥𝑝 𝑥𝑖/𝜇

to replace max function.

CP factorization problem: 

Given a completely positive matrix 𝐴.

Find 𝐵 ∈ ℝ𝑛×𝑟 s.t. 𝐴 = 𝐵𝐵⊤ and 𝐵 ≥ 0.
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Experiment 1 - Randomly Generated Instances

Experiments Settings:
Let 𝐴: = 𝐻𝐻𝑇, where 𝐻 ∈ ℝ𝑛×𝑛 with entries randomly 

generated by MATLAB command rand.

We take 𝑛 ∈ ሼ20,30,40,100,200,400,600,800ሽ and 

set 𝑟 = 1.5𝑛.
For each 𝑛, we generated 10 instances to examine.

CP factorization problem: 

Given a completely positive matrix 𝐴.

Find 𝐵 ∈ ℝ𝑛×𝑟 s.t. 𝐴 = 𝐵𝐵⊤ and 𝐵 ≥ 0.

Our Smoothing Methods (SM) 

with different sub-algorithms:

• Steepest Descent (SD)

• Trust Regions (TR)

• Conjugate Gradient (CG)
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Experiment 2 - Specifical Structured Instances

Experiments Settings:
Let 𝟏𝑛 denote the all-ones vector in ℝ𝑛 and consider the

matrix

𝐴 =
0 𝟏𝑛−1

𝑇

𝟏𝑛−1 𝐼𝑛−1

𝑇
0 𝟏𝑛−1

𝑇

𝟏𝑛−1 𝐼𝑛−1
.

We take 𝑛 ∈ ሼ10,20,50,75,100,150ሽ and set 𝑟 = 𝑛.
For each 𝐧, we generated 50 starting points to examine.

CP factorization problem: 

Given a completely positive matrix 𝐴.

Find 𝐵 ∈ ℝ𝑛×𝑟 s.t. 𝐴 = 𝐵𝐵⊤ and 𝐵 ≥ 0.

The above table shows that in all cases our methods are always successful; whereas the Success 

Rates of the Euclidean methods decreased as 𝑛 increased.

Size 𝒏 SM_SD SM_CG SM_TR SpFeasDC_ls RIPG_mod APM_mod

10 1 1 1 1 1 0.8

20 1 1 1 0.98 0.74 0.9

50 1 1 1 0.98 0 0.76

75 1 1 1 0.98 0 0.64

100 1 1 1 0.8 0 0.6

150 1 1 1 0.7 0 0.35

Our Smoothing Methods (SM) Euclidean Methods 

Success Rate = 1 

in each row.
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Position of Our Proposal II - Riemannian Interior Point 
Methods

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝐱)
s.t. 𝐱 ∈ ℳ

Nonsmooth Riemannian Optimization (NRO)
min 𝑓 𝐱
s.t. 𝐱 ∈ ℳ

Constrained Euclidean Optimization (CEO)
min 𝑓(𝑥)

s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗 𝑥 = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℝ𝑛

Unconstrained Euclidean Optimization (UEO)
min 𝑓(𝐱)

s.t. 𝐱 ∈ ℝ𝑛

Constrained Riemannian Optimization (CRO)
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℳ

Add constraints

Generalize Generalize

Add constraints

Proposal I: Riemannian Smoothing Method

Proposal II: 

Riemannian Interior Point Methods

Variant I

Variant II

If 𝑓 is nonsmooth

But before that, we need 
2nd order geometry on manifolds.
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2nd Order Geometry: Differentiating Vector Fields

Recall that: 
• 𝔛(ℳ) denotes the set of all smooth vector fields on ℳ.
• 𝑇ℳ = ሼ(𝑥, 𝑣): 𝑥 ∈ ℳ and ሽ𝑣 ∈ 𝑇𝑥ℳ is tangent bundle.

(*): Smoothness; Linearity in 𝑢; Linearity in 𝑉; Leibniz rule; Symmetry; Compatibility.

Definition (Riemannian connection ∇ )

A Riemannian connection on ℳ is the unique function

∇: 𝑇ℳ × 𝔛(ℳ) → 𝑇ℳ, (𝑢, 𝑉) ↦ ∇𝑢𝑉
such that ∇𝑢𝑉 ∈ 𝑇𝑥ℳ whenever 𝑢 ∈ 𝑇𝑥ℳ and satisfies other six conditions*.

Definition (covariant derivative of 𝑉at 𝑥 ∈ ℳ)

The covariant derivative of 𝑉 ∈ 𝔛(ℳ) at 𝑥 is a linear operator defined as

∇𝑉(𝑥): 𝑇𝑥ℳ → 𝑇𝑥ℳ, 𝑢 ↦ ∇𝑢𝑉.
Generalized Jacobian

Definition (Riemannian Hessian of 𝑓 at 𝑥 )

Given a smooth function 𝑓: ℳ → ℝ.
Hess 𝑓(𝑥) ≜ ∇grad 𝑓(𝑥): 𝑇𝑥ℳ → 𝑇𝑥ℳ

is called Riemannian Hessian of 𝑓 at 𝑥 ∈ ℳ. (self-adjoint!)

When 𝑉 = grad 𝑓.

Generalized Hessian
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2nd Order Geometry: Riemannian Newton Method

Definition (Singularity)

Let 𝐹: ℳ → 𝑇ℳ be a smooth vector field. A point 𝑝 ∈ ℳ is call 

singularity of 𝐹 if

𝐹(𝑝) = 0𝑝 ∈ 𝑇𝑝ℳ

where 0𝑝 is the zero element of 𝑇𝑝ℳ.

• It is a natural extension of the famous Newton method.

• Well-known convergence: the local superlinear/quadratic convergence also hold. 

(See appendix in Page 64)

Algorithm 2 Riemannian Newton method

Goal: To find the singularity of the given vector field 𝐹.

Take 𝑥0 ∈ ℳ and set 𝑘 = 0.

While stopping criterion not satisfied do:

Solve the Newton equation

∇𝐹 𝑥𝑘 𝑣𝑘 = −𝐹 𝑥𝑘 ,

Update 𝑥𝑘+1: = R𝑥𝑘
𝑣𝑘 ;

𝑘 ← 𝑘 + 1;

End

Recall: the optimal condition of

min𝑥∈ℳ 𝑓 𝑥
is 

grad 𝑓 𝑥∗ = 0𝑥∗ .
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We are Ready to the Our Proposal II - Riemannian 
Interior Point Methods

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝐱)
s.t. 𝐱 ∈ ℳ

Nonsmooth Riemannian Optimization (NRO)
min 𝑓 𝐱
s.t. 𝐱 ∈ ℳ

Constrained Euclidean Optimization (CEO)
min 𝑓(𝑥)

s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗 𝑥 = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℝ𝑛

Unconstrained Euclidean Optimization (UEO)
min 𝑓(𝐱)

s.t. 𝐱 ∈ ℝ𝑛

Constrained Riemannian Optimization (CRO)
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℳ

Add constraints

Generalize Generalize

Add constraints

Proposal I: Riemannian Smoothing Method

Proposal II: 

Riemannian Interior Point Methods

Variant I

Variant II

If 𝑓 is nonsmooth
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A New Concept: KKT Vector Field

Lagrangian function of (CRO) is 

ℒ(𝑥, 𝑦, 𝑧): = 𝑓(𝑥) + ∑𝑗=1
𝑙 𝑦𝑗ℎ𝑗(𝑥) + ∑𝑖=1

𝑚 𝑧𝑖𝑔𝑖(𝑥),

where 𝑦 ∈ ℝ𝑙 and 𝑧 ∈ ℝ𝑚 are Lagrange multipliers. Then we have

grad𝑥ℒ(𝑥, 𝑦, 𝑧) = grad𝑓(𝑥) + ∑𝑖=1
𝑙 𝑦𝑖gradℎ𝑖(𝑥) + ∑𝑖=1

𝑚 𝑧𝑖grad𝑔𝑖(𝑥),

Hess𝑥ℒ(𝑥, 𝑦, 𝑧) = Hess𝑓(𝑥) + ∑𝑖=1
𝑙 𝑦𝑖Hessℎ𝑖(𝑥) + ∑𝑖=1

𝑚 𝑧𝑖Hess𝑔𝑖(𝑥).

Constrained Riemannian Optimization (CRO)
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℳ,
where 𝑓: ℳ → ℝ, ℎ: ℳ → ℝ𝑙, and 𝑔: ℳ →
ℝ𝑚.

Our goal: Just to find singularity 𝒘 such that 𝑭(𝒘) = 𝟎, 𝐚𝐧𝐝 (𝒛, 𝒔) ≥ 𝟎.
Newton method is a good idea, but we need 𝛻𝐹 𝑤 !

Using 𝑠: = −𝑔(𝑥), the KKT conditions becomes

𝐹(𝑤) ≜

grad𝑥ℒ(𝑥, 𝑦, 𝑧)
ℎ(𝑥)

𝑔(𝑥) + 𝑠
𝑍𝑆𝑒

= 0: =

0𝑥

0
0
0

, and (𝑧, 𝑠) ≥ 0,

where 𝑤: = 𝑥, 𝑦, 𝑧, 𝑠 ∈ ᪄ℳ ≜ ℳ × ℝ𝑙 × ℝ𝑚 × ℝ𝑚. We called 𝐹 the KKT Vector Field defined on ᪄ℳ with 

𝑇𝑤
᪄ℳ ≡ 𝑇𝑥ℳ × ℝ𝑙 × ℝ𝑚 × ℝ𝑚.

𝑍 =
𝑧1

⋱
𝑧𝑛

First order optimal condition (Yang et al., 2014) 

If 𝑥 is a local minimizer of (CRO) and Linear Independence Constraint

Qualification (LICQ) holds at 𝑥, then 𝑥 satisfies Riemannian KKT conditions:

grad𝑥 ℒ 𝑥, 𝑦, 𝑧  = 0𝑥,

ℎ 𝑥  = 0,
𝑔 𝑥  ≤ 0,

𝑍𝑔 𝑥  = 0,
𝑧  ≥ 0.
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Covariant Derivative of KKT Vector Field

Similarly, there are 𝐺𝑥 , 𝐺𝑥
∗ .

For each 𝑥 ∈ ℳ, we define

𝐻𝑥: ℝ𝑙 → 𝑇𝑥ℳ, 𝐻𝑥𝑣 ≜ ∑𝑖 𝑣𝑖gradℎ𝑖(𝑥).
Hence, the adjoint operator is

𝐻𝑥
∗: 𝑇𝑥ℳ → ℝ𝑙 , 𝐻𝑥

∗𝜉 = gradℎ1(𝑥), 𝜉 𝑥, ⋯ , gradℎ𝑙(𝑥), 𝜉 𝑥
𝑇 .

Constrained Riemannian Optimization (CRO)
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℳ,
where 𝑓: ℳ → ℝ, ℎ: ℳ → ℝ𝑙, and 𝑔: ℳ →
ℝ𝑚.

Then, the covariant derivative of KKT vector field is a linear operator ∇𝐹(𝑤): 𝑇𝑤
᪄ℳ → 𝑇𝑤

᪄ℳ is given by

∇𝐹(𝑤)Δ𝑤 =

Hessx ℒ(𝑤)Δ𝑥 + 𝐻𝑥Δ𝑦 + 𝐺𝑥Δ𝑧
𝐻𝑥

∗Δ𝑥
𝐺𝑥

∗Δ𝑥 + Δ𝑠
𝑍Δ𝑠 + 𝑆Δ𝑧

where 𝛥𝑤 = (𝛥𝑥, 𝛥𝑦, 𝛥𝑠, 𝛥𝑧) ∈ 𝑇𝑥ℳ × ℝ𝑙 × ℝ𝑚 × ℝ𝑚 ≡ 𝑇𝑤
᪄ℳ.

Lagrangian function of (CRO) is 

ℒ(𝑥, 𝑦, 𝑧): = 𝑓(𝑥) + ∑𝑗=1
𝑙 𝑦𝑗ℎ𝑗(𝑥) + ∑𝑖=1

𝑚 𝑧𝑖𝑔𝑖(𝑥),

where 𝑦 ∈ ℝ𝑙 and 𝑧 ∈ ℝ𝑚 are Lagrange multipliers. Then we have

grad𝑥ℒ(𝑥, 𝑦, 𝑧) = grad𝑓(𝑥) + ∑𝑖=1
𝑙 𝑦𝑖gradℎ𝑖(𝑥) + ∑𝑖=1

𝑚 𝑧𝑖grad𝑔𝑖(𝑥),

Hess𝑥ℒ(𝑥, 𝑦, 𝑧) = Hess𝑓(𝑥) + ∑𝑖=1
𝑙 𝑦𝑖Hessℎ𝑖(𝑥) + ∑𝑖=1

𝑚 𝑧𝑖Hess𝑔𝑖(𝑥).
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Riemannian Interior Point Method (RIPM)

Algorithm 3 Prototype Algorithm of RIPM for (CRO)

Goal: To find singularity 𝑤∗ ∈ ᪄ℳ such that 𝐹(𝑤∗) = 0, (𝑧∗, 𝑠∗) ≥ 0.

Given initial 𝑤0 with 𝑧0, 𝑠0 > 0, barrier parameter 𝜇0 > 0;

While stopping criterion not satisfied do:

Solve the perturbed Newton equation

∇𝐹 𝑤𝑘 Δ𝑤𝑘 = −𝐹 𝑤𝑘 + 𝜇𝑘 ƶ𝑒,

where ƶ𝑒 ≜ (0𝑥, 0,0, 𝑒);

Compute the step sizes 𝛼𝑘 such that 𝑧𝑘+1, 𝑠𝑘+1 > 0;

Update 𝑤𝑘+1 = ᪄R𝑤𝑘
𝛼𝑘Δ𝑤𝑘 ;

Choose 0 < 𝜇𝑘+1 < 𝜇𝑘;

𝑘 ← 𝑘 + 1;

End

Theorem (Local Convergence, L. 2022)

Under some standard assumptions.

(1) If 𝜇𝑘 = 𝑜 𝐹 𝑤𝑘 , 𝛼𝑘 → 1, then 𝑤𝑘 locally, superlinearly converges to 𝑤∗.

(2) If 𝜇𝑘 = 𝑂 𝐹 𝑤𝑘
2

, 1 − 𝛼𝑘 = 𝑂 𝐹 𝑤𝑘 , then 𝑤𝑘 locally, quadratically converges to 𝑤∗.

Next, we proposal a global convergent RIPM.
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Global Algorithm for RIPM

① Merit function: Choose 𝜑(𝑤) ≜∥ 𝐹(𝑤) ∥2.

② Backtracking for step size 𝛼𝑘 :

(1) Centrality conditions (See appendix in Page 74).
(2) Sufficient decreasing condition:

Let 𝜑(𝛼) ≜ 𝜑( ᪄R𝑤𝑘
𝛼Δ𝑤𝑘

new iterate

) for fixed 𝑤𝑘 and Δ𝑤𝑘 , then 𝜑(0) = 𝜑 𝑤𝑘 =: 𝜑𝑘 and 𝜑′(0) =

grad𝜑 𝑤𝑘 , Δ𝑤𝑘 . Sufficient decreasing asks 𝜑 𝛼𝑘 − 𝜑(0) ≤ 𝛼𝑘𝛽𝜑′(0).

How to ensure the descent direction?

Let Δ𝑤𝑘 be the solution of ∇𝐹 𝑤𝑘 Δ𝑤𝑘 = −𝐹 𝑤𝑘 + 𝜌𝑘𝜎𝑘 ƶ𝑒, then 𝜑′(0) < 0 if we set 𝜌𝑘: =
𝑠𝑘

𝑇𝑧𝑘/𝑚, 𝜎𝑘 ∈ (0,1). Then, 𝜑𝑘 is monotonically decreasing.

Assumptions:

1.the functions 𝑓(𝑥), ℎ(𝑥), 𝑔(𝑥) are smooth; the 

set gradℎ𝑖(𝑥) 𝑖=1
𝑙 is linearly independent in 

𝑇𝑥ℳ for all 𝑥; and 𝑤 ↦ ∇𝐹(𝑤) is Lipschitz 

continuous;

2.the sequences 𝑥𝑘 and 𝑧𝑘 are bounded;

3.the operator ∇𝐹(𝑤) is nonsingular.

Theorem (Global Convergence, L. 2022)

If Assumptions 1 ∼ 3 hold, then 𝐹 𝑤𝑘

converges to zero; and for any limit point 𝑤∗ =
𝑥∗, 𝑦∗, 𝑧∗, 𝑠∗ of 𝑤𝑘 , 𝑥∗ is a Riemannian KKT 

point of problem (CRO).

c.f. (El-Bakry et al., 1996)

In context of nonconvex!
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Implementation: Condensed Form of Newton Equation

It suffices to focus on condensed form on 𝑇𝑥ℳ × ℝ𝑙 :

𝒯(𝛥𝑥, 𝛥𝑦): =
𝒜𝑤𝛥𝑥 + 𝐻𝑥𝛥𝑦
𝐻𝑥

∗𝛥𝑥
=

𝑐
𝑞 ,

where

𝒜𝑤: = 𝐻𝑒𝑠𝑠𝑥ℒ 𝑤 + 𝐺𝑥𝑆−1𝑍𝐺𝑥
∗, 𝑐: = −𝐹𝑥 − 𝐺𝑥𝑆−1 𝑍𝐹𝑍 + 𝜇𝑒 − 𝐹𝑆 , 𝑞: = −𝐹𝑦 .

Using two substitutions Δ𝑠 = 𝑍−1 𝜇𝑒 − 𝐹𝑆 − 𝑆Δ𝑧 ,
Δ𝑧 = 𝑆−1 𝑍 𝐺𝑥

∗Δ𝑥 + 𝐹𝑧 + 𝜇𝑒 − 𝐹𝑠 from 3rd and 4th rows.

Dominant cost of  RIPM is to solve Newton equation: ∇𝐹 𝑤 Δ𝑤 = −𝐹 𝑤 + 𝜇 ƶ𝑒.
That is the following linear equation on 𝑇𝑥ℳ × ℝ𝑙 × ℝ𝑚 × ℝ𝑚 :

∇𝐹 𝑤 Δ𝑤 =

Hess𝑥ℒ(𝑤)Δ𝑥 + 𝐻𝑥Δ𝑦 + 𝐺𝑥Δ𝑧

𝐻𝑥
∗Δ𝑥

𝐺𝑥
∗Δ𝑥 + Δ𝑠

𝑍Δ𝑠 + 𝑆Δ𝑧

=

−𝐹𝑥

−𝐹𝑦

−𝐹𝑧

−𝐹𝑠 + 𝜇𝑒

.

𝐹 𝑤 =

𝐹𝑥

𝐹𝑦

𝐹𝑧

𝐹𝑠

, ƶ𝑒 =

0
0
0
𝑒

.

𝒯 is self-adjoint (but may indefinite) operator on 𝑇𝑥ℳ × ℝ𝑙. 

The difficulty lies in...

• the Riemannian setting leaves us with no explicit matrix form available.

• a natural way is to find the representing matrix ƶ𝒯 under some basis of tangent space. (Expensive!)

An ideal approach is to use iterative methods, e.g., Krylov subspace methods
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Implementation: Krylov Subspace Methods on Tangent 
Space
For simplicity, we consider the case of only inequality constraints, where Δ𝑦 vanishes and only a linear 

operator equation (Let 𝒜 ≡ 𝒜𝑤: 𝑇𝑥ℳ → 𝑇𝑥ℳ):

𝒜Δ𝑥 = 𝑐. (OpEquation)

• Krylov subspace method only needs to call  𝑣 ↦ 𝒜𝑣 once at each iteration.

• All the iterates 𝑣𝑘 are in 𝑇𝑥ℳ.

• Since 𝒜 is self-adjoint but indefinite, we use Conjugate Residual (CR) method to solve it.

4
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Comparison: Riemannian IPM (RIPM) is Better than 
Euclidean IPM (EIPM)

⚫ RIPM keeps the all advantages of Riemannian optimization.

⚫ EIPM is a special case of RIPM when ℳ ≡ ℝ𝑛 or ℝ𝑛×𝑘.

⚫ RIPM can solve some problems that EIPM cannot.

⚫ RIPM solves condensed Newton equation of smaller order on 𝑇𝑥ℳ × ℝ𝑙 (See appendix in Page 67):

𝒯(Δ𝑥, Δ𝑦): =
𝒜𝑤Δ𝑥 + 𝐻𝑥Δ𝑦
𝐻𝑥

∗Δ𝑥
=

𝑐
𝑞 .

E.g., rank (𝑋) = 𝑟 is not continuous, 

we can not apply EIPM.

Constrained Riemannian Optimization (CRO)
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℳ,
where 𝑓: ℳ → ℝ, ℎ: ℳ → ℝ𝑙, and 𝑔: ℳ → ℝ𝑚.

Constrained Euclidean Optimization (CEO)
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℝ𝑛,
where 𝑓: ℝ𝑛 → ℝ, ℎ: ℝ𝑛 → ℝ𝑙, and 𝑔: ℝ𝑛 → ℝ𝑚.

Generalize

Our Proposal II: 

Riemannian Interior Point Methods (RIPM) Euclidean Interior Point Methods (EIPM) 
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Numerical Experiments

Environment: MATLAB R2022a on a computer equipped with an Intel Core i7-10700 at 2.90G Hz with 16 

GB of RAM.

We compare with the other Riemannian methods:

• RALM : Riemannian augmented Lagrangian method. (Liu & Boumal, 2020)

• REPM(LQH) : Riemannian exact penalty method with smoothing function LQH. (Liu & Boumal, 2020)

• REPM(LSE) : Riemannian exact penalty method with smoothing function LSE. (Liu & Boumal, 2020)

• RSQP : Riemannian sequential quadratic programming. (Obara et al., 2022)

• RIPM (Our method): Riemannian interior point method.

KKT residual is defined by

grad𝑥 ℒ(𝑤) 2 + 

𝑖=1

𝑚

min 0, 𝑧𝑖
2 + max 0, 𝑔𝑖(𝑥) 2 + 𝑧𝑖𝑔𝑖(𝑥) 2 + 

𝑗=1

𝑙

ℎ𝑗(𝑥)
2

.

Code: https://github.com/GALVINLAI/RIPM

https://github.com/GALVINLAI/RIPM
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Problem I — Nonnegative Low Rank Matrix 
Approximation (𝑚 varies under fixed 𝑛, 𝑟)

Problem I (Song & Ng, 2020)

min
𝑋∈ℝ𝑟

𝑚×𝑛
∥ 𝐴 − 𝑋 ∥𝐹

2 s.t. 𝑋 ≥ 0,

where ℝ𝑟
𝑚×𝑛 = 𝑋 ∈ ℝ𝑚×𝑛: rank (𝑋) = 𝑟 .

Experiments settings:

Fix 𝑛 = 20, 𝑟 = 2; we take 𝑚 ∈ 8,16,24,32 . For each 𝑚, we 

generated 20 random instances* 𝐴 to examine.

Each experiment stopped successfully if solution with KKT residual 

< 10−8 was found before the maximum time 10 (s) was reached.

(*): Let B = rand(m, r); C = rand(r, n); A = B ∗ C + 0.001 ∗ randn m, n .

Row Num.

𝒎
RALM

REPM

(LQH)

REPM

(LSE)
RSQP RIPM

Success 

Rate

8 0.1 0.2 0 1 1

16 0.05 0.25 0.1 0.85 1

24 0 0.3 0.15 0.35 1

32 0.05 0.3 0.25 0 1

Average 

Time (s)

8 0.68 0.28 - 2.57 0.28 

16 1.13 0.48 2.58 7.14 0.68 

24 - 0.70 3.89 10.12 0.96 

32 2.37 0.95 5.05 - 1.63 

The results are similar when we vary the value of only one of 𝑚, 𝑛, 𝑟, so they are omitted here. (See 

appendix in Page 65-66 for more results) 

Success Rate = 1 

in each row.

The first two 

fastest results 

in each row.
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Problem I — Nonnegative Low Rank Matrix 
Approximation (Impacts of parameters 𝑚, 𝑛, 𝑟 in RIPM)

Problem I (Song & Ng, 2020)

min
𝑋∈ℝ𝑟

𝑚×𝑛
∥ 𝐴 − 𝑋 ∥𝐹

2 s.t. 𝑋 ≥ 0,

where ℝ𝑟
𝑚×𝑛 = 𝑋 ∈ ℝ𝑚×𝑛: rank (𝑋) = 𝑟 .

Experiments settings:

For each case, we generated 10 random instances* to examine.

Each experiment stopped successfully if solution with KKT residual 

< 10−6 was found before the maximum time 5 (s) was reached.

(*): Let B = rand(m, r); C = rand(r, n); A = B ∗ C + 0.001 ∗ randn m, n .
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Rank r

Fix 𝑛 = 10, 𝑟 = 2. Fix 𝑚 = 10, 𝑟 = 2. Fix 𝑚 = 20, 𝑛 = 20.
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Problem II — Projection onto Nonnegative Stiefel 
Manifold

Problem II (Jiang et al., 2022) Given 𝐶 ∈ ℝ𝑛×𝑘, we 

consider

min
𝑋∈St(𝑛,𝑘)

∥ 𝑋 − 𝐶 ∥𝐹
2 , s.t. 𝑋 ≥ 0, (Model_Stiefel)

which can be equivalently reformulated into

min
𝑋∈OB(𝑛,𝑘)

∥ 𝑋 − 𝐶 ∥𝐹
2 s.t. 𝑋 ≥ 0, and ∥ 𝑋𝑉 ∥𝐹= 1,

(Model_Oblique)

•Stiefel manifold, St 𝑛, 𝑘 ≜ 𝑋 ∈ ℝ𝑛×𝑘: 𝑋⊤𝑋 = 𝐼
•Oblique manifold, 

OB(𝑛, 𝑘) ≜ ሼ𝑋 ∈ ℝ𝑛×𝑘: all columns have unit norm ሽ
•𝑉 is arbitrary satisfying ∥ 𝑉 ∥𝐹= 1 and 𝑉𝑉⊤ > 0.

Size

(𝒏, 𝒌)
RALM

REPM

(LQH)

REPM

(LSE)
RSQP RIPM

Success 

Rate

(60,12) 1 0 0 0.65 1

(70,14) 1 0 0 0.85 1

Average 

Time (s)

(60,12) 4.10 - - 78.02 5.56

(70,14) 6.23 - - 166.1 7.57

Success Rate = 1 

in each row.

The first two 

fastest results 

in each row.

Size

(𝒏, 𝒌)
RALM

REPM

(LQH)

REPM

(LSE)
RSQP RIPM

Success 

Rate

(60,12) 0.6 0 0 0.7 1

(70,14) 0.6 0 0 0.5 1

Average 

Time (s)

(60,12) 5.73 - - 44.46 7.13

(70,14) 8.22 - - 91.38 9.27

Results for (Model_Stiefel) Results for (Model_Oblique)

Experiments settings:

For each model, we tested 20 random trials. It stopped

successfully if solution with KKT residual < 10−6 was 

found before the maximum time 600 (s) was reached.
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• Section 5
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Summary of Our Works

Our contributions:

1. Proposal I : A general framework of Riemannian Smoothing Method

2. Proposal II: Riemannian version of the interior point method

➢ We proved the local superlinear/quadratic and global convergence.

➢ We established some foundational concepts, such as the KKT vector field.

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝑥)
s.t. 𝑥 ∈ ℳ

Nonsmooth Riemannian Optimization (NRO)
min 𝑓 𝑥
s.t. 𝑥 ∈ ℳ

Constrained Riemannian Optimization (CRO)
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℳ

Add constraints

Variant I Variant II

𝑓 is nonsmooth

Proposal I Proposal II
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Future Works

② Treatment of more state-of-the-art interior point methods.

Our current global algorithm uses the simplest strategy. How about, e.g., the trust region?

Finally, we discuss 3 promising future topics about Riemannian Interior Point Method (RIPM).

① Preconditioner for linear operator equation.

Due to complementary condition, as 𝑘 → ∞, the values of 

𝑆𝑘
−1𝑍𝑘 =

𝑧𝑘 1

𝑠𝑘 1

⋱
𝑧𝑘 𝑛

𝑠𝑘 𝑛

 display a huge difference in 

magnitude. 

Condensed form on 𝑇𝑥ℳ × ℝ𝑙 :

𝒯(𝛥𝑥, 𝛥𝑦): =
𝒜𝑤𝛥𝑥 + 𝐻𝑥𝛥𝑦
𝐻𝑥

∗𝛥𝑥
=

𝑐
𝑞 ,

where

𝒜𝑤: = 𝐻𝑒𝑠𝑠𝑥ℒ 𝑤 + 𝛩,

Hence, the operator 𝛩: = 𝐺𝑥𝑆−1𝑍𝐺𝑥
∗ in the condensed system (Above) makes it ill-conditioned, so the 

iterative method will likely fail unless it is carefully preconditioned.

0

∞

No matrix form available!

③ Quasi-Newton RIPM 

The quasi-Newton RIPM can approximate the Hessian of Lagrangian in 𝛻𝐹 𝑤𝑘 with gradient information 

while ensuring its local convergence. (See appendix in Page 68)



Thank you for your attention!

Questions?

49

PhD Thesis Final Defense

Zhijian Lai

2024/01/22



References

50

Berman, A., Dur, M., & Shaked-Monderer, N. (2015). Open problems in the theory of completely positive and copositive matrices. The 
Electronic Journal of Linear Algebra, 29, 46–58. https://doi.org/10.13001/1081-3810.2943

Boţ,  . I., & Nguyen, D.-K. (2021). Factorization of completely positive matrices using iterative projected gradient steps. Numerical Linear 
Algebra with Applications, 28(6), e2391. https://doi.org/10.1002/nla.2391

Boumal, N. (2023). An Introduction to Optimization on Smooth Manifolds (2023) (1st ed.). Cambridge University Press. 
https://doi.org/10.1017/9781009166164

Boumal, N., Mishra, B., Absil, P.-A., & Sepulchre, R. (2014). Manopt, a Matlab Toolbox for Optimization on Manifolds. Journal of Machine 
Learning Research, 15(42), 1455–1459.

Chen, C., Pong, T. K., Tan, L., & Zeng, L. (2020). A difference-of-convex approach for split feasibility with applications to matrix factorizations 
and outlier detection. Journal of Global Optimization, 78(1), 107–136. https://doi.org/10.1007/s10898-020-00899-8

Chen, F., Yang, Y., Xu, L., Zhang, T., & Zhang, Y. (2019). Big-Data Clustering: K-Means or K-Indicators? (arXiv:1906.00938). arXiv. 
https://doi.org/10.48550/arXiv.1906.00938

El-Bakry, A. S., Tapia, R. A., Tsuchiya, T., & Zhang, Y. (1996). On the formulation and theory of the Newton interior-point method for nonlinear 
programming. 89(3), 35.

Fernandes, T. A., Ferreira, O. P., & Yuan, J. (2017). On the Superlinear Convergence of Newton’s Method on  iemannian Manifolds. Journal of 
Optimization Theory and Applications, 173(3), 828–843. https://doi.org/10.1007/s10957-017-1107-2

Ferreira, O. P., & Silva,  . C. M. (2012). Local convergence of Newton’s method under a majorant condition in  iemannian manifolds. IMA 
Journal of Numerical Analysis, 32(4), 1696–1713. https://doi.org/10.1093/imanum/drr048

Groetzner, P., & Dür, M. (2020). A factorization method for completely positive matrices. Linear Algebra and Its Applications, 591, 1–24. 
https://doi.org/10.1016/j.laa.2019.12.024

https://doi.org/10.13001/1081-3810.2943
https://doi.org/10.1002/nla.2391
https://doi.org/10.1017/9781009166164
https://doi.org/10.1007/s10898-020-00899-8
https://doi.org/10.48550/arXiv.1906.00938
https://doi.org/10.1007/s10957-017-1107-2
https://doi.org/10.1093/imanum/drr048
https://doi.org/10.1016/j.laa.2019.12.024


References

51

Hu, J., Liu, X., Wen, Z.-W., & Yuan, Y.-X. (2020). A Brief Introduction to Manifold Optimization. Journal of the Operations Research Society of 
China, 8(2), 199–248. https://doi.org/10.1007/s40305-020-00295-9

Jiang, B., Meng, X., Wen, Z., & Chen, X. (2022). An exact penalty approach for optimization with nonnegative orthogonality constraints. 
Mathematical Programming. https://doi.org/10.1007/s10107-022-01794-8

Lai, Z., & Yoshise, A. (2022). Completely positive factorization by a Riemannian smoothing method. Computational Optimization and 
Applications. https://doi.org/10.1007/s10589-022-00417-4

Lee, J. M. (2012). Introduction to Smooth Manifolds—2nd ed. 2012. 
https://math.berkeley.edu/~jchaidez/materials/reu/lee_smooth_manifolds.pdf

Liu, C., & Boumal, N. (2020). Simple Algorithms for Optimization on Riemannian Manifolds with Constraints. Applied Mathematics & 
Optimization, 82(3), 949–981. https://doi.org/10.1007/s00245-019-09564-3

Montanari, A., & Richard, E. (2016). Non-Negative Principal Component Analysis: Message Passing Algorithms and Sharp Asymptotics. IEEE 
Transactions on Information Theory, 62(3), 1458–1484. https://doi.org/10.1109/TIT.2015.2457942

Nosaka, K., & Yoshise, A. (2023). Creating Collaborative Data Representations Using Matrix Manifold Optimal Computation and Automated 
Hyperparameter Tuning. 2023 IEEE 3rd International Conference on Electronic Communications, Internet of Things and Big Data 
(ICEIB), 180–185. https://doi.org/10.1109/ICEIB57887.2023.10170466

Obara, M., Okuno, T., & Takeda, A. (2022). Sequential Quadratic Optimization for Nonlinear Optimization Problems on Riemannian Manifolds. 
SIAM Journal on Optimization, 32(2), 822–853. https://doi.org/10.1137/20M1370173

Sato, H. (2021). Riemannian Optimization and Its Applications. Springer International Publishing. https://doi.org/10.1007/978-3-030-62391-3

Schiela, A., & Ortiz, J. (2021). An SQP Method for Equality Constrained Optimization on Hilbert Manifolds. SIAM Journal on Optimization, 
31(3), 2255–2284. https://doi.org/10.1137/20M1341325

https://doi.org/10.1007/s40305-020-00295-9
https://doi.org/10.1007/s10107-022-01794-8
https://doi.org/10.1007/s10589-022-00417-4
https://math.berkeley.edu/~jchaidez/materials/reu/lee_smooth_manifolds.pdf
https://doi.org/10.1007/s00245-019-09564-3
https://doi.org/10.1109/TIT.2015.2457942
https://doi.org/10.1109/ICEIB57887.2023.10170466
https://doi.org/10.1137/20M1370173
https://doi.org/10.1007/978-3-030-62391-3
https://doi.org/10.1137/20M1341325


References

52

Song, G.-J., & Ng, M. K. (2020). Nonnegative low rank matrix approximation for nonnegative matrices. Applied Mathematics Letters, 105, 
106300. https://doi.org/10.1016/j.aml.2020.106300

Yamashita, H., & Yabe, H. (1996). Superlinear and quadratic convergence of some primal-dual interior point methods for constrained 
optimization. Mathematical Programming, 75(3), 377–397. https://doi.org/10.1007/BF02592190

Yang, W. H., Zhang, L.-H., & Song, R. (2014). Optimality conditions for the nonlinear programming problems on Riemannian manifolds. 
Pacific Journal of Optimization, 10(2), 415–434.

Zhang, C., Chen, X., & Ma, S. (2023). A Riemannian Smoothing Steepest Descent Method for Non-Lipschitz Optimization on Embedded 
Submanifolds of Rn. Mathematics of Operations Research, moor.2022.0286. https://doi.org/10.1287/moor.2022.0286

https://doi.org/10.1016/j.aml.2020.106300
https://doi.org/10.1007/BF02592190
https://doi.org/10.1287/moor.2022.0286


Appendix

53



Appendix

54

Summary: Position of Our Works

Unconstrained Riemannian Optimization (URO)
min 𝑓(𝑥)
s.t. 𝑥 ∈ ℳ

Nonsmooth Riemannian Optimization (NRO)
min 𝑓 𝑥
s.t. 𝑥 ∈ ℳ

Constrained Euclidean Optimization (CEO)
min 𝑓(𝑥)

s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗 𝑥 = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℝ𝑛

Unconstrained Euclidean Optimization (UEO)
min 𝑓(𝑥)

s.t. 𝑥 ∈ ℝ𝑛

Constrained Riemannian Optimization (CRO)
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℳ

Add constraints

Generalize Generalize

Add constraints

If the entire feasible region 

forms a manifold.

If not

Variant I

Variant II

If 𝑓 is nonsmooth

Proposal I: Riemannian Smoothing Method

Proposal II: 

Riemannian Interior Point Methods
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Grassmannian Manifold  as a Quotient Manifold

Grassmannian manifold is the set of linear subspaces of dimension 𝑝 in ℝ𝑛.

Gr(𝑛, 𝑝) = span(𝑋): 𝑋 ∈ ℝ𝑛×𝑝, 𝑋⊤𝑋 = 𝐼𝑝

We define an equivalence relation ∼ over St(𝑛, 𝑝):

𝑋 ∼ 𝑌 ⟺ span 𝑋 = span 𝑌 ⟺ 𝑋 = 𝑌𝑄 for some 𝑄 ∈ 𝑂 𝑝 ,

where O 𝑝 is the orthogonal group. Formally, if 𝐿 = span(𝑋), we identify 𝐿 with

[𝑋] = ሼ𝑌 ∈ St(𝑛, 𝑝): 𝑌 ∼ 𝑋ሽ

This identification establishes a one-to-one correspondence between Gr(𝑛, 𝑝) and the quotient set

St(𝑛, 𝑝)/∼= ሼ[𝑋]: 𝑋 ∈ St(𝑛, 𝑝)ሽ.
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Optimization over Grassmannian Manifold

Principal Component Analysis (PCA)

Given 𝑘 points 𝑦1, … , 𝑦𝑘 ∈ ℝ𝑛, the goal of PCA is to find a linear subspace 𝐿 ∈ Gr(𝑛, 𝑝) which fits the

data 𝑦1, … , 𝑦𝑘 as well as possible, in the sense that it solves

min
𝐿∈Gr(𝑛,𝑝)



𝑖=1

𝑘

dist 𝐿, 𝑦𝑖
2,

where dist(𝐿, 𝑦) is the Euclidean distance between 𝑦 and the point in 𝐿 closest to 𝑦.

This objective function admits an explicit solution involving the SVD of the data matrix 𝑀 =
𝑦1, … , 𝑦𝑘 . However, this is not the case for other objective functions.

For these, we may need more general optimization algorithms to address:

min
𝐿∈Gr(𝑛,𝑝)

𝑓(𝐿),

where objective function 𝑓: Gr(𝑛, 𝑝) → ℝ.

Clearly, Euclidean optimization cannot solve these problems unless we convert the problem into

some equivalent Euclidean problem.
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Applications of Constrained Riemannian Optimization 
(CRO)

Nonnegative Principal Component Analysis (Montanari & Richard, 2016)

Find the nonnegative principal component vector of some data matrix 𝐴 ∈ ℝ𝑛×𝑟 :

min
𝑋∈St(𝑛,𝑘)

− tr 𝑋⊤𝐴𝐴⊤𝑋 s. t. 𝑋 ≥ 0.

Data Collaboration Analysis (Nosaka & Yoshise, 2023) 

Nosaka and Yoshise created the collaborative data representations using fixed-rank manifolds. 

To improve the performance, recently, Nosaka and me are trying to solve the new model:

min
𝐺𝑖∈𝑀𝑖

1

2


𝑖,𝑖′=1

𝑁

ƿ𝐴𝑖𝐺𝑖 − ƿ𝐴𝑖′𝐺𝑖′
𝐹

2
s.t. 𝐺𝑖 𝐹

2 − ƶ𝑚 = 0, ∀𝑖 ∈ 𝑁,

where 𝑀𝑖 = 𝑋 ∈ ℝ ƶ𝑚𝑖× ƶ𝑚 ∣ Rank(𝑋) = ƶ𝑚 and data matrices ƿ𝐴𝑖 ∈ ℝ × ƿ𝑚𝑖.
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Riemannian Gradient (Strict definitions)

Definition (differential DF (𝑥) )

For manifolds ℳ1, ℳ2 and a mapping 𝐹: ℳ1 → ℳ2, the differential of 𝐹 at a point 𝑥 ∈ ℳ1, denoted as 

D𝐹(𝑥): 𝑇𝑥ℳ1 → 𝑇𝐹(𝑥)ℳ2, is defined as

(D𝐹(𝑥)[𝜉])ℎ = 𝜉(ℎ ∘ 𝐹), ∀ℎ ∈ 𝔉𝐹(𝑥) ℳ2 .

Definition (Riemannian gradient)

The Riemannian gradient of a function 𝑓: ℳ → ℝ at a point 𝑥 ∈ ℳ, denoted as grad 𝑓(𝑥), is a unique 

element* in 𝑇𝑥ℳ that satisfies

⟨grad 𝑓(𝑥), 𝜉⟩𝑥 = D𝑓(𝑥)[𝜉], ∀𝜉 ∈ 𝑇𝑥ℳ.

Note that if 𝐹: ℳ1 → ℳ2 and ℎ ∈ 𝔉𝐹(𝑥) ℳ2 , then ℎ ∘ 𝐹 ∈ 𝔉𝑥 ℳ1 .

We can show that D𝐹(𝑥): 𝑇𝑥ℳ1 → 𝑇𝐹(𝑥)ℳ2 is a linear map.

Special case. Consider the differential of 𝑓: ℳ → ℝ at a point 𝑥 ∈ ℳ. If we identify 𝑇𝑓(𝑥)ℝ ≅ ℝ, for 𝜉 ∈

𝑇𝑥ℳ, we have

D𝑓(𝑥)[𝜉] = 𝜉𝑓.
⇝ D𝑓(𝑥): 𝑇𝑥ℳ → ℝ is linear functional.

(*) Riesz Theorem: For an inner product space (𝑉, ⟨⋅,⋅⟩), if 𝑇: 𝑉 → ℝ is a linear, then there is a unique 𝑦 ∈ 𝑉 such that 𝑇(𝑥) =
⟨𝑣, 𝑥⟩ for all 𝑥 ∈ 𝑉.
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Calculation of Gradient on Embedded Submanifold

Proposition: For any embedded submanifold ℳ, 

Riemannian gradient 𝑓: ℳ → ℝ is the orthogonal 

projection onto 𝑇𝑥ℳ of the Euclidean gradient:

grad𝑓(𝑥) = Proj𝑥(egrad𝑓(𝑥))

Example: For 𝑓(𝑥) = 𝑥⊤𝐴𝑥 on 𝕊𝑛−1, we have egrad 𝑓(𝑥) = 2𝐴𝑥, and

Proj𝑥 (𝑢) = 𝐼𝑛 − 𝑥𝑥⊤ 𝑢. 

It follows that grad 𝑓 𝑥 = Proj𝑥(egrad 𝑓(𝑥)) = 2 𝐼𝑛 − 𝑥𝑥⊤ 𝐴𝑥.

Tangential 

component Normal component

ℳ

ℳ

𝑇𝑥ℳ
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Riemannian Metric Induces the Distance Space

The norm of a tangent vector 𝜉 at any point 𝑥 on ℳ can be defined as

∥ 𝜉 ∥𝑥: = ⟨𝜉, 𝜉⟩𝑥

Furthermore, the length 𝐿(𝑐) of a curve 𝑐: [𝑎, 𝑏] → ℳ on ℳ can be defined as

𝐿(𝑐): = න
𝑎

𝑏

𝑐′(𝑡)
𝑐(𝑡)

𝑑𝑡.

A natural distance on ℳ, called the Riemannian distance,

dist 𝑥, 𝑦 : = inf
𝑐

𝐿(𝑐)

where the infimum is taken over all curve segments which connect 𝑥 to 𝑦, and thus ℳ becomes a distance 

space.
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Equivalent Definitions of Retraction

Definition (retraction). A smooth mapping R: 𝑇ℳ → ℳ is called a retraction if for all 𝑥 ∈ ℳ, the 

restriction R𝑥: 𝑇𝑥ℳ → ℳ satisfies

R𝑥(0) = 𝑥, DR𝑥(0) = id𝑇𝑥ℳ .

Here, 𝑇ℳ = ሼ(𝑥, 𝑣): 𝑥 ∈ ℳ and ሽ𝑣 ∈ 𝑇𝑥ℳ is called the tangent bundle of ℳ, and id𝑇𝑥ℳ represents the 

identity mapping in 𝑇𝑥ℳ.

Definition (Retraction). A retraction on a manifold ℳ is a smooth map

R: Tℳ → ℳ: (𝑥, 𝜉) ↦ R𝑥(𝜉)
such that for each (𝑥, 𝜉) ∈ Tℳ the curve 𝛾(𝑡): = R𝑥(𝑡𝜉) satisfies Ǘ𝛾(0) = 𝜉.

Equivalent. 
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Numerical Experiments of CP factorization

• SpFeasDC_ls (Chen et al., 2020): A difference-of-convex functions approach for solving the split 

feasibility problem.

•  IPG_mod (Boţ & Nguyen, 2021): This is a projected gradient method with relaxation and inertia 

parameters for solving (4.4). 

• APM_mod (Groetzner & Dür, 2020): A modified alternating projection method for CP factorization.
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2nd Order Geometry: Calculation of Hessian on 
Embedded Submanifold

Proposition: For any embedded submanifold ℳ,
Hess 𝑓 𝑥 𝑢 = Proj𝑥 D grad𝑓 𝑥 𝑢 .

Example: For 𝑓(𝑥) =
1

2
𝑥⊤𝐴𝑥 on 𝕊𝑛−1, we have grad 𝑓(𝑥) = 𝐼𝑛 − 𝑥𝑥⊤ 𝐴𝑥. Its differential is

D grad 𝑓(𝑥)[𝑢] = 𝐴𝑢 − 𝑢⊤𝐴𝑥 + 𝑥⊤𝐴𝑢 𝑥 − 𝑥⊤𝐴𝑥 𝑢
project to the tangent space at 𝑥 to reveal

Hess 𝑓 𝑥 𝑢 = 𝐴𝑢 − 𝑥⊤𝐴𝑢 𝑥 − 𝑥⊤𝐴𝑥 𝑢.
Note that Hess 𝑓(𝑥): 𝑇𝑥𝕊𝑛−1 → 𝑇𝑥𝕊𝑛−1 is true for 𝑥 ∈ 𝑇𝑥𝕊𝑛−1 = 𝑢 ∈ ℝ𝑛: 𝑥𝑇𝑢 = 0 .

Example: For 𝑓(𝑥) = 𝑥⊤𝐴𝑥 on 𝕊𝑛−1, we have egrad 𝑓(𝑥) = 2𝐴𝑥, and

Proj𝑥 (𝑢) = 𝐼𝑛 − 𝑥𝑥⊤ 𝑢. 

It follows that grad 𝑓 𝑥 = Proj𝑥(egrad 𝑓(𝑥)) = 2 𝐼𝑛 − 𝑥𝑥⊤ 𝐴𝑥.

Hess 𝑓(𝑥) is self-adjoint (i.e., symmetric) operator from and to 𝑇𝑥ℳ. 
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Local Convergence — Riemannian Newton Method

Definition (singularity)

Let 𝐹: ℳ → 𝑇ℳ be a smooth vector field. A point 𝑝 ∈ ℳ is 

call singularity of 𝐹 if

𝐹(𝑝) = 0𝑝 ∈ 𝑇𝑝ℳ

where 0𝑝 is the zero element of 𝑇𝑝ℳ.

Algorithm 2 Riemannian Newton method

Goal: To find the singularity of the given vector field 𝐹.

Take 𝑥0 ∈ ℳ and set 𝑘 = 0.

While stopping criterion not satisfied do:

Solve the Newton equation

∇𝐹 𝑥𝑘 𝑣𝑘 = −𝐹 𝑥𝑘 ,

Update 𝑥𝑘+1: = R𝑥𝑘
𝑣𝑘 ;

𝑘 ← 𝑘 + 1;

End

Standard Newton assumptions:

(N1) There exists 𝑥∗: 𝐹 𝑥∗ = 0.

(N2) 𝛻𝐹 𝑥∗ is nonsingular operator.

(N3) 𝛻𝐹 is locally Lipschitz cont. at 𝑥∗.

Local Convergence Rate:

(N1)-(N2) ⇒ superlinear (Fernandes et 

al., 2017)

(N1)-(N3) ⇒ quadratic (Ferreira & 

Silva, 2012)
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Problem I — Nonnegative Low Rank Matrix 
Approximation (Appendix: 𝑛 varies under fixed 𝑚, 𝑟)

Problem I (Song & Ng, 2020)

min
𝑋∈ℝ𝑟

𝑚×𝑛
∥ 𝐴 − 𝑋 ∥𝐹

2 s.t. 𝑋 ≥ 0,

where ℝr
m×n = 𝑋 ∈ ℝ𝑚×𝑛: rank (𝑋) = 𝑟 .

Experiments settings:

Fix 𝑚 = 20, 𝑟 = 2; we take 𝑛 ∈ 8,16,24,32 . For each 𝑛, we 

generated 20 random instances* to examine.

Each experiment stopped successfully if solution with KKT residual 

< 10−8 was found before the maximum time 10 (s) was reached.

Column Num.

𝒏
RALM

REPM

(LQH)

REPM

(LSE)
RSQP RIPM

Success 

Rate

8 0.05 0.25 0 0.9 1

16 0.2 0.2 0.15 0.85 1

24 0.05 0.45 0.15 0.15 1

32 0.1 0.2 0.2 0 1

Average 

Time (s)

8 0.57 0.29 - 2.54 0.30 

16 1.27 0.54 2.91 6.83 0.47 

24 1.59 0.71 3.93 10.44 0.90 

32 2.35 0.92 5.13 - 1.85 

Success Rate = 1 

in each row.

The first two 

fastest results

in each row.

(*): Let B = rand(m, r); C = rand(r, n); A = B ∗ C + 0.001 ∗ randn m, n .
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Problem I — Nonnegative Low Rank Matrix 
Approximation (Appendix: 𝑟 varies under fixed 𝑚, 𝑛)

Problem I (Song & Ng, 2020)

min
𝑋∈ℝ𝑟

𝑚×𝑛
∥ 𝐴 − 𝑋 ∥𝐹

2 s.t. 𝑋 ≥ 0,

where ℝr
m×n = 𝑋 ∈ ℝ𝑚×𝑛: rank (𝑋) = 𝑟 .

Experiments settings:

Fix 𝑚 = 20, 𝑛 = 20; we take 𝑟 ∈ 2,4,8,16 . For each 𝑟, we 

generated 20 random instances* to examine.

Each experiment stopped successfully if solution with KKT residual 

< 10−8 was found before the maximum time 10 (s) was reached.

Rank 𝒓 RALM
REPM

(LQH)

REPM

(LSE)
RSQP RIPM

Success 

Rate

2 0.15 0.2 0.25 0.75 1

4 0.15 0.15 0 0 1

8 0.15 0.05 0.1 0 1

16 0.05 0.05 0.05 0 1

Average 

Time (s)

2 1.60 0.60 3.57 9.26 0.64 

4 0.92 0.57 - - 1.28 

8 0.70 0.56 1.86 - 3.79 

16 0.71 0.62 1.93 - 3.41 

Success Rate = 1 

in each row.

The first two 

fastest results

in each row.

(*): Let B = rand(m, r); C = rand(r, n); A = B ∗ C + 0.001 ∗ randn m, n .
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RIPM vs. EIPM: RIPM Solves Newton Equation of 
Smaller Order

⚫ RIPM inherits the all advantages of Riemannian optimization.

⚫ EIPM is a special case of RIPM when ℳ ≡ ℝ𝑛 or ℝ𝑛×𝑘.

⚫ RIPM can solve some problems that EIPM cannot.

⚫ RIPM solves condensed Newton equation of smaller order on 

𝑇𝑥ℳ × ℝ𝑙 :

𝒯(Δ𝑥, Δ𝑦): =
𝒜𝑤Δ𝑥 + 𝐻𝑥Δ𝑦
𝐻𝑥

∗Δ𝑥
=

𝑐
𝑞 .

E.g., the Stiefel manifold can be used as the equality constraints; i.e., we 

set ℎ: ℳ ≡ ℝ𝑛×𝑘 → Sym(𝑘), where ℎ(𝑋) = 𝑋⊤𝑋 − 𝐼𝑘. 

Here, EIPM requires us to solve an equation of order 𝑛𝑘 + 𝑘(𝑘 + 1)/2. 

But RIPM only requires us to solve an equation of order 𝑛𝑘 − 𝑘(𝑘 + 1)/2, 

i.e., the dimension of St(𝑛, 𝑘).

Constrained Riemannian Optimization (CRO)
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℳ,
where 𝑓: ℳ → ℝ, ℎ: ℳ → ℝ𝑙, and 𝑔: ℳ → ℝ𝑚.

Constrained Euclidean Optimization (CEO)
min 𝑓(𝑥)
s.t. 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑙

𝑥 ∈ ℝ𝑛,
where 𝑓: ℝ𝑛 → ℝ, ℎ: ℝ𝑛 → ℝ𝑙, and 𝑔: ℝ𝑛 → ℝ𝑚.

Generalize
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Future Works: Quasi-Newton RIPM 

◆Quasi-Newton RIPM

The quasi-Newton RIPM can approximate the Hessian of Lagrangian in ∇𝐹 𝑤𝑘 with gradient information 

while ensuring its local convergence.

Algorithm of RIPM for (CRO)

Solve the perturbed Newton equation

∇𝐹 𝑤𝑘 Δ𝑤𝑘 = −𝐹 𝑤𝑘 + 𝜇𝑘 ƶ𝑒,

Compute the step 𝛼𝑘 such that 𝑧𝑘+1, 𝑠𝑘+1 > 0;

Update 𝑤𝑘+1 = ᪄R𝑤𝑘
𝛼𝑘Δ𝑤𝑘 ;

Choose 0 < 𝜇𝑘+1 < 𝜇𝑘;

𝐵(𝑤𝑘)Δ𝑤𝑘 = −𝐹 𝑤𝑘 + 𝜇𝑘 ƶ𝑒,

Quasi-Newton method, 

BFGS formulate, etc.

As the last chapter of my thesis, we only give some theoretical results.

There is still a great deal of work to be done to refine the quasi-Newton RIPM. 
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Primal Interior Point Method on Manifold
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