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(Un)constrained Optimization Problem

1 Introduction

Given an objective f: R" — R, the general form of a (Euclidean) optimization problem is

min f(x)

st.xes,
where x = [x1, X2, . .. 7xn]T € R", and feasible region § C R" consists of all possible solutions.

Classically, we consider it as
e unconstrained optimization problem if § = R";
e constrained optimization problemif S C R", e.g., S ={x € R": g;(x) = 0,i =1,2,....m
and hj(x) <0,j=1,2,...,1}
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Line Search Framework for § = R"

1 Introduction

Algorithm 1 Line Search Framework for § = R" It should be noted that:
An initial point xo € R™; k < 0; e By using local information of objective f at
repeat Xk, we can select
Choose a search direction dy € R"; — steepest descent direction: dx = —Vf (xk)

Choose a step size tx > 0; — Newton dirgct'ion: .

Update new point by x;11 := xx + tidx; de = — [V*f(x)] " Vf (%)

Setk — k+1; e For arbitrary dy and ty, the new point xj 1
until stopping criterion are satisfied; is always in R". (unconstrained!)

Questions

Why cannot the line search framework be used for constrained optimization problems, i.e.,
S C R"? Because xx+1 := Xk + trdyx may not be feasible.
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New Insight on (Un)constrained Optimization Problem

1 Introduction

Recall the general form of a (Euclidean) optimization problem is

min f(x)

st.xeS.

e § = R". Formally, x is still subject to the real (not complex) Euclidean space R".
e S C R". Assume that we can generate a sequence {xy} C S by the formula

Xk+1 := UPDATE (Xk, dy, tk) s (3)

where UPDATE: S x D x Rt — S, and D consist of all meaningful search direction.

A new insight

The essential difference between constrained and unconstrained problems is not determined by
the problem itself, but by the algorithm we adopt to solve the problems.
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A Glance at Riemannian Optimization

2 A Glance at Riemannian Optimization

Riemannian optimization

Given an objective f: M — R where M is a Riemannian manifold, we want to solve

min f(x).

xXeM

40+ manifolds M available in the Riemannian optimization solver “Manopt” [BMAS14]:
e R" R™*" (any vector space) are trivial manifolds.

Sphere manifold, {x € R" : ||x|» = 1}.

Stiefel manifold, {X € R"™? : X'X = I, }.

Grassmann manifold, the set of all p-dimensional subspaces of R".

Fixed rank manifold, {X € R™*™ : rank(X) = r}.

Oblique manifold, {X € R™™ : || X;1|| = - - - = || Xi|| = 1}.

Hyperbolic manifold, {x € R™" : x2 =x} +--- +x2 + 1}.

In most cases, the R above can be replaced by C.
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https://www.manopt.org/index.html

A Glance at Riemannian Optimization

2 A Glance at Riemannian Optimization

Riemannian optimization

Given an objective f: M — R where M is a Riemannian manifold, we want to solve

min f(x).

Applications of Riemannian optimization [HLWY20]:

e p-harmonic flow
low-rank nearest correlation matrix estimation
phase retrieval
Bose-Einstein condensates
cryoelectron microscopy (cryo-EM)
linear eigenvalue problem
nonlinear eigenvalue problem from electronic structure calculations
combinatorial optimization
deep learning, etc.
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Application I: Extreme Eigenvalue or Singular Value

2 A Glance at Riemannian Optimization

For a matrix A € Sym(n), we have

the smallest eigenvalue of A = min xTAx.
xesn—

Similarly, for a matrix M € R™*", we have

the largest singular value of M = max xTMy.
XGS"‘717Y68"71

e Unit sphere manifold, S*™! = {x e R" : ||x» = 1}.
e S™"—1 % S"~1 s a product manifold.
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Application II: Sparse PCA

2 A Glance at Riemannian Optimization

Spare PCA wants to find principle eigenvectors with few nonzero elements.

min — tr (X"ATAX) + p||X[|1. (6)
x€St(n,p)

where [[X[[1 = 3_; [Xy| and p > 0 is a parameter to promote sparsity.

e Stiefel manifold, St(n, p) = {X € R™P : XX =L, }.
e Grassmann manifold, Gr(n,p) = {span(X) : X € R"?,X"X = I, }. (See Appendix for more.)
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Application lll: Low-Rank Matrix Completion [Van13]

2 A Glance at Riemannian Optimization

Let 2 denote the set of pairs (i, ) such that Mj; is observed. We want to recover a low-rank matrix
M by

miny rank(X) )
s.t. Xy = Mija (l/]) e Q.

If rank(M) = r is known, an alternative model is

i X — My)” . 8
XeFrrIE'lﬂI,an) Z ( ’ U) ®)
(ij)eQ

e Fixed rank manifold, Fr(m,n,r) = {X € R™*" : rank(X) = r}.
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Riemannian Manifold = Manifold + Riemannian Metric

2 A Glance at Riemannian Optimization

e A manifold M is a set that can be locally linearized.’

— TyM is tangent space at x.
— & € TyM is tangent vector at x.
e A Riemannian metric (-, -) assigns an inner product (-, ), : Ty M x TyM — R to each tangent

space of the manifold in a way that varies smoothly from point to point.

LM x T.M
X

TExactly, it is a topological space that is locally homeomorphic to some open subset of Euclidean space.
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Riemannian Manifold = Manifold + Riemannian Metric

2 A Glance at Riemannian Optimization

e A manifold M is a set that can be locally linearized.?

— TyM is tangent space at x.
— & € TyM is tangent vector at x.
e A Riemannian metric (-, -) assigns an inner product (-, ), : Ty M x TyM — R to each tangent

space of the manifold in a way that varies smoothly from point to point.

TXM X 3

2Exactly, it is a topological space that is locally homeomorphic to some open subset of Euclidean space.
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Riemannian Manifold = Manifold + Riemannian Metric

2 A Glance at Riemannian Optimization

e A manifold M is a set that can be locally linearized.?
— TyM is tangent space at x.
— & € Ty M is tangent vector at x.
e A Riemannian metric (-, -) assigns an inner product (-, ), : Ty M x TyM — R to each tangent
space of the manifold in a way that varies smoothly from point to point.

Ry

T.M
) X §/<‘Sr_rl>x\

SExactly, it is a topological space that is locally homeomorphic to some open subset of Euclidean space.
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Euclidean Optimization v.s. Riemannian Optimization

2 A Glance at Riemannian Optimization

Algorithm 2 Line Search Framework for § = R" Algorithm 3 Line Search Framework for § = M
Choose a search direction d;, € R"; Choose a search direction dy, € Ty, M;
Choose a step size ty > 0; Choose a step size t; > 0;

Update new point by x1 := xx + txdy; Update new point by x11 := Ry, (txdk);
T, M

Xka1 = X + bdy

1y
Xk+1 = ka(tkdk)
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2 A Glance at Riemannian Optimization

Riemannian version of classical methods:

Riemannian steepest decent [Bou23]
Riemannian conjugate gradient [Sat22]
Riemannian trust region [ABGO7]
Riemannian Newton [Bou23]

Riemannian BFGS [HGSA16]

Riemannian proximal gradient [CMMCSZ20]
Riemannian stochastic algorithms [ZJRS16]
Riemannian ADMM [KGB16]

and more

Almost all algorithms in Euclidean setting can be
extended to Riemannian setting.
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Advantages in Comparison to Euclidean Optimization

Advantages of Riemannian optimization:

1.
2.

All iterates on the manifold.

Transform constrained problems into
unconstrained ones.

Use of the geometric structure of the
feasible region.

Convergence properties of like optimization
on Euclidean space.

T, M

.
X1 = Ry, (edy)
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2 A Glance at Riemannian Optimization
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Riemannian Optimization Libraries

2 A Glance at Riemannian Optimization

Survey:

e A Brief Introduction to Manifold Optimization [HLWY20]

e A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian
Manifold [FWLT 23]

e History of Riemannian Optimization
https://www.math.fsu.edu/~whuang2/pdf/NanjingUniversity_2019-10-23.pdf

Monographs of Riemannian Optimization:

e An Introduction to Optimization on Smooth Manifolds [Bou23] (the best textbook for
beginners)
https://www.nicolasboumal.net/book/

e Riemannian Optimization and Its Applications [Sat21]
https://link.springer.com/book/10.1007/978-3-030-62391-3
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Riemannian Optimization Libraries

2 A Glance at Riemannian Optimization

e Optimization Algorithms on Matrix Manifolds [AMS08]
https://press.princeton.edu/absil

e Convex Functions and Optimization Methods on Riemannian Manifolds [Udr94]
https://link.springer.com/book/10.1007/978-94-015-8390-9

e Multivariate Data Analysis on Matrix Manifolds [TG21]
https://link.springer.com/book/10.1007/978-3-030-76974-1

e Population-Based Optimization on Riemannian Manifolds [FT22a]
https://link.springer.com/book/10.1007/978-3-031-04293-5

Libraries of General-purpose Riemannian Optimization Toolboxes:

e Manopt [BMAS14] in Matlab (the most comprehensive toolbox)
https://www.manopt.org/
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Riemannian Optimization Libraries

2 A Glance at Riemannian Optimization

e Pymanopt [TKW16] in Python
https://pymanopt.org/

e ROPTLIB [HAGH18] in C++
https://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html

e ManifoldOptim [MRHA20] in R (a R wrapper of ROPTLIB)
https://cran.r-project.org/web/packages/ManifoldOptim/index.html

e Manopt.jl [Ber22] in Julia
https://manoptjl.org/
Libraries of Riemannian Packages for Various Goals:

e Geoopt [KKK20] is a Python library bringing Riemannian optimization tools to PyTorch.
https://geoopt.readthedocs.io/en/latest/index.html
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Riemannian Optimization Libraries

2 A Glance at Riemannian Optimization

McTorch [MJKT 18] is also a Python library bringing Riemannian optimization tools to PyTorch.
https://github.com/mctorch/mctorch

TensorFlow RiemOpt [Smi21] is a library for Riemannian optimization in TensorFlow.
https://github.com/master/tensorflow-riemopt

Rieoptax [UHJM22] is a library for Riemannian Optimization in JAX.
https://github.com/SaitejaUtpala/rieoptax

CDOpt [XHLT22] is a Python toolbox for optimization on Riemannian manifolds with support
for deep learning.
https://cdopt.github.io/md_files/intro.html

QGOpt [LRFO21] is an extension of TensorFlow optimizers on Riemannian manifolds that
often arise in quantum mechanics.
https://qgopt.readthedocs.io/en/latest
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Riemannian Optimization Libraries

2 A Glance at Riemannian Optimization

e Geomstats [MGLB™ 20] is a Python package for computations and statistics on manifolds.
https://geomstats.github.io/
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How to Optimize a Function on Manifold?

3 How to Optimize a Function on Manifold?

Consider the Riemannian optimization problem,

min f(x)
st.xe M, (©)

wheref: M — R.

Goal: To find a local optimal solution x* € M. (In general, M is nonconvex.)

Method: The iterative methods can still be used. But there are questions that we need to address:
Q1: What is the direction of movement? Tangent vector

Q2: How to move on manifolds? Retraction map

Q3: What is a good direction to move? Riemannian gradient
Q4: What is the optimal condition? Vector field
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Q1: What is the Direction of Movement? Tangent Vector

3 How to Optimize a Function on Manifold?

Here, it is sufficient to consider — embedded submanifold M of R" = manifold + subset of R".

Imagine a particle moving on a manifold M with a trajectory v : I C R — M that passes through
the point x at time t = 0. Then, the velocity
v(t) —y(0) d

3(0) += lim BT = 20

is called a tangent vector belonging to x.
.M

=
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Q1: What is the Direction of Movement? Tangent Vector
(Cont’d)

3 How to Optimize a Function on Manifold?

The tangent space at x is the set of all possible tangent vectors at that point, i.e.,
T M := {%(0) : v : I — M is a smooth curve, v(0) = x}.
T.M

=

(1) For any x € M, T, M are linear spaces sharing the same dimension.
(2) In general, T, M is determined by x, except for T,R" = R".
(3) For embedded submanifold, TyM is a subspace of R", e.g., T,S* ! = {u eR": xTu = 0}.
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Q2: How to Move on Manifolds? Retraction to Create a
Curve

3 How to Optimize a Function on Manifold?

TM = {(x,§) :x € M and £ € TyM} is called the tangent bundle.
A retraction is a smooth map

R:TM — M : (x,€) — Ry(§)
such that for each (x,£) € TM, the corresponding curve t — ~(t) := Ry(t§) has 4(0) = &.

4

>

x+&

. RX _
© llx + &Il

A retraction R yields a map R, : TyM — M for any x.
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Q2: How to Move on Manifolds? Using Retraction to
Create a Curve (Cont’d)

3 How to Optimize a Function on Manifold?

Retractions are not uniquely determined. E.g., on the unit sphere S*~1,

xee sin((¢])
o+ €l ]

Given a tangent vector ¢ at point x, & — Ry(a&) defines a curve along this direction.

R(£)

or  Ry(€) = cos(|[§]])x +

.

Euclidean setting | Riemannian setting

Xip1 = Xk + ady | Xkp1 = Ry, (o)

/ Table: Two types of update formulas
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Q3: What is a Good Direction? Riemannian Gradient

3 How to Optimize a Function on Manifold?

Moreover, the real function o — f(Ry(a:€)) evaluates how the objective value changes along the
given direction &.

x
R4 <& A

a o R (af) /f”ﬂ*

The Riemannian gradient, grad f(x), is the tangent vector at x such that:

gradf( ) (lim f(Rx(Oéf))—f(X)> .

= argmax
||gradf()|| ceTM:||¢]|=1 \@—0 o
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Q3: What is a Good Direction? Riemannian Gradient
(Cont’d)

3 How to Optimize a Function on Manifold?

Intuitively, grad f(x) should be approximately perpendicular to the contour line of f on the surface.

[ ialgad o

I
I

/
| AT
L.

Also, — grad f(x) is the direction of steepest descent at x.
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Q3: What is a Good Direction? Riemannian Gradient
(Cont’d)

3 How to Optimize a Function on Manifold?

For embedded submanifold M, Riemannian gradient of f: M — R is the orthogonal projection
onto Tx M of the Euclidean gradient:

grad f(x) = Proj, (VA(x)).

f:$'CR?-5R Projx(+) R?

For f(x) = %XTAX , Vf(x) = Ax. On sphere grad £(3)

S"1, we have

Tangehtial
component

Proj, (u) = (I, — xx")u.
Normal component

It follows that

grad f(x) = Proj (Vf(x)) = (I, — xx")Ax. TS’

51
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Q4: What is the Optimal Condition? Singularity of
Gradient Vector Field

3 How to Optimize a Function on Manifold?

A vector field on M isamap V: M — TM such that V(x) € T, M forall x € M.

2.0 1.0
15

0.8
1.0
0.5 0.6
0.0

RN

0.5 0.4
-1.0

0.2
-1.5
-2.0 0.0

-20 -15 . . . 0.5 1.0 15 2.0

sases  Figure: Let M = R, Gradient of the 2D function f(x, y) = xe~® ). source: Wikipedia.
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Q4: What is the Optimal Condition? Singularity of
Gradient Vector Field

3 How to Optimize a Function on Manifold?

A vector field on M isamap V: M — TM such that V(x) € T, M forall x € M.

Figure: A vector field on a sphere S2. Source: Wikipedia.
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Q4: What is the Optimal Condition? Singularity of
Gradient Vector Field (Cont’d)

3 How to Optimize a Function on Manifold?

Riemannian gradient, x — grad f(x), is a special vector field generated by a scalar field f.
If x* is a local minimizer/maximizer, then grad f (x*) = Oy~

= —x1 + 2x2 + x3 on S%.

Figure: Contours of f(x)
35/65 Figure: Gradient field of f(x) = —x1 + 2x2 4 x3 on §?.



Summary

3 How to Optimize a Function on Manifold?

Algorithm 4 Line Search Framework for solving minye o f(x).

Choose an initial point xo € M, a retraction R, and k < 0;
repeat

Compute a direction dy, € Ty, M, e.g., d, = — grad f(x);

Compute a step length t;, > 0, e.g., Armijo condition;

Compute the next point xx11 := Ry, (tkdk); > update formula on manifold
until ||grad f(xx)]| is close to 0

¢
Xk+1 = ka(tkdk)
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A Tutorial on Riemannian Optimization

3 How to Optimize a Function on Manifold?

» How to Optimize a Function on Manifold?

Second Order Geometry
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Second Order Geometry: Covariant Derivative

3 How to Optimize a Function on Manifold?

. Riemannian connection
The covariant derivative of a vector field F on M is ~ VE(x): T,M — T, M, linear operator.

general vector field

If M = R", for a vector field F : R" — R", atx € R",
VF() : T,R" =R" — T,R" = R", u — J(x)u,

where J(x) is the n x n Jacobian matrix of F at x.
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Second Order Algorithm: Riemannian Newton Method |

3 How to Optimize a Function on Manifold?

I Riemannian connection
VF(x): T,M — T,M, linear operator.

general vector field

The covariant derivative of a vector field F on M is ~~

Algorithm 5 Riemannian Newton Method

Goal: To find singularity x* € M such that F(x*) = 0y« € Ty M.
Take xg € M, and set k = 0.
repeat
Solve a linear system on Ty, M > vy : VF(x)vk = —F(x),
Compute xx+1 := Ry, (vk);
until ||F(xx41)]| is efficiently close to zero

e |t is a natural extension of the famous Newton method.
e Well-known convergence: the local superlinear/quadratic convergence also hold.
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Second Order Geometry: Riemannian Hessian

3 How to Optimize a Function on Manifold?

Specially, Hess f(x) 2 V grad f(x) is called Riemannian Hessian of f: M — R when F = grad .

(Proposition.) For any embedded submanifold M, Hess f(x)[u] = Proj, (D grad f(x)[u]).

For f(x) = £x"Ax on S"~!, we have grad f(x) = (I, — xx”)Ax. Its differential? is
Dgradf(x)[u] = Au — (uTAx + xTAu)x — (xTAx)u;

project to the tangent space at x to reveal Hess f(x)[u] = Au — (xTAu)x — (xTAx)u.

Gleth : € — &', the differential of h at x is Dh(x) : £ — &, Dh(x)[u] = lim,_,o M=)

e Hessf(x) is defined only on T,S"~! (not on all of R").
e Hess f(x) is self-adjoint (i.e., symmetric) because Hess f(x) = Hess f(x)*.

40/65



Second Order Algorithm: Riemannian Newton Method Il

3 How to Optimize a Function on Manifold?

Recall: the optimal condition of minye o f(X) is

gradf(x*) = Oy € Ty M.

Algorithm 6 Riemannian Newton Method for solving optimization problem minye o f(x)

Take xg € M, and set k = 0.

repeat
Solve a linear system on Ty, M > & : Hess f(x)& = — grad f(x),
Compute xy+1 := Ry, (&);

until || grad f(xx1)|| is efficiently close to zero

e Itis a natural extension of the famous Newton method.
e Well-known convergence: the local superlinear/quadratic convergence also hold.
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4 Summary

» Summary
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Summary: Framework of Riemannian Optimization

4 Summary

Riemannian optimization

Given an objective f: M — R where M is a Riemannian manifold, we want to solve

min f(x).
min f(x)
Algorithm 7 Line Search Framework for solving min,e v f(x). Ty, M
Choose an initial point xy € M, aretraction R, and k + 0; /‘xﬁjd"_\

repeat

Compute a direction di, € Ty M;

Compute a step length t;, > 0;

Compute the next point x.+1 := Ry, (tkdx);
until ||grad f(xx)|| is close to 0

1
Xk+1 = ka (txdx)

43/65



Summary: Unit Sphere Manifold

4 Summary

The set of all unit vectors, i.e., unit sphere,
S"hi={x€R": x|l = 1},
is an embedded submanifold of R™. Its tangent space at any x € S"~! is given by
T,S" ' ={ueR": x"'u=0},
and dim S"! := dim T,S"~ ! = n — 1. Then, the orthogonal projector to the tangent space at x is
Proj, : R" — T,S"" ! : u+ Proj,(u) = (I, —xx") u = u — (x"u)x.
One possible retraction on "1 is

X+v X+v
Re(V)

Cx+vl o TEVE

The Riemannian gradient of a smooth function f: S"~! — R is given as

grad f(x) = Proj, (egrad f(x)) = egrad f(x) — (x” egrad f(x))x.
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Summary: Stiefel Manifold

4 Summary

For integers p < n, the set of all orthonormal matrices, i.e., Stiefel manifold,
St(n,p) = {Xe RV?: X'X=1,},
is an embedded submanifold of R"*P. Its tangent space at any X € St(n, p) is given by
TxSt(n,p) = {Ve R™P : X'V + VIX = 0} = {XQ + X, B : Q € Skew(p), B € RI""P)*P},
and dim St(n, p) := dim Tx St(n,p) = np — @. Then, the orthogonal projector is
Projy : R"™*P — TxSt(n, p) : U+ Projy(U) = U — Xsym(X'U),

_ 747"

where sym(Z) = “5* extracts the symmetric part of a matrix Z.
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Summary: Stiefel Manifold (Cont’d)

4 Summary

Two possible retractions on St(n, p) are
e Retraction based on the polar decomposition of X + V:

Re(V) = (X+ V) (I+ VTv) /2.
This is a projection retraction, namely, Ry(v) = arg min || — (x +v)]|.
e Retraction based on the QR factorization of X + VX:EM
Rx(V) = qf X+ V),

where qf(A) denotes the Q factor of the QR factorization.
The Riemannian gradient of a smooth function f: St(n, p) — R is given as

grad f(X) = Projy(egrad f(X)) = egrad f(X) — Xsym(X” egrad f(X)).
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MR TTEFEW

4 Summary

1. MR G RFAAAIIE, Nicolas Boumal BIEELH “An
introduction to optimization on smooth manifolds (2023)” iIX— 754
MEBT, HERERSJUAIEARTELID. ¥IRFEINFEIER
AT

e 25 3 & Embedded geometry: first order

e 5 4 = First-order optimization algorithms

e % 7 ZE Embedded submanifolds: examples
MEARRSGRE—MEE, ZILEEXBA.

\ |
Figure: Nicolas Boumal, EPFL

2. Manopt 2RIRERREMA LG, 2 H Nicolas Boumal BHIBAFF 4 #). FTAEEEHET
_b_to
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4 Summary

3. Hiroyuki Sato ByZ#}4 “Riemannian Optimization and Its
Applications (2021)" EENARTREBLEHEL. HP, Fo6&E
BET—LEREMLWENERRFRATHRARSE.
Recent Developments in Riemannian Optimization
e Stochastic Optimization
— Riemannian Stochastic Gradient Descent Method

=7
— Riemannian Stochastic Variance Reduced Gradient Method "

e Constrained Optimization on Manifolds ‘?\\
e Other Emerging Methods and Related Topics /\

— Second-Order Methods

— Nonsmooth Riemannian Optimization

— Geodesic and Retraction Convexity

— Multi-objective Optimization on Riemannian Manifolds

Figure: Hiroyuki Sato, Kyoto
University
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Derivative-Free Optimization on Manifolds

4 Summary

There have been some derivative-free optimization techniques specifically for manifolds.

49/65

[Dreo7] extended three popular direct search methods, namely, the Nelder-Mead simplex
algorithm, the Mesh-Adapted Direct Search (MADS) algorithm, and frame-based methods, to
Riemannian manifolds.

[BIA10] proposed to adapt the particle swarm optimization algorithm on Grassmann
manifolds to find the best low multilinear rank approximation for a given tensor.

A Derivative-Free Riemannian Powell’ s Method, Minimizing Hartley-Entropy-Based ICA
Contrast. [CSA15]

Stochastic Derivative-Free Optimization on Riemannian Manifolds. [FT22b]

Learning-to-Learn to Guide Random Search: Derivative-Free Meta Blackbox Optimization on
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Stochastic zeroth-order Riemannian derivative estimation and optimization. [LBM23]
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Thank you for listening!
Any questions?
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Grassmannian Manifold as a Quotient Manifold
5 Appendix

Grassmannian manifold is the set of linear subspaces of dimension p in R",
Gr(n,p) = {span(X) : X € R™? X'X =1, } .
We define an equivalence relation ~ over St(n,p) = {X € R*? : X’X = I, } as below.
X ~Y < span(X) = span(Y) < X = YQ for some Q € O(p),
where O(p) is the orthogonal group. Formally, if L = span(X), we identify L with
X] ={Y e St(n,p) : Y~ X}
This identification establishes a one-to-one correspondence between Gr(n, p) and the quotient set

St(n,p)/ ~={[X] : X € St(n, p)}.
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Optimization over Grassmannian Manifold
5 Appendix

Principal Component Analysis (PCA):
Given k points y1, ..., yx € R", the goal of PCA is to find a linear subspace L € Gr(n, p) which fits
the datayy, ..., yx as well as possible, in the sense that it solves

Minernp) Sory dist (L, y:)?

where dist (L, y) is the Euclidean distance between y and the point in L closest to y.#
General objective function: We may need more general optimization algorithms to address:

minLEGr(n,p) f(L) )

where objective function f : Gr(n, p) — R. Clearly, Euclidean optimization cannot solve these
problems unless we convert the problem into some equivalent Euclidean problem.

4This objective function admits an explicit solution involving the SVD of the data matrix M = [y1, . . ., yk]. However, this
is not the case for other objective functions.
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Riemannian Metric Induces the Distance Space
5 Appendix

The norm of a tangent vector ¢ at any point x on M can be defined as

[1€]lx == V(& E)x

Furthermore, the length L(c) of a curve c : [a, b] — M on M can be defined as

b
1e)i= [ €0 e
a
A natural distance on M, called the Riemannian distance,
dist(x,y) := infL(c)
(4

where the infimum is taken over all curve segments which connect x to y, and thus M becomes a
distance space.
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What is the Manifold? (Strict Definitions)

5 Appendix

A d-dimensional (smooth) manifold is a topological space M satisfying the following three
properties:
(1) M is second-countable and Hausdorff.
(2) M is locally Euclidean of dimension d (i.e., each point of M has a neighborhood U and a
homeomorphism ¢ : U — V from U to an open set Vin R?).

Figure: The pair (U, ) is called a chart.
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What is the Manifold? (Strict Definitions) (Cont’d)

5 Appendix

(3) thereis afamily {(Ux, oa)}\cp With M = UxcaUx
such that for any «, 3 € A with U, N U # 0, the
coordinate transformation

‘PBOQPEI o (Ua NUp) C R? — v (UaNUg) C R?

is of class C*°.

The property (3) makes the consistent smoothness across all charts by
fopst=(fo <p51) o (g o ¢, ') because we say a function f: M — R is smooth at p € M if
there exists a chart (U, ¢) such that fo ¢! is of class C* at ¢(p).
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Section 1.1 Optimization from Euclidean Spaces to Riemannian Manifolds

Table 1.1 Collection of some available manifolds in Manopt.

Name of Manifold

Mathematical Formulation

(Complex) Euclidean Space

Rmxn (men
)

Symmetric Matrices

{X eR™": X = XT}

Skew-Symmetric Matrices

(X eRm: X 4+ XT =0}

Centered Matrices

{X eR™": X1, =0,,} .

Sphere

{X e R™"™: | X||lp =1}

Symmetric Sphere

(X eRY™: | X|p=1,X = XT}

Complex Sphere | {X € C™*" : | X||p = 1}
Oblique Manifold | {X € R™ " : || X, || = = [[X.nllp =1}
Complex Oblique Manifold | {X € C"™ " : [| X, 1[|p =+ = [ X, nllp = 1}
Complex Circle | {z€ C": |z1| =+ = |z,| = 1}

Phase of Real DFT

{Z eC: |Zk‘ =1, 214 mod (k,n) = Z14+ mod (n—k,n)vv'k}

Stiefel Manifold

(X erRP: XTX =1}

Complex Stiefel Manifold

(X eCP: X*X = I}

Generalized Stiefel Manifold

{X e Rm?: XTBX = I} for some B > 0

Grassmann Manifold

{span(X): X e R"? XTX =T}

Complex Grassmann Manifold

{span(X) : X € CP X*X = I}

Generalized Grassmann Manifold

{span(X): X € R"*?, XTBX = I} for some B > 0

Rotation Group

{ReR™": RTR=1,det(R) =1}

Special Euclidean Group

{(R,t) e R™*" x R" : R"R = I,det(R) = 1}

Unitary Matrices

(U eCvn . U*U =1I,,}

Hyperbolic manifold

{x eRVM a2 =2+ + 22 + 1} with Minkowski metric

Fixed-Rank Manifold

{X e R™*™ : rank(X) = k}

Fixed-Rank Tensor, Tucker

Tensors of fixed multilinear rank in Tucker format

Strictly Positive Matrices

{X e Rmxn . X > O,VZ,]}

Symmetric Positive Definite Matrices

{XeRmm: X =XT X -0}

{X eRm": X = XT = 0,rank(X) = k}

(X eR™: X = XT = 0,rank(X) = k, diag(X) = 1}

{X e R : X = XT = 0,rank(X) = k, trace(X) =1}

Multinomial manifold

{X e R™*": X,;; >0,¥i,j and X1,, = 1,,}

(X eR™™: X;; > 0,i,j and X1, = 1,, X1, =1,}

{X eR™™: X;; >0,Vi,j and X1, =1,, X = X7}

Positive Definite Simplex

{(X1,2,...,21) €R™™: X; = 0,Viand X1 + -+ xp = I,}

Complex Positive Definite Simplex

{(X1,27...,l‘k) e Cvxm . X, = 0,Viand X7 + .-+ xp :In}

Sparse Matrices of Fixed Sparsity Pattern

{XGRmX”;Xij:O@Aij:O}

Constant Manifold (singleton)

{4}
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