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(Un)constrained Optimization Problem
Ŵ Introduction

Given an objective f : Rn → R, the general form of a (Euclidean) optimization problem is

min f(x)

s.t. x ∈ S,
(Ŵ)

where x = [x1, x2, . . . , xn]
T ∈ Rn, and feasible region S ⊂ Rn consists of all possible solutions.

Classically, we consider it as
• unconstrained optimization problem if S = Rn;
• constrained optimization problem if S ⊊ Rn, e.g., S = {x ∈ Rn : gi(x) = 0, i = 1, 2, . . . ,m
and hj(x) ≤ 0, j = 1, 2, . . . , l}.
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Line Search Framework for S = Rn

Ŵ Introduction

Algorithm Ŵ Line Search Framework for S = Rn

An initial point x0 ∈ Rn; k← 0;
repeat

Choose a search direction dk ∈ Rn;
Choose a step size tk > 0;
Update new point by xk+1 := xk + tkdk;
Set k→ k+ 1;

until stopping criterion are satisfied;

It should be noted that:
• By using local information of objective f at
xk, we can select
— steepest descent direction: dk = −∇f (xk)
— Newton direction:

dk = −
[
∇2f (xk)

]−1 ∇f (xk)

• For arbitrary dk and tk, the new point xk+1

is always in Rn. (unconstrained!)

Questions
Why cannot the line search framework be used for constrained optimization problems, i.e.,
S ⊊ Rn? Because xk+1 := xk + tkdk may not be feasible.

Ÿ/ŹŸ



New Insight on (Un)constrained Optimization Problem
Ŵ Introduction

Recall the general form of a (Euclidean) optimization problem is

min f(x)

s.t. x ∈ S.
(ŵ)

• S = Rn. Formally, x is still subject to the real (not complex) Euclidean space Rn.
• S ⊊ Rn. Assume that we can generate a sequence {xk} ⊂ S by the formula

xk+1 := UPDATE (xk, dk, tk) , (Ŷ)

where UPDATE : S× D× R+ → S, and D consist of all meaningful search direction.

A new insight
The essential difference between constrained and unconstrained problems is not determined by
the problem itself, but by the algorithm we adopt to solve the problems.
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A Glance at Riemannian Optimization
ŵ A Glance at Riemannian Optimization

Riemannian optimization
Given an objective f :M→ R whereM is a Riemannian manifold, we want to solve

min
x∈M

f(x).

ŷų+ manifoldsM available in the Riemannian optimization solver “Manopt” [BMASŴŷ]:
• Rn,Rm×n (any vector space) are trivial manifolds.
• Sphere manifold, {x ∈ Rn : ‖x‖2 = 1}.
• Stiefel manifold, {X ∈ Rn×p : XTX = Ip}.
• Grassmann manifold, the set of all p-dimensional subspaces of Rn.
• Fixed rank manifold, {X ∈ Rn×m : rank(X) = r}.
• Oblique manifold, {X ∈ Rn×m : ‖X:1‖ = · · · = ‖X:m‖ = 1}.
• Hyperbolic manifold,

{
x ∈ Rn+1 : x20 = x21 + · · ·+ x2n + 1

}
.

• In most cases, the R above can be replaced by C.
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A Glance at Riemannian Optimization
ŵ A Glance at Riemannian Optimization

Riemannian optimization
Given an objective f :M→ R whereM is a Riemannian manifold, we want to solve

min
x∈M

f(x).

Applications of Riemannian optimization [HLWYŵų]:
• p-harmonic flow
• low-rank nearest correlation matrix estimation
• phase retrieval
• Bose-Einstein condensates
• cryoelectron microscopy (cryo-EM)
• linear eigenvalue problem
• nonlinear eigenvalue problem from electronic structure calculations
• combinatorial optimization
• deep learning, etc.
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Application I: Extreme Eigenvalue or Singular Value
ŵ A Glance at Riemannian Optimization

For a matrix A ∈ Sym(n), we have

the smallest eigenvalue of A = min
x∈Sn−1

xTAx. (ŷ)

Similarly, for a matrixM ∈ Rm×n, we have

the largest singular value ofM = max
x∈Sm−1,y∈Sn−1

xTMy. (Ÿ)

• Unit sphere manifold, Sn−1 = {x ∈ Rn : ‖x‖2 = 1} .
• Sm−1 × Sn−1 is a product manifold.
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Application II: Sparse PCA
ŵ A Glance at Riemannian Optimization

Spare PCA wants to find principle eigenvectors with few nonzero elements.

min
x∈St(n,p)

− tr
(
XTATAX

)
+ ρ‖X‖1. (Ź)

where ‖X‖1 =
∑

ij |Xij| and ρ ≥ 0 is a parameter to promote sparsity.

• Stiefel manifold, St(n, p) =
{
X ∈ Rn×p : XTX = Ip

}
.

• Grassmann manifold, Gr(n, p) =
{
span(X) : X ∈ Rn×p, XTX = Ip

}
. (See Appendix for more.)
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Application III: Low-Rank Matrix Completion [VanŴŶ]
ŵ A Glance at Riemannian Optimization

Let Ω denote the set of pairs (i, j) such thatMij is observed. We want to recover a low-rank matrix
M by

minX rank(X)
s.t. Xij = Mij, (i, j) ∈ Ω.

(ź)

If rank(M) = r is known, an alternative model is

min
X∈Fr(m,n,r)

∑
(i,j)∈Ω

(Xij −Mij)
2
. (Ż)

• Fixed rank manifold, Fr(m, n, r) = {X ∈ Rm×n : rank(X) = r}.
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Riemannian Manifold = Manifold + Riemannian Metric
ŵ A Glance at Riemannian Optimization

• A manifoldM is a set that can be locally linearized.Ŵ
— TxM is tangent space at x.
— ξ ∈ TxM is tangent vector at x.

• A Riemannian metric 〈·, ·〉 assigns an inner product 〈·, 〉x : TxM× TxM→ R to each tangent
space of the manifold in a way that varies smoothly from point to point.

ŴExactly, it is a topological space that is locally homeomorphic to some open subset of Euclidean space.
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Euclidean Optimization v.s. Riemannian Optimization
ŵ A Glance at Riemannian Optimization

Algorithm ŵ Line Search Framework for S = Rn

Choose a search direction dk ∈ Rn;
Choose a step size tk > 0;
Update new point by xk+1 := xk + tkdk;

Algorithm Ŷ Line Search Framework for S =M

Choose a search direction dk ∈ TxkM;
Choose a step size tk > 0;
Update new point by xk+1 := Rxk (tkdk);
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Advantages in Comparison to Euclidean Optimization
ŵ A Glance at Riemannian Optimization

Riemannian version of classical methods:
• Riemannian steepest decent [BouŵŶ]
• Riemannian conjugate gradient [Satŵŵ]
• Riemannian trust region [ABGųź]
• Riemannian Newton [BouŵŶ]
• Riemannian BFGS [HGSAŴŹ]
• Riemannian proximal gradient [CMMCSZŵų]
• Riemannian stochastic algorithms [ZJRSŴŹ]
• Riemannian ADMM [KGBŴŹ]
• and more

Almost all algorithms in Euclidean setting can be
extended to Riemannian setting.

Advantages of Riemannian optimization:
Ŵ. All iterates on the manifold.
ŵ. Transform constrained problems into
unconstrained ones.

Ŷ. Use of the geometric structure of the
feasible region.

ŷ. Convergence properties of like optimization
on Euclidean space.
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Citation Report: Riemannian Optimization (Topic)
ŵ A Glance at Riemannian Optimization

Publication Years: Ŵżżų-ŵųŵŷ. Data Set: Web of Science Core Collection

Figure: Times Cited and Publications Over Time
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Riemannian Optimization Libraries
ŵ A Glance at Riemannian Optimization

Survey:
• A Brief Introduction to Manifold Optimization [HLWYŵų]
• A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian
Manifold [FWL+ŵŶ]

• History of Riemannian Optimization
https://www.math.fsu.edu/~whuang2/pdf/NanjingUniversity_2019-10-23.pdf

Monographs of Riemannian Optimization:
• An Introduction to Optimization on Smooth Manifolds [BouŵŶ] (the best textbook for
beginners)
https://www.nicolasboumal.net/book/

• Riemannian Optimization and Its Applications [SatŵŴ]
https://link.springer.com/book/10.1007/978-3-030-62391-3
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Riemannian Optimization Libraries
ŵ A Glance at Riemannian Optimization

• Optimization Algorithms on Matrix Manifolds [AMSųŻ]
https://press.princeton.edu/absil

• Convex Functions and Optimization Methods on Riemannian Manifolds [Udrżŷ]
https://link.springer.com/book/10.1007/978-94-015-8390-9

• Multivariate Data Analysis on Matrix Manifolds [TGŵŴ]
https://link.springer.com/book/10.1007/978-3-030-76974-1

• Population-Based Optimization on Riemannian Manifolds [FTŵŵa]
https://link.springer.com/book/10.1007/978-3-031-04293-5

Libraries of General-purpose Riemannian Optimization Toolboxes:
• Manopt [BMASŴŷ] in Matlab (the most comprehensive toolbox)

https://www.manopt.org/
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Riemannian Optimization Libraries
ŵ A Glance at Riemannian Optimization

• Pymanopt [TKWŴŹ] in Python
https://pymanopt.org/

• ROPTLIB [HAGHŴŻ] in C++
https://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html

• ManifoldOptim [MRHAŵų] in R (a R wrapper of ROPTLIB)
https://cran.r-project.org/web/packages/ManifoldOptim/index.html

• Manopt.jl [Berŵŵ] in Julia
https://manoptjl.org/

Libraries of Riemannian Packages for Various Goals:
• Geoopt [KKKŵų] is a Python library bringing Riemannian optimization tools to PyTorch.

https://geoopt.readthedocs.io/en/latest/index.html
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Riemannian Optimization Libraries
ŵ A Glance at Riemannian Optimization

• McTorch [MJK+ŴŻ] is also a Python library bringing Riemannian optimization tools to PyTorch.
https://github.com/mctorch/mctorch

• TensorFlow RiemOpt [SmiŵŴ] is a library for Riemannian optimization in TensorFlow.
https://github.com/master/tensorflow-riemopt

• Rieoptax [UHJMŵŵ] is a library for Riemannian Optimization in JAX.
https://github.com/SaitejaUtpala/rieoptax

• CDOpt [XHLTŵŵ] is a Python toolbox for optimization on Riemannian manifolds with support
for deep learning.
https://cdopt.github.io/md_files/intro.html

• QGOpt [LRFOŵŴ] is an extension of TensorFlow optimizers on Riemannian manifolds that
often arise in quantum mechanics.
https://qgopt.readthedocs.io/en/latest
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Riemannian Optimization Libraries
ŵ A Glance at Riemannian Optimization

• Geomstats [MGLB+ŵų] is a Python package for computations and statistics on manifolds.
https://geomstats.github.io/
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How to Optimize a Function on Manifold?
Ŷ How to Optimize a Function on Manifold?

Consider the Riemannian optimization problem,

min f(x)

s.t. x ∈M,
(ż)

where f :M→ R.

Goal: To find a local optimal solution x∗ ∈M. (In general,M is nonconvex.)

Method: The iterative methods can still be used. But there are questions that we need to address:
• QŴ: What is the direction of movement? Tangent vector
• Qŵ: How to move on manifolds? Retraction map
• QŶ: What is a good direction to move? Riemannian gradient
• Qŷ: What is the optimal condition? Vector field
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QŴ: What is the Direction of Movement? Tangent Vector
Ŷ How to Optimize a Function on Manifold?

Remark
Here, it is sufficient to consider — embedded submanifoldM of Rn =manifold + subset of Rn.

Imagine a particle moving on a manifoldM with a trajectory γ : I ⊆ R→M that passes through
the point x at time t = 0. Then, the velocity

γ̇(0) := lim
t→0

γ(t)− γ(0)

t
=

d
dt
γ(t)

∣∣∣∣
t=0

is called a tangent vector belonging to x.
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QŴ: What is the Direction of Movement? Tangent Vector
(Cont’d)
Ŷ How to Optimize a Function on Manifold?

The tangent space at x is the set of all possible tangent vectors at that point, i.e.,
TxM := {γ̇(0) : γ : I→M is a smooth curve, γ(0) = x}.

(Ŵ) For any x ∈M, TxM are linear spaces sharing the same dimension.
(ŵ) In general, TxM is determined by x, except for TxRn ∼= Rn.
(Ŷ) For embedded submanifold, TxM is a subspace of Rn, e.g., TxSn−1 =

{
u ∈ Rn : xTu = 0

}
.
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Qŵ: How to Move on Manifolds? Retraction to Create a
Curve
Ŷ How to Optimize a Function on Manifold?

TM = {(x, ξ) : x ∈M and ξ ∈ TxM} is called the tangent bundle.
A retraction is a smooth map

R : TM→M : (x, ξ) 7→ Rx(ξ)

such that for each (x, ξ) ∈ TM, the corresponding curve t 7→ γ(t) := Rx(tξ) has γ̇(0) = ξ.

A retraction R yields a map Rx : TxM→M for any x.
ŵż/ŹŸ



Qŵ: How to Move on Manifolds? Using Retraction to
Create a Curve (Cont’d)
Ŷ How to Optimize a Function on Manifold?

Retractions are not uniquely determined. E.g., on the unit sphere Sn−1,

Rx(ξ) =
x+ ξ

‖x+ ξ‖
, or Rx(ξ) = cos(‖ξ‖)x+ sin(‖ξ‖)

‖ξ‖
ξ.

Given a tangent vector ξ at point x, α 7→ Rx(αξ) defines a curve along this direction.

Euclidean setting Riemannian setting
xk+1 = xk + αkdk xk+1 = Rxk (αkξk)

Table: Two types of update formulas

Ŷų/ŹŸ



QŶ: What is a Good Direction? Riemannian Gradient
Ŷ How to Optimize a Function on Manifold?

Moreover, the real function α 7→ f(Rx(αξ)) evaluates how the objective value changes along the
given direction ξ.

The Riemannian gradient, grad f(x), is the tangent vector at x such that:

grad f(x)
‖ grad f(x)‖

= argmax
ξ∈TxM:∥ξ∥=1

(
lim
α→0

f (Rx(αξ))− f(x)
α

)
.

ŶŴ/ŹŸ



QŶ: What is a Good Direction? Riemannian Gradient
(Cont’d)
Ŷ How to Optimize a Function on Manifold?

Intuitively, grad f(x) should be approximately perpendicular to the contour line of f on the surface.

Also,− grad f(x) is the direction of steepest descent at x.
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QŶ: What is a Good Direction? Riemannian Gradient
(Cont’d)
Ŷ How to Optimize a Function on Manifold?

For embedded submanifoldM, Riemannian gradient of f :M→ R is the orthogonal projection
onto TXM of the Euclidean gradient:

grad f(x) = Projx(∇f(x)).

Example
For f(x) = 1

2
xTAx ,∇f(x) = Ax. On sphere

Sn−1, we have

Projx(u) = (In − xxT)u.

It follows that
grad f(x) = Projx(∇f(x)) = (In − xxT)Ax.

Tangential
component Normal component

ŶŶ/ŹŸ



Qŷ: What is the Optimal Condition? Singularity of
Gradient Vector Field
Ŷ How to Optimize a Function on Manifold?

A vector field onM is a map V :M→ TM such that V(x) ∈ TxM for all x ∈M.

Figure: LetM = R2. Gradient of the ŵD function f(x, y) = xe−(x2+y2). Source: Wikipedia.Ŷŷ/ŹŸ

https://en.wikipedia.org/wiki/Gradient


Qŷ: What is the Optimal Condition? Singularity of
Gradient Vector Field
Ŷ How to Optimize a Function on Manifold?

A vector field onM is a map V :M→ TM such that V(x) ∈ TxM for all x ∈M.

Figure: A vector field on a sphere S2. Source: Wikipedia.
Ŷŷ/ŹŸ
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Qŷ: What is the Optimal Condition? Singularity of
Gradient Vector Field (Cont’d)
Ŷ How to Optimize a Function on Manifold?

Riemannian gradient, x 7→ grad f(x), is a special vector field generated by a scalar field f.
If x∗ is a local minimizer/maximizer, then grad f (x∗) = 0x∗

Figure: Contours of f(x) = −x1 + 2x2 + x3 on S2.
Figure: Gradient field of f(x) = −x1 + 2x2 + x3 on S2.ŶŸ/ŹŸ



Summary
Ŷ How to Optimize a Function on Manifold?

Algorithm ŷ Line Search Framework for solvingminx∈M f(x).

Choose an initial point x0 ∈M, a retraction R, and k← 0;
repeat

Compute a direction dk ∈ TxkM, e.g., dk = − grad f(x);
Compute a step length tk > 0, e.g., Armijo condition;
Compute the next point xk+1 := Rxk (tkdk); ▷ update formula on manifold

until ‖grad f (xk)‖ is close to 0

ŶŹ/ŹŸ
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Second Order Geometry: Covariant Derivative
Ŷ How to Optimize a Function on Manifold?

The covariant derivative of a vector field F onM is⇝
Riemannian connection

general vector field

Example
IfM = Rn, for a vector field F : Rn → Rn, at x ∈ Rn,

∇F(x) : TxRn ≡ Rn → TxRn ≡ Rn, u 7→ J(x)u,

where J(x) is the n× n Jacobian matrix of F at x.
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Second Order Algorithm: Riemannian Newton Method I
Ŷ How to Optimize a Function on Manifold?

The covariant derivative of a vector field F onM is⇝
Riemannian connection

general vector field

Algorithm Ÿ Riemannian Newton Method
Goal: To find singularity x∗ ∈M such that F(x∗) = 0x∗ ∈ Tx∗M.
Take x0 ∈M, and set k = 0.
repeat

Solve a linear system on TxkM3 vk :∇F(xk)vk = −F(xk),
Compute xk+1 := Rxk(vk);

until ‖F(xk+1)‖ is efficiently close to zero

• It is a natural extension of the famous Newton method.
• Well-known convergence: the local superlinear/quadratic convergence also hold.
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Second Order Geometry: Riemannian Hessian
Ŷ How to Optimize a Function on Manifold?

Specially, Hess f(x) ≜ ∇ grad f(x) is called Riemannian Hessian of f :M→ R when F = grad f.

(Proposition.) For any embedded submanifoldM, Hess f(x)[u] = Projx(D grad f(x)[u]).

Example
For f(x) = 1

2x
TAx on Sn−1, we have grad f(x) = (In − xxT)Ax. Its differentiala is

D grad f(x)[u] = Au− (uTAx+ xTAu)x− (xTAx)u;

project to the tangent space at x to reveal Hess f(x)[u] = Au− (xTAu)x− (xTAx)u.

aLet h : E → E ′, the differential of h at x is Dh(x) : E → E ′, Dh(x)[u] = limt→0
h(x+tu)−h(x)

t .

• Hess f(x) is defined only on TxSn−1 (not on all of Rn).
• Hess f(x) is self-adjoint (i.e., symmetric) because Hess f(x) = Hess f(x)∗.
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Second Order Algorithm: Riemannian Newton Method II
Ŷ How to Optimize a Function on Manifold?

Recall: the optimal condition ofminx∈M f(x) is

grad f (x∗) = 0x∗ ∈ Tx∗M.

Algorithm Ź Riemannian Newton Method for solving optimization problemminx∈M f(x)
Take x0 ∈M, and set k = 0.
repeat

Solve a linear system on TxkM3 ξk : Hess f(x)ξk = − grad f(x),
Compute xk+1 := Rxk(ξk);

until ‖ grad f(xk+1)‖ is efficiently close to zero

• It is a natural extension of the famous Newton method.
• Well-known convergence: the local superlinear/quadratic convergence also hold.
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Summary: Framework of Riemannian Optimization
ŷ Summary

Riemannian optimization
Given an objective f :M→ R whereM is a Riemannian manifold, we want to solve

min
x∈M

f(x).

Algorithm ź Line Search Framework for solvingminx∈M f(x).

Choose an initial point x0 ∈M, a retraction R, and k← 0;
repeat

Compute a direction dk ∈ TxkM;
Compute a step length tk > 0;
Compute the next point xk+1 := Rxk (tkdk);

until ‖grad f (xk)‖ is close to 0
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Summary: Unit Sphere Manifold
ŷ Summary

The set of all unit vectors, i.e., unit sphere,

Sn−1 := {x ∈ Rn : ‖x‖2 = 1} ,
is an embedded submanifold of Rn. Its tangent space at any x ∈ Sn−1 is given by

TxSn−1 =
{
u ∈ Rn : xTu = 0

}
,

and dim Sn−1 := dimTxSn−1 = n− 1. Then, the orthogonal projector to the tangent space at x is

Projx : R
n → TxSn−1 : u 7→ Projx(u) =

(
In − xxT

)
u = u− (xTu)x.

One possible retraction on Sn−1 is

Rx(v) =
x+ v
‖x+ v‖

=
x+ v√
1 + ‖v‖2

.

The Riemannian gradient of a smooth function f : Sn−1 → R is given as

grad f(x) = Projx(egrad f(x)) = egrad f(x)− (xT egrad f(x))x.
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Summary: Stiefel Manifold
ŷ Summary

For integers p ≤ n, the set of all orthonormal matrices, i.e., Stiefel manifold,

St(n, p) =
{
X ∈ Rn×p : XTX = Ip

}
,

is an embedded submanifold of Rn×p. Its tangent space at any X ∈ St(n, p) is given by

TX St(n, p) =
{
V ∈ Rn×p : XTV+ VTX = O

}
= {XΩ+ X⊥B : Ω ∈ Skew(p),B ∈ R(n−p)×p},

and dimSt(n, p) := dimTX St(n, p) = np− p(p+1)
2 . Then, the orthogonal projector is

ProjX : R
n×p → TX St(n, p) : U 7→ ProjX(U) = U− X sym(XTU),

where sym(Z) = Z+ZT

2 extracts the symmetric part of a matrix Z.
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Summary: Stiefel Manifold (Cont’d)
ŷ Summary

Two possible retractions on St(n, p) are
• Retraction based on the polar decomposition of X+ V:

RX(V) = (X+ V)
(
I+ VTV

)−1/2
.

This is a projection retraction, namely, Rx(v) = argmin
x′∈M

‖x′ − (x+ v)‖ .

• Retraction based on the QR factorization of X+ V:

RX(V) = qf(X+ V),

where qf(A) denotes the Q factor of the QR factorization.
The Riemannian gradient of a smooth function f : St(n, p)→ R is given as

grad f(X) = ProjX(egrad f(X)) = egrad f(X)− X sym(XT egrad f(X)).
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流形优化入门自学建议
ŷ Summary

Ŵ. 想系统地学习流形优化的话，Nicolas Boumal的教科书 “An
introduction to optimization on smooth manifolds (ŵųŵŶ)”这一本书
就足够了，并且不需微分几何作为前置知识。初次学习的阅读建
议如下：
• 第 Ŷ章 Embedded geometry: first order
• 第 ŷ章 First-order optimization algorithms
• 第 ź章 Embedded submanifolds: examples

如果研究只涉及一阶算法，这几章基本够用。
Figure: Nicolas Boumal, EPFL

ŵ. Manopt是最标准的流形优化软件，也是由 Nicolas Boumal的团队开发的。可以配套地玩
一玩。
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流形优化入门自学建议
ŷ Summary

Ŷ. Hiroyuki Sato的教科书 “Riemannian Optimization and Its
Applications (ŵųŵŴ)”着重介绍了黎曼共轭梯度法。其中，第 Ź章
总结了一些流形优化的前沿研究方向可供大家参考。
Recent Developments in Riemannian Optimization
• Stochastic Optimization

— Riemannian Stochastic Gradient Descent Method
— Riemannian Stochastic Variance Reduced Gradient Method

• Constrained Optimization on Manifolds
• Other Emerging Methods and Related Topics

— Second-Order Methods
— Nonsmooth Riemannian Optimization
— Geodesic and Retraction Convexity
— Multi-objective Optimization on Riemannian Manifolds

Figure: Hiroyuki Sato, Kyoto
University
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Derivative-Free Optimization on Manifolds
ŷ Summary

There have been some derivative-free optimization techniques specifically for manifolds.
• [Dreųź] extended three popular direct search methods, namely, the Nelder-Mead simplex
algorithm, the Mesh-Adapted Direct Search (MADS) algorithm, and frame-based methods, to
Riemannian manifolds.

• [BIAŴų] proposed to adapt the particle swarm optimization algorithm on Grassmann
manifolds to find the best low multilinear rank approximation for a given tensor.

• A Derivative-Free Riemannian Powell’s Method, Minimizing Hartley-Entropy-Based ICA
Contrast. [CSAŴŸ]

• Stochastic Derivative-Free Optimization on Riemannian Manifolds. [FTŵŵb]
• Learning-to-Learn to Guide Random Search: Derivative-Free Meta Blackbox Optimization on
Manifold. [STD+ŵŶ]

• Stochastic zeroth-order Riemannian derivative estimation and optimization. [LBMŵŶ]
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A Tutorial on Riemannian Optimization
Thank you for listening!

Any questions?
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Grassmannian Manifold as a Quotient Manifold
Ÿ Appendix

Grassmannian manifold is the set of linear subspaces of dimension p in Rn,

Gr(n, p) =
{
span(X) : X ∈ Rn×p, XTX = Ip

}
.

We define an equivalence relation∼ over St(n, p) =
{
X ∈ Rn×p : XTX = Ip

}
as below.

X ∼ Y⇔ span(X) = span(Y)⇔ X = YQ for some Q ∈ O(p),

where O(p) is the orthogonal group. Formally, if L = span(X), we identify L with

[X] = {Y ∈ St(n, p) : Y ∼ X}

This identification establishes a one-to-one correspondence between Gr(n, p) and the quotient set

St(n, p)/ ∼= {[X] : X ∈ St(n, p)}.
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Optimization over Grassmannian Manifold
Ÿ Appendix

Principal Component Analysis (PCA):
Given k points y1, . . . , yk ∈ Rn, the goal of PCA is to find a linear subspace L ∈ Gr(n, p) which fits
the data y1, . . . , yk as well as possible, in the sense that it solves

minL∈Gr(n,p)
∑k

i=1 dist (L, yi)
2
,

where dist (L, y) is the Euclidean distance between y and the point in L closest to y.ŷ
General objective function: We may need more general optimization algorithms to address:

minL∈Gr(n,p) f(L),

where objective function f : Gr(n, p)→ R. Clearly, Euclidean optimization cannot solve these
problems unless we convert the problem into some equivalent Euclidean problem.

ŷThis objective function admits an explicit solution involving the SVD of the data matrixM = [y1, . . . , yk]. However, this
is not the case for other objective functions.
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Riemannian Metric Induces the Distance Space
Ÿ Appendix

The norm of a tangent vector ξ at any point x onM can be defined as

‖ξ‖x :=
√
〈ξ, ξ〉x

Furthermore, the length L(c) of a curve c : [a, b]→M onM can be defined as

L(c) :=
∫ b

a
‖c′(t)‖c(t) dt.

A natural distance onM, called the Riemannian distance,

dist(x, y) := inf
c
L(c)

where the infimum is taken over all curve segments which connect x to y, and thusM becomes a
distance space.
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What is the Manifold? (Strict Definitions)
Ÿ Appendix

A d-dimensional (smooth) manifold is a topological spaceM satisfying the following three
properties:
(Ŵ) M is second-countable and Hausdorff.
(ŵ) M is locally Euclidean of dimension d (i.e., each point ofM has a neighborhood U and a

homeomorphism φ : U→ V from U to an open set V in Rd ).
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Preliminaries
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Proposal - II

Conclusions
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17

What is the Manifold? (Strict definitions) 

A 𝒅-dimensional (smooth) manifold is a topological space ℳ satisfying the following three properties:

𝜑𝛽𝜑𝛼

𝑈𝛽
𝑈𝛼

𝜑𝛽 ∘ 𝜑𝛼
−1

ℝ𝑑 ℝ𝑑

3. there is a family 𝑈𝜆, 𝜑𝜆 𝜆∈𝛬 with ℳ = 𝜆∈𝛬ڂ 𝑈𝜆

such that for any 𝛼, 𝛽 ∈ 𝛬 with 𝑈𝛼 ∩ 𝑈𝛽 ≠ ∅, the 

coordinate transformation 
𝜑𝛽 ∘ 𝜑𝛼

−1: 𝜑𝛼 𝑈𝛼 ∩ 𝑈𝛽 ⊆ ℝ𝑑 → 𝜑𝛽 𝑈𝛼 ∩ 𝑈𝛽 ⊆ ℝ𝑑

is of class 𝐶∞.

Make the consistent smoothness 

across all charts.

𝑓 ∘ 𝜑𝛼
−1 = 𝑓 ∘ 𝜑𝛽

−1 ∘ 𝜑𝛽 ∘ 𝜑𝛼
−1 .

A function 𝑓: ℳ → ℝ is smooth at 𝑝 ∈ ℳ if there exists 

a chart (𝑈, 𝜑) such that 𝑓 ∘ 𝜑−1 is of class 𝐶∞ at 𝜑(𝑝).

Make sense.

Source: (Lee, 2012) Fig. 1.2 and Fig. 1.6.

1. ℳ is second-countable and Hausdorff. 

2. ℳ is locally Euclidean of dimension 𝑑 (i.e., each point 

of ℳ has a neighborhood 𝑈 and a homeomorphism 

𝜑: 𝑈 → 𝑉 from 𝑈 to an open set 𝑉 in ℝ𝑑).

The pair (𝑈, 𝜑) is called a chart.

𝑈

𝑉

ℝ𝑑

Figure: The pair (U, φ) is called a chart.
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What is the Manifold? (Strict Definitions) (Cont’d)
Ÿ Appendix

(Ŷ) there is a family {(Uλ, φλ)}λ∈Λ withM = Uλ∈ΛUλ

such that for any α, β ∈ Λ with Uα ∩ Uβ 6= ∅, the
coordinate transformation

φβ◦φ−1
α : φα (Uα ∩ Uβ) ⊆ Rd → φβ (Uα ∩ Uβ) ⊆ Rd

is of class C∞.
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1. ℳ is second-countable and Hausdorff. 

2. ℳ is locally Euclidean of dimension 𝑑 (i.e., each point 

of ℳ has a neighborhood 𝑈 and a homeomorphism 

𝜑: 𝑈 → 𝑉 from 𝑈 to an open set 𝑉 in ℝ𝑑).

The pair (𝑈, 𝜑) is called a chart.

𝑈

𝑉

ℝ𝑑

The property (Ŷ) makes the consistent smoothness across all charts by
f ◦ φ−1

α = (f ◦ φ−1
β ) ◦ (φβ ◦ φ−1

α ) because we say a function f :M→ R is smooth at p ∈M if
there exists a chart (U, φ) such that f ◦ φ−1 is of class C∞ at φ(p).
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Section 1.1 Optimization from Euclidean Spaces to Riemannian Manifolds 9

Table 1.1 Collection of some available manifolds in Manopt.

Name of Manifold Mathematical Formulation

(Complex) Euclidean Space Rm×n,Cm×n

Symmetric Matrices
{
X ∈ Rn×n : X = XT

}
Skew-Symmetric Matrices

{
X ∈ Rn×n : X +XT = 0

}
Centered Matrices {X ∈ Rm×n : X1n = 0m}

Sphere {X ∈ Rm×n : ∥X∥F = 1}

Symmetric Sphere
{
X ∈ Rn×n : ∥X∥F = 1, X = XT

}
Complex Sphere {X ∈ Cm×n : ∥X∥F = 1}

Oblique Manifold
{
X ∈ Rm×n : ∥X:,1∥F = · · · = ∥X:,n∥F = 1

}
Complex Oblique Manifold

{
X ∈ Cm×n : ∥X:,1∥F = · · · = ∥X:,n∥F = 1

}
Complex Circle {z ∈ Cn : |z1| = · · · = |zn| = 1}

Phase of Real DFT
{
z ∈ Cn : |zk| = 1, z1+ mod (k,n) = z̄1+ mod (n−k,n),∀k

}
Stiefel Manifold

{
X ∈ Rn×p : XTX = I

}
Complex Stiefel Manifold {X ∈ Cn×p : X∗X = I}

Generalized Stiefel Manifold
{
X ∈ Rn×p : XTBX = I

}
for some B ≻ 0

Grassmann Manifold
{
span(X) : X ∈ Rn×p, XTX = I

}
Complex Grassmann Manifold {span(X) : X ∈ Cn×p, X∗X = I}

Generalized Grassmann Manifold
{
span(X) : X ∈ Rn×p, XTBX = I

}
for some B ≻ 0

Rotation Group
{
R ∈ Rn×n : RTR = I, det(R) = 1

}
Special Euclidean Group

{
(R, t) ∈ Rn×n × Rn : RTR = I, det(R) = 1

}
Unitary Matrices {U ∈ Cn×n : U∗U = In}

Hyperbolic manifold
{
x ∈ Rn+1 : x20 = x21 + · · ·+ x2n + 1

}
with Minkowski metric

Fixed-Rank Manifold {X ∈ Rm×n : rank(X) = k}

Fixed-Rank Tensor, Tucker Tensors of fixed multilinear rank in Tucker format

Strictly Positive Matrices {X ∈ Rm×n : Xij > 0,∀i, j}

Symmetric Positive Definite Matrices
{
X ∈ Rn×n : X = XT , X ≻ 0

}
-
{
X ∈ Rn×n : X = XT ≽ 0, rank(X) = k

}
-
{
X ∈ Rn×n : X = XT ≽ 0, rank(X) = k, diag(X) = 1

}
-
{
X ∈ Rn×n : X = XT ≽ 0, rank(X) = k, trace(X) = 1

}
Multinomial manifold {X ∈ Rm×n : Xij > 0,∀i, j and X1n = 1m}

- {X ∈ Rn×n : Xij > 0,∀i, j and X1n = 1n, X
T1n = 1n

}
- {X ∈ Rn×n : Xij > 0,∀i, j and X1n = 1n, X = XT

}
Positive Definite Simplex {(X1, 2, . . . , xk) ∈ Rn×n : Xi ≻ 0,∀i and X1 + · · ·+ xk = In}

Complex Positive Definite Simplex {(X1, 2, . . . , xk) ∈ Cn×n : Xi ≻ 0,∀i and X1 + · · ·+ xk = In}

Sparse Matrices of Fixed Sparsity Pattern {X ∈ Rm×n : Xij = 0 ⇔ Aij = 0}

Constant Manifold (singleton) {A}
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