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(Un)constrained Optimization Problem

1 A Tutorial on Riemannian Optimization

Given an objective f: R" — R, the general form of a (Euclidean) optimization problem is
min f(x)
st.xes,

where x = [x1, X2, . .. ,xn]T € R", and feasible region § C R" consists of all possible solutions.

Classically, we consider it as
e unconstrained optimization problem if § = R";
e constrained optimization problemif § C R", e.g., S ={x e R" : gi(x) =0,i=1,2,...,m
and hj(x) <0,j=1,2,...,1}
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Line Search Framework for § = R"

1 A Tutorial on Riemannian Optimization

Algorithm 1 Line Search Framework for § = R" It should be noted that:
An initial point xo € R™; k < 0; e By using local information of objective f at
repeat Xk, we can select
Choose a search direction dj, € R"; — steepest descent direction: dx = —Vf (xk)

Choose a step size t;, > 0; — Newton dirSCﬁom .

Update new point by x| := xx + tdx; de = — [V2f(x)] " Vf (x)

Setk — k+1; e For arbitrary dy and ty, the new point x4 1
until stopping criterion are satisfied; is always in R". (unconstrained!)

Questions

Why cannot the line search framework be used for constrained optimization problems, i.e.,
S C R"? Because xy41 := Xk + trdix may not be feasible.
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New Insight on (Un)constrained Optimization Problem

1 A Tutorial on Riemannian Optimization

Recall the general form of a (Euclidean) optimization problem is
min f(x)

st.xes.

e § = IR™. Formally, x is still subject to the real (not complex) Euclidean space R".
e § C R™ Assume that we can generate a sequence {xx} C S by the formula

Xk+1 := UPDATE (Xk7 dy, tk) s (3)

where UPDATE: S x D, x Rt — S, and Dy consists of all meaningful search direction.

A new insight

The essential difference between constrained and unconstrained problems is not determined by
the problem itself, but by the algorithms we adopt to solve the problems.
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A Glance at Riemannian Optimization

1 A Tutorial on Riemannian Optimization

Riemannian optimization

Given an objective f: M — R where M is a Riemannian manifold, we want to solve

min f(x).

xXeM

40+ manifolds M available in the Riemannian optimization solver “Manopt” [BMAS14]:
e R" R™*" (any vector space) are trivial manifolds.

Sphere manifold, {x € R" : ||x|» = 1}.

Stiefel manifold, {X € R"™? : X'X = I, }.

Grassmann manifold, the set of all p-dimensional subspaces of R".

Fixed rank manifold, {X € R™*™ : rank(X) = r}.

Oblique manifold, {X € R™™ : || X;1|| = - - - = || Xi|| = 1}.

Hyperbolic manifold, {x € R™" : x2 =x} +--- +x2 + 1}.

In most cases, the R above can be replaced by C.
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A Glance at Riemannian Optimization

1 A Tutorial on Riemannian Optimization

Riemannian optimization

Given an objective f: M — R where M is a Riemannian manifold, we want to solve

min f(x).

Applications of Riemannian optimization [HLWY20]:

e p-harmonic flow
low-rank nearest correlation matrix estimation
phase retrieval
Bose-Einstein condensates
cryoelectron microscopy (cryo-EM)
linear eigenvalue problem
nonlinear eigenvalue problem from electronic structure calculations
combinatorial optimization
deep learning, etc.
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Application I: Extreme Eigenvalue or Singular Value

1 A Tutorial on Riemannian Optimization

e Unit sphere manifold, S*™™! = {x € R" : ||x|| = 1}.
e S™1 x S" ! is a product manifold.

For a matrix A € Sym(n), we have

the smallest eigenvalue of A = min x'Ax.
xesn—1

Similarly, for a matrix M € R™*" we have

the largest singular value of M = max xTMy.
xeSm—1 yesn—1
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Application II: Sparse PCA

1 A Tutorial on Riemannian Optimization

e Stiefel manifold, St(n, p) = {X € R™P : XX = I, }.
e Grassmann manifold, Gr(n, p) = {span(X) : X € R**? X'X =1, }.

Spare PCA wants to find principle eigenvectors with few nonzero elements.

min — tr (X"ATAX) + p||X[|:. (6)
xeSt(n,p)

where [[X[[1 = 3_; [Xy| and p > 0 is a parameter to promote sparsity.
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Application lll: Low-Rank Matrix Completion

1 A Tutorial on Riemannian Optimization

e Fixed rank manifold, Fr(m,n,r) = {X € R™*" : rank(X) = r}.

Let Q2 denote the set of pairs (i,j) such that Mj; is observed. We want to recover a low-rank matrix
M by

miny rank(X) =)

If rank(M) = ris known, an alternative model is

. 2
e 22, MM ©
(ij)eQ

12/77



Riemannian Manifold = Manifold + Riemannian Metric

1 A Tutorial on Riemannian Optimization

e A manifold M is a set that can be locally linearized.’

— TyM is tangent space at x.
— & € TyM is tangent vector at x.
e A Riemannian metric (-, -) assigns an inner product (-, ), : Ty M x TyM — R to each tangent

space of the manifold in a way that varies smoothly from point to point.

TXM X 3

TExactly, it is a topological space that is locally homeomorphic to some open subset of Euclidean space.
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Riemannian Manifold = Manifold + Riemannian Metric

1 A Tutorial on Riemannian Optimization

e A manifold M is a set that can be locally linearized.?
— TyM is tangent space at x.
— & € Ty M is tangent vector at x.
e A Riemannian metric (-, -) assigns an inner product (-, ), : Ty M x TyM — R to each tangent
space of the manifold in a way that varies smoothly from point to point.

Ry

T.M
) X §/<‘Sr_rl>x\

2Exactly, it is a topological space that is locally homeomorphic to some open subset of Euclidean space.
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Euclidean Optimization v.s. Riemannian Optimization

1 A Tutorial on Riemannian Optimization

Algorithm 2 Line Search Framework for § = R" Algorithm 3 Line Search Framework for § = M
Choose a search direction d;, € R"; Choose a search direction dy, € Ty, M;
Choose a step size ty > 0; Choose a step size t; > 0;

Update new point by x1 := xx + txdy; Update new point by x11 := Ry, (txdk);
T, M

Xka1 = X + bdy

1y
Xk+1 = ka(tkdk)
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Riemannian version of classical methods:

Riemannian steepest decent
Riemannian conjugate gradient
Riemannian trust region
Riemannian Newton

Riemannian BFGS

Riemannian proximal gradient
Riemannian stochastic algorithms
Riemannian ADMM

and more

Almost all algorithms in Euclidean setting can be
extended to Riemannian setting.
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Advantages in Comparison to Euclidean Optimization
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Advantages of Riemannian optimization:

1.
2.

All iterates on the manifold.

Transform constrained problems into
unconstrained ones.

. Use of the geometric structure of the

feasible region.

. Convergence properties of like optimization

on Euclidean space.

T, M

.
X1 = Ry, (edy)
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Riemannian Optimization Libraries

1 A Tutorial on Riemannian Optimization

Survey:

e A Brief Introduction to Manifold Optimization [HLWY20]

e A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian
Manifold [FWLT 23]

e History of Riemannian Optimization
https://www.math.fsu.edu/~whuang2/pdf/NanjingUniversity_2019-10-23.pdf

Monographs of Riemannian Optimization:

e An Introduction to Optimization on Smooth Manifolds [Bou23] (the best textbook for
beginners)
https://www.nicolasboumal.net/book/

e Riemannian Optimization and Its Applications [Sat21]
https://link.springer.com/book/10.1007/978-3-030-62391-3
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Riemannian Optimization Libraries

1 A Tutorial on Riemannian Optimization

e Optimization Algorithms on Matrix Manifolds [AMS08]
https://press.princeton.edu/absil

e Convex Functions and Optimization Methods on Riemannian Manifolds [Udr94]
https://link.springer.com/book/10.1007/978-94-015-8390-9

e Multivariate Data Analysis on Matrix Manifolds [TG21]
https://link.springer.com/book/10.1007/978-3-030-76974-1

e Population-Based Optimization on Riemannian Manifolds [FT22]
https://link.springer.com/book/10.1007/978-3-031-04293-5

Libraries of General-purpose Riemannian Optimization Toolboxes:

e Manopt [BMAS14] in Matlab (the most comprehensive toolbox)
https://www.manopt.org/
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Riemannian Optimization Libraries

1 A Tutorial on Riemannian Optimization

e Pymanopt [TKW16] in Python
https://pymanopt.org/

e ROPTLIB [HAGH18] in C++
https://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html

e ManifoldOptim [MRHA20] in R (a R wrapper of ROPTLIB)
https://cran.r-project.org/web/packages/ManifoldOptim/index.html

e Manopt.jl [Ber22] in Julia
https://manoptjl.org/
Libraries of Riemannian Packages for Various Goals:

e Geoopt [KKK20] is a Python library bringing Riemannian optimization tools to PyTorch.
https://geoopt.readthedocs.io/en/latest/index.html
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Riemannian Optimization Libraries

1 A Tutorial on Riemannian Optimization

McTorch [MJKT 18] is also a Python library bringing Riemannian optimization tools to PyTorch.
https://github.com/mctorch/mctorch

TensorFlow RiemOpt [Smi21] is a library for Riemannian optimization in TensorFlow.
https://github.com/master/tensorflow-riemopt

Rieoptax [UHJM22] is a library for Riemannian Optimization in JAX.
https://github.com/SaitejaUtpala/rieoptax

CDOpt [XHLT22] is a Python toolbox for optimization on Riemannian manifolds with support
for deep learning.
https://cdopt.github.io/md_files/intro.html

QGOpt [LRFO21] is an extension of TensorFlow optimizers on Riemannian manifolds that
often arise in quantum mechanics.
https://qgopt.readthedocs.io/en/latest
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How to Optimize a Function on Manifold?

1 A Tutorial on Riemannian Optimization

Consider the Riemannian optimization problem,

min f(x)
st.xe M, (©)

wheref: M — R.
Goal: To find a local optimal solution x* € M. (In general, M is nonconvex.)

Method: The iterative methods can still be used. But there are questions that we need to address:
e Q1: What is the direction of movement? Tangent vector

Q2: How to move on manifolds? Retraction map

Q3: What is a good direction to move? Riemannian gradient
Q4: What is the optimal condition? Vector field

23/77



Q1: What is the Direction of Movement? Tangent Vector

1 A Tutorial on Riemannian Optimization

Here, it is sufficient to consider — embedded submanifold M of R" = manifold + subset of R".

Imagine a particle moving on a manifold M with a trajectory v : I C R — M that passes through
the point x at time t = 0. Then, the velocity
v(t) —y(0) d

3(0) += lim BT = 20

is called a tangent vector belonging to x.
.M

=
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Q1: What is the Direction of Movement? Tangent Vector
(Cont’d)

1 A Tutorial on Riemannian Optimization

The tangent space at x is the set of all possible tangent vectors at that point, i.e.,
T M := {%(0) : v : I — M is a smooth curve, v(0) = x}.
T.M

=

(1) For any x € M, T, M are linear spaces sharing the same dimension.
(2) In general, T, M is determined by x, except for T,R" = R".
(3) For embedded submanifold, TyM is a subspace of R", e.g., T,S* ! = {u eR": xTu = 0}.
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Q2: How to Move on Manifolds? Retraction to Create a
Curve

1 A Tutorial on Riemannian Optimization

TM = {(x,§) :x € M and £ € TyM} is called the tangent bundle.
A retraction is a smooth map

R:TM — M : (x,€) — Ry(§)
such that for each (x,£) € TM, the corresponding curve t — ~(t) := Ry(t§) has 4(0) = &.

4

>

x+&

. RX _
© llx + &Il

A retraction R yields a map Ry : TyM — M for any x.
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Q2: How to Move on Manifolds? Using Retraction to
Create a Curve (Cont’d)

1 A Tutorial on Riemannian Optimization

Retractions are not uniquely determined. E.g., on the unit sphere S*~1,

xee sin((¢])
o+ €l ]

Given a tangent vector ¢ at point x, « — Ry(af) defines a curve along this direction.

R(£)

or  Ry(€) = cos(|[§]])x +

.

Euclidean setting | Riemannian setting

Xip1 = Xk + ady | Xkp1 = Ry, (o)

/ Table: Two types of update formulas
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Q3: What is a Good Direction? Riemannian Gradient

1 A Tutorial on Riemannian Optimization

Moreover, the real function o — f(Ry(a:€)) evaluates how the objective value changes along the
given direction &.

x
R4 <& A

a o R (af) /f”ﬂ*

The Riemannian gradient, grad f(x), is the tangent vector at x such that:

gradf(y) (hm f(Re(ag) —f(X)) |

= arg max
ngadf( I ceT M:||¢]|=1 \@—0 o
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Q3: What is a Good Direction? Riemannian Gradient
(Cont’d)

1 A Tutorial on Riemannian Optimization

Intuitively, grad f(x) should be approximately perpendicular to the contour line of f on the surface.

[ ialgad o

I
I

/
| AT
L.

Also, — grad f(x) is the direction of steepest descent at x.
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Q3: What is a Good Direction? Riemannian Gradient
(Cont’d)

1 A Tutorial on Riemannian Optimization

For embedded submanifold M, Riemannian gradient of f: M — R is the orthogonal projection
onto Tx M of the Euclidean gradient:

grad f(x) = Proj, (VA(x)).

f:$'CR?-5R Projx(+) R?

1 _
For f(x) —_?XTAX , Vf(x) = Ax. On grad () X
sphere S"~*, we have )

Tangehtial

. _ sl
PrO]x(U) _ (Iﬂ X )u' component

Normal component
It follows that grad f(x) =

T,$!
Proj, (Vf(x)) = (I, — xxT)Ax.

51
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Q4: What is the Optimal Condition? Singularity of
Gradient Vector Field

1 A Tutorial on Riemannian Optimization

A vector field on M isamap V: M — TM such that V(x) € T, M forall x € M.

2.0 1.0
15

0.8
1.0
0.5 0.6
0.0

RN

0.5 0.4
-1.0

0.2
-1.5
-2.0 0.0

-20 -15 . . . 0.5 1.0 15 2.0

sy, Figure: Let M = R, Gradient of the 2D function f(x, y) = xe~ ® ). source: Wikipedia.


https://en.wikipedia.org/wiki/Gradient

Q4: What is the Optimal Condition? Singularity of
Gradient Vector Field

1 A Tutorial on Riemannian Optimization

A vector field on M isamap V: M — TM such that V(x) € T, M forall x € M.

Figure: A vector field on a sphere S2. Source: Wikipedia.
31/77


https://en.wikipedia.org/wiki/Vector_field

Q4: What is the Optimal Condition? Singularity of
Gradient Vector Field (Cont’d)

1 A Tutorial on Riemannian Optimization

Riemannian gradient, x — grad f(x), is a special vector field generated by a scalar field f.
If x* is a local minimizer/maximizer, then grad f (x*) = Oy~

= —x1 + 2x2 + x3 on S%.

Figure: Contours of f(x)
a2/77 Figure: Gradient field of f(x) = —x; + 2xa + x3 on S?.



Summary: Framework of Riemannian Optimization

1 A Tutorial on Riemannian Optimization

Riemannian optimization

Given an objective f: M — R where M is a Riemannian manifold, we want to solve

min f(x).

Algorithm 4 Line Search Framework for solving minye o f(x).

Choose an initial point x, € M, a retraction R, and k <+ 0; e\,
repeat M S
Compute a direction dy, € Ty, M, e.g., dx = — grad f(x);
Compute a step length t;, > 0, e.g., Armijo condition;
Compute the next point i1 := Ry, (txdk); > update formula
on manifold
until ||grad f(xx)|| is close to 0

1y
X1 = Ry, (trdy)
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Riemannian Interior Point Methods (RIPM)
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Second Order Geometry: Covariant Derivative

1 A Tutorial on Riemannian Optimization

Riemannian connection
The covariant derivative of a vector field F on M is VE(x): TyM — T,M, linear operator
M X X 4 *

general vector field

If M = R", for a vector field F : R" — R", atx € R",
VEF(x) : T,R" =R" — T,R" = R", u — J(x)u,

where J(x) is the n x n Jacobian matrix of F at x.
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Second Order Algorithm: Riemannian Newton Method |

1 A Tutorial on Riemannian Optimization

i Riemannian connection
The covariant derivative of a vector field F on M is VE(X): T,M — T,M, linear operator
c X X 4 *

general vector field

Algorithm 5 Riemannian Newton Method

Goal: To find singularity x* € M such that F(x*) = 0+ € Ty« M.
Take xg € M, and set k = 0.
repeat
Solve a linear system on Ty, M 3 vy : VF(x)vk = —F(xy),
Compute X171 := Ry, (Vi);
until [|F(xx+1)]| is efficiently close to zero

e |tis a natural extension of the famous Newton method.

o Well-known convergence: the local superlinear/quadratic convergence also hold.
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Second Order Geometry: Riemannian Hessian

1 A Tutorial on Riemannian Optimization

Specially, Hess f(x) 2 V grad f(x) is called Riemannian Hessian of f: M — R when F = grad .

(Proposition.) For any embedded submanifold M, Hess f(x)[u] = Proj, (D grad f(x)[u]).

For f(x) = £x"Ax on S"~!, we have grad f(x) = (I, — xx”)Ax. Its differential? is
Dgradf(x)[u] = Au — (uTAx + xTAu)x — (xTAx)u;

project to the tangent space at x to reveal Hess f(x)[u] = Au — (xTAu)x — (xTAx)u.

Gleth : € — &', the differential of h at x is Dh(x) : £ — &, Dh(x)[u] = lim,_,o M=)

e Hessf(x) is defined only on T,S"~! (not on all of R").
e Hess f(x) is self-adjoint (i.e., symmetric) because Hess f(x) = Hess f(x)*.
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Second Order Algorithm: Riemannian Newton Method Il

1 A Tutorial on Riemannian Optimization

Recall: the optimal condition of minye o f(X) is

gradf(x*) = Oy € Ty M.

Algorithm 6 Riemannian Newton Method for solving optimization problem minye o f(x)

Take xg € M, and set k = 0.

repeat
Solve a linear system on Ty, M > & : Hess f(x)& = — grad f(x),
Compute xy+1 := Ry, (&);

until || grad f(xx1)|| is efficiently close to zero

e Itis a natural extension of the famous Newton method.
e Well-known convergence: the local superlinear/quadratic convergence also hold.
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More Requirements from Applications

2 Riemannian Interior Point Methods (RIPM)

e Nonnegative PCA on Stiefel manifold, St(n, k) = {X € R™*: XTX = I}:
min — trace(X' A" AX)
XeSt(n k)
st.X>0

e Nonnegative matrix completion on fixed rank manifold, R"*" = {X € R™*" : rank(X) = r}:

min (X — Ay)?
XeR;ﬂXn “
(i) e

st.X>0

What should we do now?
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New Challenges

2 Riemannian Interior Point Methods (RIPM)

Unconstrained Riemannian Optimization (URO):

Felﬂ fx) (URO)

where M is a Riemannian manifold and f: M — R.

Weakness of (URO):
1. It requires the entire feasible region to form exactly one manifold.

2. Adding new constraints does not necessarily guarantee that the entire feasible region is still a
manifold.

3. Even if the entire feasible region is proven to be a manifold, there are no available software
packages.

We are attempting to develop a new model, called (CRO), to address these issues.
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New Model — Constrained Riemannian Optimization
(CRO)

2 Riemannian Interior Point Methods (RIPM)

Constrained Riemannian Optimization (CRO):

min f(x)
xeM (CRO)
st.  h(x) =0, andg(x) <0,

whereh: M — Rl andg : M — R™.

Advantages of (CRO):

1. Still using the geometric structure of M. The advantages of Riemannian optimization are
maintained.

2. Very flexible, even if the constraints of h, g cannot form a new manifold.
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Existing Riemannian Algorithms for (CRO)

2 Riemannian Interior Point Methods (RIPM)

e Riemannian Augmented Lagrangian Method [LB20, YS22]:

Z <hJ(X) + Zj>2 + Zmax {O, % —O—gi(x)}Q) ,

J

Lo(x A7) =10 + & (

where x € M, p > 0 s a penalty parameter and v € R, A\ € R™, A > 0 are Lagrangian multipliers. It
alternates between updating x and updating (), v, p).
e Riemannian Exact Penalty Method [LB20]:

min f(x) + p (Z max {0,9:(x)} + > |hj<x>|>

e Riemannian Sequential Quadratic Programming method [SO21, O0T20]: At each iteration, we solve

minayer, m 3 (Be[Ax], Axi) + (gradf (xe) , Axi)
st. gi (x) + (grad gi (xx) , Ax) < 0,i=1,2,...,m,
hj (x) + (grad hj (x¢) , Axx) = 0,j =1,2,...,L

where By : Ty, M — Ty, M.
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Intuition of Interior Point Methods on Manifolds

2 Riemannian Interior Point Methods (RIPM)

Iterates

Central path

Newton directions

with step-size

+—Feasible
region

Optimial

i \\Neighborhood
solution ~———,

N

Figure: Image of primal interior point method, not primal-dual.
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Formulation of RIPM

2 Riemannian Interior Point Methods (RIPM)

Constrained Riemannian Optimization (CRO):

min f(x)
xeM (CRO)
st.  h(x) =0, andg(x) <0,

whereh: M — Rl andg : M — R™.

Lagrangian function is
L(x,y,2) £ f(x) +y"h(x) + 2"g(x). (10)
Fixing y and z, x — L(x,y, z) is a real-valued function on M, then we have

o grad, £(x,y,2) = gradf(x) + 3., yi grad hi(x) + S, z grad gi(x),

o Hess, L(x,y,z) = Hessf(x) + Zizl yiHess hi(x) + > 1", z; Hess gi(x).

47/77



KKT Vector Field — F(w)

2 Riemannian Interior Point Methods (RIPM)

Riemannian KKT conditions [LB20] are

gradx L‘,(X, Y, Z) = Oy,
h(x) =0,
9(x) <0, (1)
Zg(x) = 0,(Z := diag (z1,...,2m))
z>0
Using s := —g(x), the above becomes
grad, L£(x,y,z) Ox
F(w) & ;’8 L =0y=| o | ad@s >0 (12)
ZSe 0

where w := (x,y,2,5) € 4 £ M x R x R™ x R™. Note that T,,.# = T, M x R' x R™ x R™.
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Covariant Derivative of KKT Vector Field

2 Riemannian Interior Point Methods (RIPM)
For each x € M, we define

1
H:R' - TLM, Hyv2 Zvi grad hi(x).
i=1
Hence, the adjoint operator is

H; : TM — R, H¢=[(gradhi(x),),, - (grad hi(x),£),]" . (1)
Lemma (Lai. 2024)
The linear operator VF(w) : Ty.# — Tw.# is given by

Hessy £L(w)Ax + HyAy + Gy Az

H; Ax

G Ax + As ’ (15)
ZAs + SAz

VE(w)Aw =

where Aw = (Ax, Ay, As, Az) € TM x R x R™ x R™ = Ty, 4.
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Riemannian Interior Point Method (RIPM)

2 Riemannian Interior Point Methods (RIPM)

Step o. Initial wo with (zo, so) > 0.
Step 1. Solve
VF(Wk)AWk = —F(Wk) + ure, (16)

where & £ (0,0,0, e).
Step 2. Compute the step sizes ay such that (zk+1, Sk+1) > 0.
Step 3. Update:
Wikt+1 = ka(akAwk)- (17)

Step 4. Let pux — 0. Return to 1.

Theorem (Local Convergence, Lai. 2024)

Under some standard assumptions.
(1) If pe = o(||F(wi)||), ax — 1, then {wy } locally, superlinearly converges to w*.
(2) If pue = O(IF(wi)[|*), 1 — cue = O(||F(w)]

), then {wy} locally, quadratically converges to w*.
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Global Line Search RIPM Algorithm

2 Riemannian Interior Point Methods (RIPM)
Merit function: Choose p(w) £ ||[F(w)]|2.
Backtracking for step size ay:

1. Centrality conditions.

2. Sufficient decreasing condition.

With a slight abuse of notation, we also let

£ o(Ry, (aAwy)) for fixed wy and Awy,
—_

new iterate

p(a)

then ¢(0) = (wk) =: g and ¢’ (0) = (grad p(wk), Awy). Sufficient decreasing asks

p(ax) — ¢(0) < axBe’(0).
Descent direction: Let Awy be the solution of VF(wy)Awy, = —F(wx) + proxe, then

¢’ (0) < 0if we set py := s{zx/m, ok € (0,1). Then, {¢x} is monotonically decreasing.
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Global Convergence

2 Riemannian Interior Point Methods (RIPM)

Assumptions:3

1. the functions f(x), h(x), g(x) are smooth; the set {grad h; (x)}i:1 is linearly independent in
T M for all x; and w — VF(w) is Lipschitz continuous;

2. the sequences {xx} and {z} are bounded;

3. the operator VF(w) is nonsingular.

Theorem (Global Convergence, Lai. 2024)

Let {ox} C (0, 1) bounded away from zero and one. If Assumptions 1~3 hold, then {F(wy)}
converges to zero; and for any limit point w* = (x*,y*, z*, s*) of {wy} ,x* is a Riemannian KKT
point of problem (CRO).

3The Euclidean counterpart comes from El-Bakry, A., Tapia, R. A., Tsuchiya, T., and Zhang, Y. (1996). On the formulation
and theory of the Newton interior-point method for nonlinear programming. J Optim Theory Appl, 1996.
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Riemannian Interior Point Methods (RIPM)

2 Riemannian Interior Point Methods (RIPM)

» Riemannian Interior Point Methods (RIPM)

Implementation Techniques
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Dominant Cost — Solving Newton Equation

2 Riemannian Interior Point Methods (RIPM)

Dominant cost of our RIPM is to solve (at each iteration)

VF(w)Aw = —F(w) + pe, (19)
where
F, = grad, L(x,y,2) Ox
| F,2h(x) ~ | O
FW =1 F 20 +s I (20)
Fy 2 ZSe e

©

Thus, we need to solve the following linear system on TyM x R! x R™ x R™;

Hess, £L(w)Ax + HyAy + GyAz —F,

H; Ax _| F o
G:AX + As _F,

ZAs + SAz —F; + e
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Condensed form of Newton Equation

2 Riemannian Interior Point Methods (RIPM)

It suffices” to solve condensed form on T,M x R%:

wAX + HA
T(Ax,Ay)::(%A;+ y):(g) (22)

where
A, := Hess, L(W) + G.S™'ZG},

. (23)
c:= —F,— GS ~ (ZF, + pe — F;), q:= —F,.

9We recover As = Z~ ! (ue — Fs — SAz) , Az = S~ [Z(G} Ax + F;) + pe — Fs].

T is self-adjoint (but may indefinite) operator on TyM x RL This is a saddle point problems on
Hilbert space.
The difficulty lies in...

¢ the Riemannian setting leaves us with no explicit matrix form available.

e anatural way is to find the representing matrix 7 under some basis of tangent space.

(Expensive!)
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Krylov Subspace Methods on Tangent Space

2 Riemannian Interior Point Methods (RIPM)

An ideal approach is to use iterative methods, such as Krylov subspace methods (e.g., Conjugate
Gradients method), on T,M x R! directly.

For simplicity, we consider the case of only inequality constraints, where Ay vanishes, thus we
only needs to
solve A,,Ax = c for Ax € TyM. (24)

e |t only needs to call an abstract linear operator v — A,,v. (matrix-vector product)
e All the iterates vy are in T, M.

e Since operator A,, is self-adjoint but indefinite, we use Conjugate Residual (CR) method to
solve it.

The discussion of above can be naturally extended to the general case.
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Conjugate Gradients (CG) on a Tangent Space

2 Riemannian Interior Point Methods (RIPM)

Input: positive definite map H on T, M and b€ T, M, b# 0
Set Vg = O,TO = b,po =70

Forn=1,2,...
Compute Hp,,—1 (this is the only call to H)
Hrnfll‘i
v —

"o (pnflvan71>z
Up = Up—1+ QnPn—1

T'n ="Tp—-1— aann—l
If r,, =0, output s = v,,: the solution of Hs = b
5 — HTnHi

T firn—al2

Dn =Tn + Bnbn—1

1. Exactly the same in form of usual CG.
2. Every vectors vy, y, pn belong to tangent space V = T, M.
3. Converges very fast if H is PD with small condition number.
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2 Riemannian Interior Point Methods (RIPM)
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Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

2 Riemannian Interior Point Methods (RIPM)

Constrained Riemannian Optimization (CRO):

min  f(x)
xEM (CRO)
st.  h(x) =0, andg(x) <0,

whereh: M — R, andg : M — R™.

Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

1. RIPM inherits the advantages of Riemannian optimization and can exploit the geometric structure of the
constraints.

2. EIPM is a special case of RIPM when M = R" or R"**.
3. RIPM solves Newton equation (25) of smaller order on TyM x R :

T (Ax, Ay) == ( ﬁ;WAA:+HXAy ) = ( ; ) ‘ (25)

4. RIPM can solve some problems that EIPM cannot. For example, rank(X) = r is not continuous, we can
59/77 not apply EIPM.



MATLAB Code

2 Riemannian Interior Point Methods (RIPM)

Our Solver RIPM.m available at https://github. com/GALVINLAI/RIPM

MATLAB code (\examples\) M f g h
Euc_linear_nonnega_sphereEq Euclidean linear nonnegative  sphere x"*x=1
Euc_linear_or_projection_nonnega_orthogonalEq Euclidean linear/projection nonnegative  orthogonality X*X-1=0
Euc_projection_nonnega Euclidean projection nonnegative -
Euc_projection_nonnega_symmetricEq Euclidean projection nonnegative  symmetry X-X'=0
Fixedrank_MatrixCompletion_nonnega fixedrank matrix completion  nonnegative = -

Fixedrank_MatrixCompletion_nonnega_reliableEq  fixedrank matrix completion = nonnegative  reliable sampled data

Fixedrank_projection_nonnega fixedrank projection nonnegative -

Ob_ONMF _StiefelEq oblique ~trace(X'AAtX) nonnegative norm(X*V,'fro)A2-1
Ob_linear_or_projection_nonnega_StiefelEq oblique linear/projection nonnegative norm(X*V,'fro)A2-1
Sp_linear_nonnega sphere linear nonnegative -
Sp_linear_nonnega_linearkq sphere linear nonnegative  linear
Sp_quadratic_nonnega sphere quadratic nonnegative -
Stiefel_linear_or_projection_nonnega stiefel linear/projection nonnegative -
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Future Works |

2 Riemannian Interior Point Methods (RIPM)

(1) How to use preconditioner method for solving Newton equation? Due to complementary

()
G, 0 0

condition $*Z* = 0, as k — oo, the values of S;lzk = display

(2),
(sx),

— 00
a huge difference in magnitude.

Condensed form on T, M x R :

L x+HxAy _ (¢
T(@x Ay): = H;Ax ) = (q)'
where
A= HessyL(w) + 0,

Hence, the operator O := GXS”ZG;; in the condensed system (Above) makes it ill-conditioned, so
the iterative method will likely fail unless it is carefully preconditioned.
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Example of This Problem

2 Riemannian Interior Point Methods (RIPM)

To minimize f(X) = (X, —E) with X > 0 on St(n, p) = {X € R™P : X" X = I}. Recall that
U — Projy(U) = U — Xsym (X"U), where sym(Z) = ”TZT for any Z.

Using RIPM, at k-th iteration, given current tuple Wy = (X, Zx, Sk ), we must solve the equation:
Ax(AX) = C for some constant Cy € Tx, St(n, k), (26)
with
AX > Ax(AX) = Hessy L(Wy)[AX] + O (AX) = Projy [AX - D;] + Projy, [AX ® Da],
where Dy := sym[X/ (Zx + E)], D2 = Z; ® S:(_l) are constants.
1. Ay is self-adjoint but indefinite operator on Ty, St(n, k).

2. Ask — oo, Ay becomes very ill-conditioned by © since complementary condition
"8 =0.
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Future Works Il

2 Riemannian Interior Point Methods (RIPM)
(2) Quasi-Newton RIPM. We can approximate the Hessian of Lagrangian in VF (wy) with gradient
information while ensuring its local convergence.

Algorithm of RIPM for (CRO) H £(w) Ax + HoAy + G A
Solve the perturbed Newton equation Hfzsx w)ax x0T GxAZ
VF (W) Awy = —F(w) + pigé. VF(w)Aw = [ 11x3%/
. GeAx/+ As
Compute the step ay, such that (241, Sg4+1) > 0; 7As v SA
Update wyeyq/= Ry, (@Awy); y ‘
Choose 0 </wyr1 < My / Quasi-Newton method,
] BFGS formulate, etc.

G(W)Ax + HeAy + G Az
Bwi)Awy, = —F(wy) + 1,8 Bw)aw = | Hxbx
’ GyAx + As
ZAs + SAz

(3) Inexact Newton RIPM.
(4) Treatment of more state-of-the-art interior point methods. Our current global algorithm uses

the simplest strategy. How about, e.g., the trust region?
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Riemannian Interior Point Methods for
Constrained Optimization on Manifolds

Thank you for listening!
Any questions?
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Riemannian Interior Point Methods (RIPM)
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Summary: Unit Sphere Manifold

3 Reference

The set of all unit vectors, i.e., unit sphere,
S*hi={x e R": x|l = 1},
is an embedded submanifold of R". Its tangent space at any x € S"! is given by
TS" ' ={ueR": x'u=0},
and dim S" ! := dim T,S" ! = n — 1. Then, the orthogonal projector to the tangent space at x is
Proj, : R" — T,S" ! : u Proj(u) = (I, —xx") u = u — (x"u)x.
One possible retraction on S*~ 1 is

X+v X+v
Ry(v)

Cx+vl o TEVE

The Riemannian gradient of a smooth function f: S"~! — R is given as

grad f(x) = Proj, (egrad f(x)) = egrad f(x) — (x” egrad f(x))x.
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Summary: Stiefel Manifold

3 Reference

For integers p < n, the set of all orthonormal matrices, i.e., Stiefel manifold,
St(n,p) = {Xe RV?: X'X=1,},
is an embedded submanifold of R"*P. Its tangent space at any X € St(n, p) is given by
TxSt(n,p) = {Ve RP : X"V + VIX = 0} = {XQ + X, B : Q € Skew(p), B € R(""P)*P},
and dim St(n, p) := dim Tx St(n,p) = np — %. Then, the orthogonal projector is
Projy : R*P? — Tx St(n, p) : U+ Projy(U) = U — Xsym(X'U),

where sym(Z) = Z+Z extracts the symmetric part of a matrix Z.

-2
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Summary: Stiefel Manifold (Cont’d)

3 Reference

Two possible retractions on St(n, p) are
e Retraction based on the polar decomposition of X + V:

Re(V) = (X+ V) (1+VTV) /2.
This is a projection retraction, namely, Ry(v) = arg min [|x' — (x+ V)| .
e Retraction based on the QR factorization of X + VX:EM
Ry(V) = af(X+V),

where qf(A) denotes the Q factor of the QR factorization.
The Riemannian gradient of a smooth function f: St(n, p) — R is given as

grad f(X) = Projy(egrad f(X)) = egrad f(X) — Xsym(X” egrad f(X)).
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Superlinear and Quadratic Convergence of RIPM

3 Reference

1. Existence. There exists w* satisfying the KKT conditions.

2. Smoothness. The functions f, g, h are smooth on M.

3. Regularity. The set {grad h;(x*) : i =1,--- ,1} U {grad g;(x*) : i € A(x)} is linearly
independent in Ty« M.

4. Strict Complementarity. (z*); > 0if gi(x*) = Oforalli=1,--- ,m.

5. Second-Order Sufficiency. (Hess, £(w*)¢, &) > 0for all nonzero & € Ty« M satisfying (&, grad hy(x*)) = 0 for
i=1,---,l,and (&, grad g;(x*)) = Ofori € A(x*).

Proposition (Lai. 2022)

If assumptions (1)-(5) hold, then standard Newton assumptions (N1)-(N3) hold for KKT vector field
F.
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