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(Un)constrained Optimization Problem
Ŵ A Tutorial on Riemannian Optimization

Given an objective f : Rn → R, the general form of a (Euclidean) optimization problem is

min f(x)

s.t. x ∈ S,
(Ŵ)

where x = [x1, x2, . . . , xn]
T ∈ Rn, and feasible region S ⊂ Rn consists of all possible solutions.

Classically, we consider it as
• unconstrained optimization problem if S = Rn;
• constrained optimization problem if S ⊊ Rn, e.g., S = {x ∈ Rn : gi(x) = 0, i = 1, 2, . . . ,m
and hj(x) ≤ 0, j = 1, 2, . . . , l}.
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Line Search Framework for S = Rn

Ŵ A Tutorial on Riemannian Optimization

Algorithm Ŵ Line Search Framework for S = Rn

An initial point x0 ∈ Rn; k← 0;
repeat

Choose a search direction dk ∈ Rn;
Choose a step size tk > 0;
Update new point by xk+1 := xk + tkdk;
Set k→ k+ 1;

until stopping criterion are satisfied;

It should be noted that:
• By using local information of objective f at
xk, we can select
— steepest descent direction: dk = −∇f (xk)
— Newton direction:

dk = −
[
∇2f (xk)

]−1 ∇f (xk)

• For arbitrary dk and tk, the new point xk+1

is always in Rn. (unconstrained!)

Questions
Why cannot the line search framework be used for constrained optimization problems, i.e.,
S ⊊ Rn? Because xk+1 := xk + tkdk may not be feasible.
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New Insight on (Un)constrained Optimization Problem
Ŵ A Tutorial on Riemannian Optimization

Recall the general form of a (Euclidean) optimization problem is

min f(x)

s.t. x ∈ S.
(ŵ)

• S = Rn. Formally, x is still subject to the real (not complex) Euclidean space Rn.
• S ⊊ Rn. Assume that we can generate a sequence {xk} ⊂ S by the formula

xk+1 := UPDATE (xk, dk, tk) , (Ŷ)

where UPDATE : S× Dk × R+ → S, and Dk consists of all meaningful search direction.

A new insight
The essential difference between constrained and unconstrained problems is not determined by
the problem itself, but by the algorithms we adopt to solve the problems.
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A Glance at Riemannian Optimization
Ŵ A Tutorial on Riemannian Optimization

Riemannian optimization
Given an objective f :M→ R whereM is a Riemannian manifold, we want to solve

min
x∈M

f(x).

ŷų+ manifoldsM available in the Riemannian optimization solver “Manopt” [BMASŴŷ]:
• Rn,Rm×n (any vector space) are trivial manifolds.
• Sphere manifold, {x ∈ Rn : ‖x‖2 = 1}.
• Stiefel manifold, {X ∈ Rn×p : XTX = Ip}.
• Grassmann manifold, the set of all p-dimensional subspaces of Rn.
• Fixed rank manifold, {X ∈ Rn×m : rank(X) = r}.
• Oblique manifold, {X ∈ Rn×m : ‖X:1‖ = · · · = ‖X:m‖ = 1}.
• Hyperbolic manifold,

{
x ∈ Rn+1 : x20 = x21 + · · ·+ x2n + 1

}
.

• In most cases, the R above can be replaced by C.
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A Glance at Riemannian Optimization
Ŵ A Tutorial on Riemannian Optimization

Riemannian optimization
Given an objective f :M→ R whereM is a Riemannian manifold, we want to solve

min
x∈M

f(x).

Applications of Riemannian optimization [HLWYŵų]:
• p-harmonic flow
• low-rank nearest correlation matrix estimation
• phase retrieval
• Bose-Einstein condensates
• cryoelectron microscopy (cryo-EM)
• linear eigenvalue problem
• nonlinear eigenvalue problem from electronic structure calculations
• combinatorial optimization
• deep learning, etc.
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Application I: Extreme Eigenvalue or Singular Value
Ŵ A Tutorial on Riemannian Optimization

• Unit sphere manifold, Sn−1 = {x ∈ Rn : ‖x‖2 = 1} .
• Sm−1 × Sn−1 is a product manifold.

For a matrix A ∈ Sym(n), we have

the smallest eigenvalue of A = min
x∈Sn−1

xTAx. (ŷ)

Similarly, for a matrixM ∈ Rm×n, we have

the largest singular value ofM = max
x∈Sm−1,y∈Sn−1

xTMy. (Ÿ)
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Application II: Sparse PCA
Ŵ A Tutorial on Riemannian Optimization

• Stiefel manifold, St(n, p) =
{
X ∈ Rn×p : XTX = Ip

}
.

• Grassmann manifold, Gr(n, p) =
{
span(X) : X ∈ Rn×p, XTX = Ip

}
.

Spare PCA wants to find principle eigenvectors with few nonzero elements.

min
x∈St(n,p)

− tr
(
XTATAX

)
+ ρ‖X‖1. (Ź)

where ‖X‖1 =
∑

ij |Xij| and ρ ≥ 0 is a parameter to promote sparsity.
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Application III: Low-Rank Matrix Completion
Ŵ A Tutorial on Riemannian Optimization

• Fixed rank manifold, Fr(m, n, r) = {X ∈ Rm×n : rank(X) = r}.

Let Ω denote the set of pairs (i, j) such thatMij is observed. We want to recover a low-rank matrix
M by

minX rank(X)
s.t. Xij = Mij, (i, j) ∈ Ω.

(ź)

If rank(M) = r is known, an alternative model is

min
X∈Fr(m,n,r)

∑
(i,j)∈Ω

(Xij −Mij)
2
. (Ż)
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Riemannian Manifold = Manifold + Riemannian Metric
Ŵ A Tutorial on Riemannian Optimization

• A manifoldM is a set that can be locally linearized.Ŵ
— TxM is tangent space at x.
— ξ ∈ TxM is tangent vector at x.

• A Riemannian metric 〈·, ·〉 assigns an inner product 〈·, 〉x : TxM× TxM→ R to each tangent
space of the manifold in a way that varies smoothly from point to point.

ŴExactly, it is a topological space that is locally homeomorphic to some open subset of Euclidean space.
ŴŶ/źź
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Euclidean Optimization v.s. Riemannian Optimization
Ŵ A Tutorial on Riemannian Optimization

Algorithm ŵ Line Search Framework for S = Rn

Choose a search direction dk ∈ Rn;
Choose a step size tk > 0;
Update new point by xk+1 := xk + tkdk;

Algorithm Ŷ Line Search Framework for S =M

Choose a search direction dk ∈ TxkM;
Choose a step size tk > 0;
Update new point by xk+1 := Rxk (tkdk);
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Advantages in Comparison to Euclidean Optimization
Ŵ A Tutorial on Riemannian Optimization

Riemannian version of classical methods:
• Riemannian steepest decent
• Riemannian conjugate gradient
• Riemannian trust region
• Riemannian Newton
• Riemannian BFGS
• Riemannian proximal gradient
• Riemannian stochastic algorithms
• Riemannian ADMM
• and more

Almost all algorithms in Euclidean setting can be
extended to Riemannian setting.

Advantages of Riemannian optimization:
Ŵ. All iterates on the manifold.
ŵ. Transform constrained problems into
unconstrained ones.

Ŷ. Use of the geometric structure of the
feasible region.

ŷ. Convergence properties of like optimization
on Euclidean space.

ŴŹ/źź



Citation Report: Riemannian Optimization (Topic)
Ŵ A Tutorial on Riemannian Optimization
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Riemannian Optimization Libraries
Ŵ A Tutorial on Riemannian Optimization

Survey:
• A Brief Introduction to Manifold Optimization [HLWYŵų]
• A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian
Manifold [FWL+ŵŶ]

• History of Riemannian Optimization
https://www.math.fsu.edu/~whuang2/pdf/NanjingUniversity_2019-10-23.pdf

Monographs of Riemannian Optimization:
• An Introduction to Optimization on Smooth Manifolds [BouŵŶ] (the best textbook for
beginners)
https://www.nicolasboumal.net/book/

• Riemannian Optimization and Its Applications [SatŵŴ]
https://link.springer.com/book/10.1007/978-3-030-62391-3
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Riemannian Optimization Libraries
Ŵ A Tutorial on Riemannian Optimization

• Optimization Algorithms on Matrix Manifolds [AMSųŻ]
https://press.princeton.edu/absil

• Convex Functions and Optimization Methods on Riemannian Manifolds [Udrżŷ]
https://link.springer.com/book/10.1007/978-94-015-8390-9

• Multivariate Data Analysis on Matrix Manifolds [TGŵŴ]
https://link.springer.com/book/10.1007/978-3-030-76974-1

• Population-Based Optimization on Riemannian Manifolds [FTŵŵ]
https://link.springer.com/book/10.1007/978-3-031-04293-5

Libraries of General-purpose Riemannian Optimization Toolboxes:
• Manopt [BMASŴŷ] in Matlab (the most comprehensive toolbox)

https://www.manopt.org/
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Riemannian Optimization Libraries
Ŵ A Tutorial on Riemannian Optimization

• Pymanopt [TKWŴŹ] in Python
https://pymanopt.org/

• ROPTLIB [HAGHŴŻ] in C++
https://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html

• ManifoldOptim [MRHAŵų] in R (a R wrapper of ROPTLIB)
https://cran.r-project.org/web/packages/ManifoldOptim/index.html

• Manopt.jl [Berŵŵ] in Julia
https://manoptjl.org/

Libraries of Riemannian Packages for Various Goals:
• Geoopt [KKKŵų] is a Python library bringing Riemannian optimization tools to PyTorch.

https://geoopt.readthedocs.io/en/latest/index.html
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Riemannian Optimization Libraries
Ŵ A Tutorial on Riemannian Optimization

• McTorch [MJK+ŴŻ] is also a Python library bringing Riemannian optimization tools to PyTorch.
https://github.com/mctorch/mctorch

• TensorFlow RiemOpt [SmiŵŴ] is a library for Riemannian optimization in TensorFlow.
https://github.com/master/tensorflow-riemopt

• Rieoptax [UHJMŵŵ] is a library for Riemannian Optimization in JAX.
https://github.com/SaitejaUtpala/rieoptax

• CDOpt [XHLTŵŵ] is a Python toolbox for optimization on Riemannian manifolds with support
for deep learning.
https://cdopt.github.io/md_files/intro.html

• QGOpt [LRFOŵŴ] is an extension of TensorFlow optimizers on Riemannian manifolds that
often arise in quantum mechanics.
https://qgopt.readthedocs.io/en/latest
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How to Optimize a Function on Manifold?
Ŵ A Tutorial on Riemannian Optimization

Consider the Riemannian optimization problem,

min f(x)

s.t. x ∈M,
(ż)

where f :M→ R.

Goal: To find a local optimal solution x∗ ∈M. (In general,M is nonconvex.)

Method: The iterative methods can still be used. But there are questions that we need to address:
• QŴ: What is the direction of movement? Tangent vector
• Qŵ: How to move on manifolds? Retraction map
• QŶ: What is a good direction to move? Riemannian gradient
• Qŷ: What is the optimal condition? Vector field
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QŴ: What is the Direction of Movement? Tangent Vector
Ŵ A Tutorial on Riemannian Optimization

Remark
Here, it is sufficient to consider — embedded submanifoldM of Rn =manifold + subset of Rn.

Imagine a particle moving on a manifoldM with a trajectory γ : I ⊆ R→M that passes through
the point x at time t = 0. Then, the velocity

γ̇(0) := lim
t→0

γ(t)− γ(0)

t
=

d
dt
γ(t)

∣∣∣∣
t=0

is called a tangent vector belonging to x.
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QŴ: What is the Direction of Movement? Tangent Vector
(Cont’d)
Ŵ A Tutorial on Riemannian Optimization

The tangent space at x is the set of all possible tangent vectors at that point, i.e.,
TxM := {γ̇(0) : γ : I→M is a smooth curve, γ(0) = x}.

(Ŵ) For any x ∈M, TxM are linear spaces sharing the same dimension.
(ŵ) In general, TxM is determined by x, except for TxRn ∼= Rn.
(Ŷ) For embedded submanifold, TxM is a subspace of Rn, e.g., TxSn−1 =

{
u ∈ Rn : xTu = 0

}
.
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Qŵ: How to Move on Manifolds? Retraction to Create a
Curve
Ŵ A Tutorial on Riemannian Optimization

TM = {(x, ξ) : x ∈M and ξ ∈ TxM} is called the tangent bundle.
A retraction is a smooth map

R : TM→M : (x, ξ) 7→ Rx(ξ)

such that for each (x, ξ) ∈ TM, the corresponding curve t 7→ γ(t) := Rx(tξ) has γ̇(0) = ξ.

A retraction R yields a map Rx : TxM→M for any x.
ŵŹ/źź



Qŵ: How to Move on Manifolds? Using Retraction to
Create a Curve (Cont’d)
Ŵ A Tutorial on Riemannian Optimization

Retractions are not uniquely determined. E.g., on the unit sphere Sn−1,

Rx(ξ) =
x+ ξ

‖x+ ξ‖
, or Rx(ξ) = cos(‖ξ‖)x+ sin(‖ξ‖)

‖ξ‖
ξ.

Given a tangent vector ξ at point x, α 7→ Rx(αξ) defines a curve along this direction.

Euclidean setting Riemannian setting
xk+1 = xk + αkdk xk+1 = Rxk (αkξk)

Table: Two types of update formulas
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QŶ: What is a Good Direction? Riemannian Gradient
Ŵ A Tutorial on Riemannian Optimization

Moreover, the real function α 7→ f(Rx(αξ)) evaluates how the objective value changes along the
given direction ξ.

The Riemannian gradient, grad f(x), is the tangent vector at x such that:

grad f(x)
‖ grad f(x)‖

= argmax
ξ∈TxM:∥ξ∥=1

(
lim
α→0

f (Rx(αξ))− f(x)
α

)
.
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QŶ: What is a Good Direction? Riemannian Gradient
(Cont’d)
Ŵ A Tutorial on Riemannian Optimization

Intuitively, grad f(x) should be approximately perpendicular to the contour line of f on the surface.

Also,− grad f(x) is the direction of steepest descent at x.
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QŶ: What is a Good Direction? Riemannian Gradient
(Cont’d)
Ŵ A Tutorial on Riemannian Optimization

For embedded submanifoldM, Riemannian gradient of f :M→ R is the orthogonal projection
onto TXM of the Euclidean gradient:

grad f(x) = Projx(∇f(x)).

Example
For f(x) = 1

2x
TAx ,∇f(x) = Ax. On

sphere Sn−1, we have

Projx(u) = (In − xxT)u.

It follows that grad f(x) =
Projx(∇f(x)) = (In − xxT)Ax.

Tangential
component Normal component

Ŷų/źź



Qŷ: What is the Optimal Condition? Singularity of
Gradient Vector Field
Ŵ A Tutorial on Riemannian Optimization

A vector field onM is a map V :M→ TM such that V(x) ∈ TxM for all x ∈M.

Figure: LetM = R2. Gradient of the ŵD function f(x, y) = xe−(x2+y2). Source: Wikipedia.ŶŴ/źź

https://en.wikipedia.org/wiki/Gradient


Qŷ: What is the Optimal Condition? Singularity of
Gradient Vector Field
Ŵ A Tutorial on Riemannian Optimization

A vector field onM is a map V :M→ TM such that V(x) ∈ TxM for all x ∈M.

Figure: A vector field on a sphere S2. Source: Wikipedia.
ŶŴ/źź
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Qŷ: What is the Optimal Condition? Singularity of
Gradient Vector Field (Cont’d)
Ŵ A Tutorial on Riemannian Optimization

Riemannian gradient, x 7→ grad f(x), is a special vector field generated by a scalar field f.
If x∗ is a local minimizer/maximizer, then grad f (x∗) = 0x∗

Figure: Contours of f(x) = −x1 + 2x2 + x3 on S2.
Figure: Gradient field of f(x) = −x1 + 2x2 + x3 on S2.Ŷŵ/źź



Summary: Framework of Riemannian Optimization
Ŵ A Tutorial on Riemannian Optimization

Riemannian optimization
Given an objective f :M→ R whereM is a Riemannian manifold, we want to solve

min
x∈M

f(x).

Algorithm ŷ Line Search Framework for solvingminx∈M f(x).

Choose an initial point x0 ∈M, a retraction R, and k← 0;
repeat

Compute a direction dk ∈ TxkM, e.g., dk = − grad f(x);
Compute a step length tk > 0, e.g., Armijo condition;
Compute the next point xk+1 := Rxk (tkdk); ▷ update formula

on manifold
until ‖grad f (xk)‖ is close to 0
ŶŶ/źź
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Second Order Geometry: Covariant Derivative
Ŵ A Tutorial on Riemannian Optimization

The covariant derivative of a vector field F onM is
Riemannian connection

general vector field

Example
IfM = Rn, for a vector field F : Rn → Rn, at x ∈ Rn,

∇F(x) : TxRn ≡ Rn → TxRn ≡ Rn, u 7→ J(x)u,

where J(x) is the n× n Jacobian matrix of F at x.
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Second Order Algorithm: Riemannian Newton Method I
Ŵ A Tutorial on Riemannian Optimization

The covariant derivative of a vector field F onM is
Riemannian connection

general vector field

Algorithm Ÿ Riemannian Newton Method
Goal: To find singularity x∗ ∈M such that F(x∗) = 0x∗ ∈ Tx∗M.
Take x0 ∈M, and set k = 0.
repeat

Solve a linear system on TxkM3 vk :∇F(xk)vk = −F(xk),
Compute xk+1 := Rxk(vk);

until ‖F(xk+1)‖ is efficiently close to zero

• It is a natural extension of the famous Newton method.
• Well-known convergence: the local superlinear/quadratic convergence also hold.
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Second Order Geometry: Riemannian Hessian
Ŵ A Tutorial on Riemannian Optimization

Specially, Hess f(x) ≜ ∇ grad f(x) is called Riemannian Hessian of f :M→ R when F = grad f.

(Proposition.) For any embedded submanifoldM, Hess f(x)[u] = Projx(D grad f(x)[u]).

Example
For f(x) = 1

2x
TAx on Sn−1, we have grad f(x) = (In − xxT)Ax. Its differentiala is

D grad f(x)[u] = Au− (uTAx+ xTAu)x− (xTAx)u;

project to the tangent space at x to reveal Hess f(x)[u] = Au− (xTAu)x− (xTAx)u.

aLet h : E → E ′, the differential of h at x is Dh(x) : E → E ′, Dh(x)[u] = limt→0
h(x+tu)−h(x)

t .

• Hess f(x) is defined only on TxSn−1 (not on all of Rn).
• Hess f(x) is self-adjoint (i.e., symmetric) because Hess f(x) = Hess f(x)∗.
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Second Order Algorithm: Riemannian Newton Method II
Ŵ A Tutorial on Riemannian Optimization

Recall: the optimal condition ofminx∈M f(x) is

grad f (x∗) = 0x∗ ∈ Tx∗M.

Algorithm Ź Riemannian Newton Method for solving optimization problemminx∈M f(x)
Take x0 ∈M, and set k = 0.
repeat

Solve a linear system on TxkM3 ξk : Hess f(x)ξk = − grad f(x),
Compute xk+1 := Rxk(ξk);

until ‖ grad f(xk+1)‖ is efficiently close to zero

• It is a natural extension of the famous Newton method.
• Well-known convergence: the local superlinear/quadratic convergence also hold.
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More Requirements from Applications
ŵ Riemannian Interior Point Methods (RIPM)

• Nonnegative PCA on Stiefel manifold, St(n, k) = {X ∈ Rn×k : X⊤X = I}:

min
X∈St(n,k)

− trace(X⊤A⊤AX)

s.t. X ≥ 0

• Nonnegative matrix completion on fixed rank manifold, Rm×n
r = {X ∈ Rm×n : rank(X) = r}:

min
X∈Rm×n

r

∑
(i,j)∈Ω

(Xij − Aij)2

s.t. X ≥ 0

What should we do now?
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New Challenges
ŵ Riemannian Interior Point Methods (RIPM)

Unconstrained Riemannian Optimization (URO):

min
x∈M

f(x) (URO)

whereM is a Riemannian manifold and f :M→ R.

Weakness of (URO):
Ŵ. It requires the entire feasible region to form exactly one manifold.
ŵ. Adding new constraints does not necessarily guarantee that the entire feasible region is still a
manifold.

Ŷ. Even if the entire feasible region is proven to be a manifold, there are no available software
packages.

We are attempting to develop a new model, called (CRO), to address these issues.
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NewModel — Constrained Riemannian Optimization
(CRO)
ŵ Riemannian Interior Point Methods (RIPM)

Constrained Riemannian Optimization (CRO):

min
x∈M

f(x)

s.t. h(x) = 0, and g(x) ≤ 0,
(CRO)

where h :M→ Rl, and g :M→ Rm.

Advantages of (CRO):
Ŵ. Still using the geometric structure ofM. The advantages of Riemannian optimization are
maintained.

ŵ. Very flexible, even if the constraints of h, g cannot form a new manifold.
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Existing Riemannian Algorithms for (CRO)
ŵ Riemannian Interior Point Methods (RIPM)

• Riemannian Augmented Lagrangian Method [LBŵų, YSŵŵ]:

Lρ(x, λ, γ) := f(x) +
ρ

2

(∑
j

(
hj(x) +

γj
ρ

)2

+
∑
i

max
{
0,

λi

ρ
+ gi(x)

}2
)
,

where x ∈ M, ρ > 0 is a penalty parameter and γ ∈ Rl, λ ∈ Rm, λ ≥ 0 are Lagrangian multipliers. It
alternates between updating x and updating (λ, γ, ρ).
• Riemannian Exact Penalty Method [LBŵų]:

min
x∈M

f(x) + ρ

(∑
i

max {0, gi(x)}+
∑
j

|hj(x)|

)
• Riemannian Sequential Quadratic Programming method [SOŵŴ, OOTŵų]: At each iteration, we solve

min∆xk∈TxkM
1
2
⟨Bk [∆xk] ,∆xk⟩+ ⟨grad f (xk) ,∆xk⟩

s.t. gi (xk) + ⟨grad gi (xk) ,∆xk⟩ ≤ 0, i = 1, 2, . . . ,m,
hj (xk) + ⟨grad hj (xk) ,∆xk⟩ = 0, j = 1, 2, . . . , l.

where Bk : TxkM → TxkM.
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Intuition of Interior Point Methods on Manifolds
ŵ Riemannian Interior Point Methods (RIPM)

Figure: Image of primal interior point method, not primal-dual.
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Formulation of RIPM
ŵ Riemannian Interior Point Methods (RIPM)

Constrained Riemannian Optimization (CRO):

min
x∈M

f(x)

s.t. h(x) = 0, and g(x) ≤ 0,
(CRO)

where h :M→ Rl, and g :M→ Rm.

Lagrangian function is
L(x, y, z) ≜ f(x) + yTh(x) + zTg(x). (Ŵų)

Fixing y and z, x 7→ L(x, y, z) is a real-valued function onM, then we have

• gradx L(x, y, z) = grad f(x) +
∑l

i=1 yi grad hi(x) +
∑m

i=1 zi grad gi(x),

• Hessx L(x, y, z) = Hess f(x) +
∑l

i=1 yi Hess hi(x) +
∑m

i=1 zi Hess gi(x).
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KKT Vector Field — F(w)
ŵ Riemannian Interior Point Methods (RIPM)

Riemannian KKT conditions [LBŵų] are

gradx L(x, y, z) = 0x,

h(x) = 0,

g(x) ≤ 0,

Zg(x) = 0, (Z := diag (z1, . . . , zm))

z ≥ 0.

(ŴŴ)

Using s := −g(x), the above becomes

F(w) ≜


gradx L(x, y, z)
h(x)
g(x) + s
ZSe

 = 0w :=


0x
0
0
0

 , and (z, s) ≥ 0, (Ŵŵ)

where w := (x, y, z, s) ∈ M ≜ M× Rl × Rm × Rm. Note that TwM ≡ TxM× Rl × Rm × Rm.
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Covariant Derivative of KKT Vector Field
ŵ Riemannian Interior Point Methods (RIPM)

For each x ∈ M, we define

Hx : Rl → TxM, Hxv ≜
l∑

i=1

vi grad hi(x). (ŴŶ)

Hence, the adjoint operator is

H∗
x : TxM → Rl, H∗

x ξ =
[
⟨grad h1(x), ξ⟩x , · · · , ⟨grad hl(x), ξ⟩x

]T
. (Ŵŷ)

Lemma (Lai. ŵųŵŷ)
The linear operator∇F(w) : TwM → TwM is given by

∇F(w)∆w =


Hessx L(w)∆x+ Hx∆y+ Gx∆z
H∗
x∆x

G∗
x∆x+∆s

Z∆s+ S∆z

 , (ŴŸ)

where∆w = (∆x,∆y,∆s,∆z) ∈ TxM× Rl × Rm × Rm ≡ TwM .
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Riemannian Interior Point Method (RIPM)
ŵ Riemannian Interior Point Methods (RIPM)

Step ų. Initial w0 with (z0, s0) > 0.
Step Ŵ. Solve

∇F(wk)∆wk = −F(wk) + µkê, (ŴŹ)

where ê ≜ (0x, 0, 0, e).
Step ŵ. Compute the step sizes αk such that (zk+1, sk+1) > 0.
Step Ŷ. Update:

wk+1 = R̄wk(αk∆wk). (Ŵź)

Step ŷ. Let µk → 0. Return to Ŵ.

Theorem (Local Convergence, Lai. ŵųŵŷ)
Under some standard assumptions.

(Ŵ) If µk = o(∥F(wk)∥), αk → 1, then {wk} locally, superlinearly converges to w∗.

(ŵ) If µk = O(∥F(wk)∥2), 1− αk = O(∥F(wk)∥), then {wk} locally, quadratically converges to w∗.
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Global Line Search RIPM Algorithm
ŵ Riemannian Interior Point Methods (RIPM)

Merit function: Choose φ(w) ≜ ‖F(w)‖2.
Backtracking for step size αk:
Ŵ. Centrality conditions.
ŵ. Sufficient decreasing condition.

With a slight abuse of notation, we also let

φ(α) ≜ φ(R̄wk(α∆wk)︸ ︷︷ ︸
new iterate

) for fixed wk and∆wk, (ŴŻ)

then φ(0) = φ(wk) =: φk and φ′(0) = 〈gradφ(wk),∆wk〉. Sufficient decreasing asks

φ(αk)− φ(0) ≤ αkβφ
′(0).

Descent direction: Let∆wk be the solution of∇F(wk)∆wk = −F(wk) + ρkσkê, then
φ′(0) < 0 if we set ρk := sTkzk/m, σk ∈ (0, 1). Then, {φk} is monotonically decreasing.
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Global Convergence
ŵ Riemannian Interior Point Methods (RIPM)

Assumptions:Ŷ

Ŵ. the functions f(x), h(x), g(x) are smooth; the set {grad hi(x)}li=1 is linearly independent in
TxM for all x; and w 7→ ∇F(w) is Lipschitz continuous;

ŵ. the sequences {xk} and {zk} are bounded;

Ŷ. the operator∇F(w) is nonsingular.

Theorem (Global Convergence, Lai. ŵųŵŷ)
Let {σk} ⊂ (0, 1) bounded away from zero and one. If Assumptions ų∼ŵ hold, then {F(wk)}
converges to zero; and for any limit point w∗ = (x∗, y∗, z∗, s∗) of {wk} , x∗ is a Riemannian KKT
point of problem (CRO).

ŶThe Euclidean counterpart comes from El-Bakry, A., Tapia, R. A., Tsuchiya, T., and Zhang, Y. (ŴżżŹ). On the formulation
and theory of the Newton interior-point method for nonlinear programming. J Optim Theory Appl, ŴżżŹ.
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Dominant Cost — Solving Newton Equation
ŵ Riemannian Interior Point Methods (RIPM)

Dominant cost of our RIPM is to solve (at each iteration)

∇F(w)∆w = −F(w) + µê, (Ŵż)

where

F(w) =


Fx ≜ gradx L(x, y, z)
Fy ≜ h(x)
Fz ≜ g(x) + s
Fs ≜ ZSe

 , ê =


0x
0
0
e

 . (ŵų)

Thus, we need to solve the following linear system on TxM× Rl × Rm × Rm:
Hessx L(w)∆x+ Hx∆y+ Gx∆z
H∗
x∆x

G∗
x∆x+∆s

Z∆s+ S∆z

 =


−Fx
−Fy
−Fz
−Fs + µe

 . (ŵŴ)
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Condensed form of Newton Equation
ŵ Riemannian Interior Point Methods (RIPM)

It sufficesa to solve condensed form on TxM× Rl:

T (∆x,∆y) :=
(

Aw∆x+ Hx∆y
H∗
x∆y

)
=

(
c
q

)
, (ŵŵ)

where
Aw := Hessx L(w) + GxS

−1ZG∗
x ,

c := −Fx − GxS
−1 (ZFz + µe− Fs) , q := −Fy.

(ŵŶ)

aWe recover∆s = Z−1 (µe− Fs − S∆z) ,∆z = S−1 [Z (G∗x∆x+ Fz) + µe− Fs].

T is self-adjoint (but may indefinite) operator on TxM× Rl. This is a saddle point problems on
Hilbert space.
The difficulty lies in...
• the Riemannian setting leaves us with no explicit matrix form available.
• a natural way is to find the representing matrix T̂ under some basis of tangent space.
(Expensive!)
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Krylov Subspace Methods on Tangent Space
ŵ Riemannian Interior Point Methods (RIPM)

An ideal approach is to use iterative methods, such as Krylov subspace methods (e.g., Conjugate
Gradients method), on TxM× Rl directly.

For simplicity, we consider the case of only inequality constraints, where∆y vanishes, thus we
only needs to

solveAw∆x = c for∆x ∈ TxM. (ŵŷ)

• It only needs to call an abstract linear operator v 7→ Awv. (matrix-vector product)
• All the iterates vk are in TxM.
• Since operatorAw is self-adjoint but indefinite, we use Conjugate Residual (CR) method to
solve it.

The discussion of above can be naturally extended to the general case.
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Conjugate Gradients (CG) on a Tangent Space
ŵ Riemannian Interior Point Methods (RIPM)

Ŵ. Exactly the same in form of usual CG.
ŵ. Every vectors vn, rn, pn belong to tangent space V ≡ TxM.
Ŷ. Converges very fast if H is PD with small condition number.
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Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)
ŵ Riemannian Interior Point Methods (RIPM)

Constrained Riemannian Optimization (CRO):

min
x∈M

f(x)

s.t. h(x) = 0, and g(x) ≤ 0,
(CRO)

where h : M → Rl, and g : M → Rm.

Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)
Ŵ. RIPM inherits the advantages of Riemannian optimization and can exploit the geometric structure of the
constraints.

ŵ. EIPM is a special case of RIPM whenM = Rn or Rn×k.
Ŷ. RIPM solves Newton equation (ŵŸ) of smaller order on TxM× Rl :

T (∆x,∆y) :=
(

Aw∆x+ Hx∆y
H∗
x∆x

)
=

(
c
q

)
. (ŵŸ)

ŷ. RIPM can solve some problems that EIPM cannot. For example, rank(X) = r is not continuous, we can
not apply EIPM.Ÿż/źź



MATLAB Code
ŵ Riemannian Interior Point Methods (RIPM)

Our Solver RIPM.m available at https://github.com/GALVINLAI/RIPM
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https://github.com/GALVINLAI/RIPM


Future Works I
ŵ Riemannian Interior Point Methods (RIPM)

(Ŵ) How to use preconditioner method for solving Newton equation? Due to complementary

condition S∗Z∗ = 0, as k→∞, the values of S−1
k Zk =


(zk)1
(sk)1

→ 0 0

. . .
(zk)n
(sk)n
→∞

 display

a huge difference in magnitude.

Hence, the operatorΘ := GxS−1ZG∗
x in the condensed system (Above) makes it ill-conditioned, so

the iterative method will likely fail unless it is carefully preconditioned.
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Example of This Problem
ŵ Riemannian Interior Point Methods (RIPM)

To minimize f(X) = 〈X,−E〉 with X ≥ 0 on St(n, p) =
{
X ∈ Rn×p : X⊤X = I

}
. Recall that

U 7→ ProjX(U) = U− X sym
(
XTU

)
, where sym(Z) = Z+ZT

2 for any Z.

Using RIPM, at k-th iteration, given current tupleWk = (Xk, Zk, Sk), we must solve the equation:

Ak(∆X) = Ck for some constant Ck ∈ TXkSt(n, k), (ŵŹ)

with

∆X 7→ Ak(∆X) = HessxL(Wk)[∆X] + Θk(∆X) = ProjXk [∆X · D1] + ProjXk [∆X� D2] ,

where D1 := sym[X⊤k (Zk + E)],D2 = Zk � S◦(−1)
k are constants.

Ŵ. Ak is self-adjoint but indefinite operator on TXkSt(n, k).
ŵ. As k→∞, Ak becomes very ill-conditioned byΘk since complementary condition

Z∗ � S∗ = O.
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Future Works II
ŵ Riemannian Interior Point Methods (RIPM)

(ŵ) Quasi-Newton RIPM.We can approximate the Hessian of Lagrangian in∇F (wk) with gradient
information while ensuring its local convergence.

(Ŷ) Inexact Newton RIPM.
(ŷ) Treatment of more state-of-the-art interior point methods. Our current global algorithm uses
the simplest strategy. How about, e.g., the trust region?
ŹŶ/źź



Riemannian Interior Point Methods for
Constrained Optimization on Manifolds

Thank you for listening!
Any questions?
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Summary: Unit Sphere Manifold
Ŷ Reference

The set of all unit vectors, i.e., unit sphere,

Sn−1 := {x ∈ Rn : ‖x‖2 = 1} ,
is an embedded submanifold of Rn. Its tangent space at any x ∈ Sn−1 is given by

TxSn−1 =
{
u ∈ Rn : xTu = 0

}
,

and dim Sn−1 := dimTxSn−1 = n− 1. Then, the orthogonal projector to the tangent space at x is

Projx : R
n → TxSn−1 : u 7→ Projx(u) =

(
In − xxT

)
u = u− (xTu)x.

One possible retraction on Sn−1 is

Rx(v) =
x+ v
‖x+ v‖

=
x+ v√
1 + ‖v‖2

.

The Riemannian gradient of a smooth function f : Sn−1 → R is given as

grad f(x) = Projx(egrad f(x)) = egrad f(x)− (xT egrad f(x))x.
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Summary: Stiefel Manifold
Ŷ Reference

For integers p ≤ n, the set of all orthonormal matrices, i.e., Stiefel manifold,

St(n, p) =
{
X ∈ Rn×p : XTX = Ip

}
,

is an embedded submanifold of Rn×p. Its tangent space at any X ∈ St(n, p) is given by

TX St(n, p) =
{
V ∈ Rn×p : XTV+ VTX = O

}
= {XΩ+ X⊥B : Ω ∈ Skew(p),B ∈ R(n−p)×p},

and dimSt(n, p) := dimTX St(n, p) = np− p(p+1)
2 . Then, the orthogonal projector is

ProjX : R
n×p → TX St(n, p) : U 7→ ProjX(U) = U− X sym(XTU),

where sym(Z) = Z+ZT

2 extracts the symmetric part of a matrix Z.
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Summary: Stiefel Manifold (Cont’d)
Ŷ Reference

Two possible retractions on St(n, p) are
• Retraction based on the polar decomposition of X+ V:

RX(V) = (X+ V)
(
I+ VTV

)−1/2
.

This is a projection retraction, namely, Rx(v) = argmin
x′∈M

‖x′ − (x+ v)‖ .

• Retraction based on the QR factorization of X+ V:

Rx(V) = qf(X+ V),

where qf(A) denotes the Q factor of the QR factorization.
The Riemannian gradient of a smooth function f : St(n, p)→ R is given as

grad f(X) = ProjX(egrad f(X)) = egrad f(X)− X sym(XT egrad f(X)).
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Superlinear and Quadratic Convergence of RIPM
Ŷ Reference

Ŵ. Existence. There exists w∗ satisfying the KKT conditions.
ŵ. Smoothness. The functions f, g, h are smooth onM.
Ŷ. Regularity. The set {grad hi(x∗) : i = 1, · · · , l} ∪ {grad gi(x∗) : i ∈ A(x)} is linearly
independent in Tx∗M.

ŷ. Strict Complementarity. (z∗)i > 0 if gi(x∗) = 0 for all i = 1, · · · ,m.
Ÿ. Second-Order Sufficiency. ⟨Hessx L(w∗)ξ, ξ⟩ > 0 for all nonzero ξ ∈ Tx∗M satisfying ⟨ξ, grad hi(x∗)⟩ = 0 for

i = 1, · · · , l, and ⟨ξ, grad gi(x∗)⟩ = 0 for i ∈ A(x∗).

Proposition (Lai. ŵųŵŵ)

If assumptions (Ŵ)-(Ÿ) hold, then standard Newton assumptions (NŴ)-(NŶ) hold for KKT vector field
F.
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流形优化入门自学建议
Ŷ Reference

Ŵ. 想系统地学习流形优化的话，Nicolas Boumal的教科书 “An
introduction to optimization on smooth manifolds (ŵųŵŶ)”这一本书
就足够了，并且不需微分几何作为前置知识。初次学习的阅读建
议如下：
• 第 Ŷ章 Embedded geometry: first order
• 第 ŷ章 First-order optimization algorithms
• 第 ź章 Embedded submanifolds: examples

如果研究只涉及一阶算法，这几章基本够用。
Figure: Nicolas Boumal, EPFL

ŵ. Manopt是最标准的流形优化软件，也是由 Nicolas Boumal的团队开发的。可以配套地玩
一玩。
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流形优化入门自学建议
Ŷ Reference

Ŷ. Hiroyuki Sato的教科书 “Riemannian Optimization and Its
Applications (ŵųŵŴ)”着重介绍了黎曼共轭梯度法。其中，第 Ź章
总结了一些流形优化的前沿研究方向可供大家参考。
Recent Developments in Riemannian Optimization
• Stochastic Optimization

— Riemannian Stochastic Gradient Descent Method
— Riemannian Stochastic Variance Reduced Gradient Method

• Constrained Optimization on Manifolds
• Other Emerging Methods and Related Topics

— Second-Order Methods
— Nonsmooth Riemannian Optimization
— Geodesic and Retraction Convexity
— Multi-objective Optimization on Riemannian Manifolds

Figure: Hiroyuki Sato, Kyoto
University
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