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Background: Basic Concepts

Definition 1.1 c.f. [Abraham and Naomi, 2003]

O A matrix A € S,, is called completely positive if there exists an entrywise nonnegative
y Yy g
matrix B € R™*" such that A = BBT. Such B is called a CP-factorization.

Q CP, = {BBT € S, | B is a nonnegative matrix} denotes the completely positive cone.

Consider the matrix A; € CP3 where A; = BB

8 9 9 4 1 1
A= 9 18 9 |,B=1141
9 9 18 11 4
A counterexample
11001
12100
Ay=10 1 2 1 0 | €8 NN:\CPs.
0 01 11
1 0013

Zhijian Lai, Akiko Yoshise (University of Tsukuba) RIMSmeeting2020 August 24, 2020 4/36



Background: Application of CP,,

Many nonconvex NP-hard quadratic and combinatorial optimizations have a linear program
over CP,,. For example, standard quadratic optimization:

min {xTMx | ele=1zc¢ RTJLF} ,
can equivalently be written as
Standard quadratic optimization by CP,, [Bomze et al., 2000]

min {(M, X) | <eeT,X> =1,X €CP,},

where M € S,, possibly indefinite, and e is the all ones vector.

An application of above is
Independence number « of a graph G by CP,, [De Klerk and Pasechnik, 2002]
a(G) = max {(E, X) [ (A+1,X) =1,X € CP.},

where A is the adjacency matrix of G and FE is the all-ones matrix.
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Background: Open Problem — Finding a CP-factorization

Checking membership in CP,, is NP-hard [Dickinson and Gijben, 2014].

RECALL: A matrix A € S, is called completely positive if there exists an entrywise
nonnegative matrix B € R™ " such that A = BB”. Such B is called a CP-factorization.

Our Goal
Given A € CP,, find a CP-factorization of A. J

Many different methods to CP-factorization problem have studied before.

@ Some work well for the matrices with specific property.
—special sparse matrices [Dickinson and Diir, 2012], rational CP-factorization
[Sikiri¢ et al., 2020].

@ Some work for all matrices but are numerically expensive.
—/[Nie, 2014], [Jarre and Schmallowsky, 2009], [Sponsel and Diir, 2014].
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Existing Results on CP,,

Example 1.2 [Groetzner and Diir, 2020, Example 2.1 ]
Consider the matrix A € CP3 where A = B1B] = ByB] = B3BI.

18 9 9
A= 9 18 9
9 9 18

Generally, one can have many CP-factorizations, even those numbers of columns differ.
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Existing Results on CP,,: cp-(plus)-rank and int (CP")

Definition 2.1 c.f. [Abraham and Naomi, 2003]

We define cp-rank of A € S,, as minimum of the number of columns for CP-factorization B,
that is

cp(A) := min {reN3BeR"™ B>0,A=BB"}.

Notice that cp(A) = oo if A ¢ CP,,. Also define cp-plus-rank of A € S,,, that is

cpt(A) = ngn{r €NZ3BeR™",B>0,A=BB"}.

Sometimes, we need to distinguish the completely positive matrices in either interior or
boundary of CP"™.

Theorem 2.2 [Dickinson, 2010, Theorem 3.8]
For A €S,, we have A € int (CP") <= cp™(A) < oo and rank(A4) = n. J
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Existing Results on CP,,: Essential Lemma

Observation: If we have had a CP-factorization B of A with r columns, then we can easily get
another CP-factorization B of A with 7’ columns for every positive integer ' > r. For
instance, let k := 1’ — r, then

B :=[B,0,xx] >0, and BB' = BB' = A.

Lemma 2.3
Suppose that A € S,,, r € N. Then

r > cp(A) <= A has a CP-factorization B with r columns.

Essential Lemma 2.4 [Xu, 2004, Lemma 1.]
Let O, denote the set of r x r orthogonal matrices. Suppose that B,C € R™*". Then

BBT = CCT < 3X € O, such that BX = C.
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CP-factorization as a nonconvex feasibility problem

RECALL:
Lemma 2.3 r > cp(A) <= A has a CP-factorization with r columns.
Lemma 24 BB" = CC" <= 3X € O, such that BX = C.

@ a "bad” factorization B # 0
A = BB, but B not nonnegative. (spectral decomposition and zero appending to )
J a suitable orthogonal matrix X € O,

@ a "good” factorization BX > 0
A= (BX)(BX)T, meanwhile BX nonnegative.

CP-factorization as a nonconvex feasibility problem [Groetzner and Diir, 2020]

find X
st. BX >0 (1)
X eO,

where > cp(A), B € R™" is an arbitrary initial factorization A = BB” not nonnegative.
From Lemma 2.3 and 2.4 we have A € CP,, <= (1) is feasible.
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Our Approach

[Groetzner and Diir, 2020] applied the so-called alternating projection method to (1).

Our Approach to nonconvex feasibility problem (1) [L, 2020]
@ We first establish the connection between (1) and (2):

find X
st. BX>0 (1) max  min (BX);; 2)
X e0, st. XeO,

@ Introducing a differentiable objective approximation function for the sake of adapting the
method below: -
min (BX);; " =5 LSE, (BX)
© Adopting a state-of-the-art curvilinear search method, which aims to solve the general
optimization with orthogonality constrains:

min F(X), st. XTX =1,
X eRnxp

where F(X) : R"*P — R is a differentiable function.
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LogSumExp: Smooth Approximation to Min Function

The LogSumExp (LSE) function is given by LSE,(x) : R — R,

LSE,(x) = /1) log (3°0 exp (pxs)) -

Lemma 3.1 — Basic properties of LSE

Suppose that p < 0, x € R™. The following results indicate that LSE,(x) nicely approximates
the minimum function from below.

@ For all x € R”, we have lim LSE,(x) = minx;.
p—>—00

@ For all x € R", we have

1
minz; + —log(n) < LSE,(x) < min x;,
p

i.e., the error item ex := minx; — LSE,(x) is in the interval (0, —% log(n)] .
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LogSumExp: Smooth Approximation to Min Function

The LogSumExp (LSE) function is given by LSE,(x) : R — R,

LSE,(x) = ; log (3°0 exp (px;)) -

Example 3.2: Values of LSE, (x)

n=4 ‘p:—l p=—-2 p=-3 p=-10
x1 = [5,2,6, 3] 1.6381 1.9353 1.9838 1.9999
x2 = [2,2,2,2] 0.6137 1.3068 1.5379 1.8613
€, = —1/plog(n) | 1.3863  0.6931 0.4621  0.1387

We find that the less p is, the better approximation effects.
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LogSumExp: Smooth Approximation to Min Function

Lemma 3.3 — Basic properties of matrix LSE [L, 2020]

Suppose that p < 0, B € R™*", matrix varible X € R™*". The following results indicate that
LSE,(BX) :R™" — R nicely approximates the min (BX);; from below.

@ Forall X ¢ R™", we have lim LSE,(BX) = min(BX);;.

p——00

@ For all X € R™", we have
1
min(BX);; + —log(nr) < LSE, (BX) < min(BX);;,
p

i.e., the error item ex := min(BX);; — LSE, (BX) is in the interval (0, —/13 log(nr)].
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LogSumExp: Smooth Approximation to Min Function

Approximate the problem (2) by problem (3):

max min (BX);; 2) max LSE,(B

st.  XeO, st.  XeO,
Proposition 3.4 [L, 2020]

Let ¢ resp. t, denote global maximum of problem (2) resp. (3), and ¢, :=

maximum error of LSE, (BX). Then,

0<t—t,<ep

NG

—% log(nr) > 0'is

Proposition 3.5 [L, 2020]

If problem (3) has a feasible solution X such that LSE, (BX) > 0, then
@ for the same X, min (BX);; > 0 for problem (2).
@ hence, we find a CP factorization (BX)(BX)T = A with BX > 0.
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A curvilinear search method

Attempting to optimize (3), we apply the famous curvilinear search method, proposed by Wen
and Yin [Wen and Yin, 2013], for general optimization with orthogonality constrains:

min F(X), st. XTX =1.
XeRnxp

- 8X2‘,j
L(X,A)=F(X)—3tr(A(XTX —1)) where A € S" is lagrangian multiplier.

Let gradient G := DF(X) = (WE(X)) . The Lagrangian function is

Lemma 3.5 — First-order optimality conditions [Wen and Yin, 2013, Lemma 1.]

@ Suppose that X is a local minimizer of problem above. Then X satisfies the first-order
optimality conditions Dx L(X,A) = G — XGTX = 0 and XTX = I with the associated
lagrangian multiplier A = GT X.

@ Define

VF(X):=G—-XGTX and A:= GXT - XG7.

Then VF(X) = AX. Moreover, VF(X) = 0 if and only if A =0.
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A curvilinear search method

Lemma 3.6 — Update scheme [Wen and Yin, 2013, Lemma 3.]

@ X is a feasible point. Given any skew-symmetric matrix W € R™*" (i.e. W1 = —-W),
the matrix Y (7) defined below satisfies Y (7)TY (1) = XX and Y(0) = X,

Y(r) = (I + gw)_l <I _ %W) X.

Y (7): R — R™P? is a smooth curve.
Q Ifset W=A:=GXT — XGT. Then Y(7) is a descent curve at 7 = 0, that is

_ OF(Y(r)

FLY(0) = o

1
= —114]3.

7=0

Since VF(X) =0 if and only if A =0, as long as X is yet to be local minimizer, then
FL(Y(0)) < 0.
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Algorithm 1: CP-factorization via Orthogonality Constrained Problem

Data: Given A € CP,,r > cp(A).

Result: An n x r CP-factorization of A.

Initialization: Choose an initial decomposition B € R™*" and starting point Xy € O,.. Set
0<0;1<b:<1,p<0,e>0,k+0;

while | VF(X})|| > € do

Generate G, + —BT%W,Ak — GkaT — XkGZ, Wi+ A ;

Find a step size 7, > 0 that satisfies the Armijo-Wolfe conditions:

F (Yi (1)) < F (Yi(0)) + 017 F; (Y2(0))
Fr (Yi (1) > 62F, (Yi(0)) ;

Set X1 < Yy (Tk), k< k+1;
end

The global convergence of local minimizer is guaranteed in [Wen and Yin, 2013, Theorem
2], that is limy_, ||VF (Xg)||p = 0.
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Numerical Results

We investigate random instances were generated like [Groetzner and Diir, 2020, Section 7.7]1.

Table: For every value of n and r, our approach has 100% success rate and is significantly
faster than [Groetzner and Diir, 2020] even if our computer is very poor.

Our Approach? [Groetzner and Diir, 2020]
Intel Core i7-4770 3.40 GHz 88 Intel Xenon ES-2699 cores (2.2 GHz each)
and 16GB Ram Very poor environment! and a total of 0.792 TB Ram

n r av. success rate (%) av. time (sec.) av. success rate (%) av. time (sec.)

50 51 100 0.06 1.1 504

50 151 | 100 0.27 100 0.9

100 151 | 100 0.42 100 9.8

100 301 | 100 141 100 4

150 201 | 100 0.89 83.3 42

200 301 | 100 231 90.9 47

lCompute C' by setting C;; 1= ‘Bij| for all Z, 7, where B is a random n X k matrix based on Matlab command randn and finally we take A = ccT to

be factorized. For randomly generated matrices A with several n and k = 2n. For n < 50, we used 100 starting points, for n > 50, we used 10 starting points.

In each case, we used a maximum of 5000 iterations per starting point. The numbers in columns 3 — 6 represent the average of 100 randomly generated instances.

Some improvements in practice: Instead of Armijo-Wolfe conditions, we use well-known Barzilai-Borwein step. And a heuristic extension — decreasing of

parameter p. Also we decide min (BXy_41);; > O as stopping condition.
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Improvement: BB step and Heuristic extension

In practice, parameter p is not as small as possible. Although a smaller p gives a much tighter
approximation, the speed of convergence, however, often slows.

value of objective function at k-th iteration

-8 = =-descending p = = +p=-100 = = p=-1 ====zero line
e escending p w— = 100 —=-1
10
12
-14
L L L 1 L ]
0 50 100 150 200 250 300

number of iterations

Figure: Value of objective function
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Lemma [Bomze et al., 2015, Theorem 4.1]

n for n € {2, 3,4}
< =
For all A € CP,,, we have cp(4) < cp, { Lint1)—4 forn25

CP-factorization as a nonconvex feasibility problem [Groetzner and Diir, 2020]

find X
1 s.t. BX >0
X e O,

where r > cp(A), B € R™ " is an arbitrary initial factorization A = BBT not nonnegative.
From Lemma 2.3 and 2.4 we have A € CP,, <= (1) is feasible.

(4)

EVED
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Proof of Lemma 3.1.

@ We first show an auxiliary result that is also applied for avoiding numerical overflow on
computing value LSE,(x) in Algorithm 1. Given x € R", we have

LSE,(x) = 1og (S exp (plas = ) + ¢
for all ¢ € R. It follows from
108 (i exp (pla = €)) + ¢ =~ og (exp(—pe) iy exp (pr)) + ¢
=[1) log (exp(—pc)) + ; log (327 exp (pxi)) + ¢

:j) log (3, exp (pa;)) -
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In particular, if we let ¢ := minx;, say z;, then

LSE,(x) =; log (57 exp (plai — 2,))) + 25
= o5 (1+ Xy exp (plas = 21)) + (5)

Since for any i # j, p(x; — x;) < 0 implies 1 <1+ 372, exp (p(2; — x;)) < n, then the
term log (1 + > i exp (p(xi — z]))> is bounded, thus lim LSE,(x) = z;.

p——00

@ Note that x; denotes min z;. Due to the equation (5) and

1 1 .
;log(n) < ;log <1 + > iz exp (p(zi — x]))> <0,

we have %log(n) < LSE,(x) —z; <O0.
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© It is easily seen that the gradient of LSE,(x) is the so-called famous “softmax function”,
and the individual components of it is

OLSE,(x)\  exp(px;) o o .
( Ox; ) C Y exp(pr) pip(zi — LSE,(x))}. (6)

Notice that we do not use the form exp(—pLSE,(x)) exp(pz;) due to numerical
underflow and overflow in Algorithm 1. We only prove the next property to complete the
last proof. We declare that for any fixed x € R", if we regard LSE,(x) as a map of
variable p € (—00,0), denoted by LSEx(p), then

OLSEx(p)

<0
dp
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for all p € (—00,0). For convenience, we replace LSE(p) or LSE,(x) sometimes with
LSFE at next procedure. We have

OLSEx(p) 1 . ) . )
- 2 - o i1 eXp (pri)) + =~ " aiexp (pxi
1 n
:;{—LSE + exp(—pLSE) (X1, zi exp(pai))}
1
= {Zi zioxp{p(ei — LSE)} — LSE}
1 ,OLSE

——{xT—"— - LSE .
p{x I SE} <0

For the last inequality, we observe from (6) that > | 8§fE =1 and every entry
oLS

5. >0, hence the term XT%% is a convex combination of all entries of x, which
implies that XT% > minx; > LSE.
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Proof of Proposition 3.4.

By definition of global maximum and Lemma 3.3 we have

LSE,(BX*) < LSE,(BX?) = t, < min (BX});; < min (BX*);; =1,

thus 0 <t —1%,. And
t—t, =min (BX");; — LSE,,(BX;) < min (BX*);; — LSE, (BX*) < ¢,.
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Consider the so-called copositive program (primal problem)
min {(C, X) | (4;, X)=0b; (i =1,...,m),X € COP,}, (7)

where COP,, £ {A € S,|z" Az > 0 for all € R} } is the cone of so-called copositive
matrices. Here S, is the set of real symmetric n X n matrices, and the inner product of two
matrices (A, B) := trace(A” B) as usual. The dual problem of (7) is

max {Y /" biyi | C =30 yiAi € CPy, yi € R}, (8)

where CP,, denotes the set of n x n completely positive matrices, which is a proper cone (i.e.,
closed, convex, pointed, and full dimensional) and also is the dual cone of COP,, cf.
[Abraham and Naomi, 2003].
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