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Background: Basic Concepts

Definition 1.1 c.f. [Abraham and Naomi, 2003]

1 A matrix A ∈ Sn is called completely positive if there exists an entrywise nonnegative
matrix B ∈ Rn×r such that A = BBT . Such B is called a CP-factorization.

2 CPn :=
{
BB> ∈ Sn | B is a nonnegative matrix

}
denotes the completely positive cone.

Consider the matrix A1 ∈ CP3 where A1 = BBT .

A1 =

 18 9 9
9 18 9
9 9 18

 , B =

 4 1 1
1 4 1
1 1 4

 .

A counterexample

A2 =


1 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 1 1
1 0 0 1 3

 ∈ S+5 ∩N5\CP5.
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Background: Application of CPn
Many nonconvex NP-hard quadratic and combinatorial optimizations have a linear program
over CPn. For example, standard quadratic optimization:

min
{
xTMx | eTx = 1, x ∈ Rn+

}
,

can equivalently be written as

Standard quadratic optimization by CPn [Bomze et al., 2000]

min
{
〈M,X〉 |

〈
eeT , X

〉
= 1, X ∈ CPn

}
,

where M ∈ Sn possibly indefinite, and e is the all ones vector.

An application of above is

Independence number α of a graph G by CPn [De Klerk and Pasechnik, 2002]

α(G) = max {〈E,X〉 | 〈A+ I,X〉 = 1, X ∈ CPn} ,

where A is the adjacency matrix of G and E is the all-ones matrix.
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Background: Open Problem — Finding a CP-factorization

Checking membership in CPn is NP-hard [Dickinson and Gijben, 2014].

RECALL: A matrix A ∈ Sn is called completely positive if there exists an entrywise
nonnegative matrix B ∈ Rn×r such that A = BBT . Such B is called a CP-factorization.

Our Goal

Given A ∈ CPn, find a CP-factorization of A.

Many different methods to CP-factorization problem have studied before.

1 Some work well for the matrices with specific property.
—special sparse matrices [Dickinson and Dür, 2012], rational CP-factorization
[Sikirić et al., 2020].

2 Some work for all matrices but are numerically expensive.
—[Nie, 2014], [Jarre and Schmallowsky, 2009], [Sponsel and Dür, 2014].
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Existing Results on CPn

Example 1.2 [Groetzner and Dür, 2020, Example 2.1.]

Consider the matrix A ∈ CP3 where A = B1B
T
1 = B2B

T
2 = B3B

T
3 .

A =

 18 9 9
9 18 9
9 9 18


Generally, one can have many CP-factorizations, even those numbers of columns differ.

B1 :=

 4 1 1
1 4 1
1 1 4

 , B2 :=

 3 3 0 0
3 0 3 0
3 0 0 3

 , B3 :=

 3 3 0
3 0 3
0 3 3

 .
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Existing Results on CPn: cp-(plus)-rank and int (CPn)

Definition 2.1 c.f. [Abraham and Naomi, 2003]

We define cp-rank of A ∈ Sn as minimum of the number of columns for CP-factorization B,
that is

cp(A) := min
B

{
r ∈ N|∃B ∈ Rn×r, B ≥ 0, A = BBT

}
.

Notice that cp(A) =∞ if A /∈ CPn. Also define cp-plus-rank of A ∈ Sn, that is

cp+(A) := min
B

{
r ∈ N|∃B ∈ Rn×r, B > 0, A = BBT

}
.

Sometimes, we need to distinguish the completely positive matrices in either interior or
boundary of CPn.

Theorem 2.2 [Dickinson, 2010, Theorem 3.8]

For A ∈ Sn, we have A ∈ int (CPn)⇐⇒ cp+(A) <∞ and rank(A) = n.
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Existing Results on CPn: Essential Lemma

Observation: If we have had a CP-factorization B of A with r columns, then we can easily get
another CP-factorization B̂ of A with r′ columns for every positive integer r′ ≥ r. For
instance, let k := r′ − r, then

B̂ := [B, 0n×k] ≥ 0, and B̂B̂> = BB> = A.

Lemma 2.3

Suppose that A ∈ Sn, r ∈ N. Then

r ≥ cp(A)⇐⇒ A has a CP-factorization B with r columns.

Essential Lemma 2.4 [Xu, 2004, Lemma 1.]

Let Or denote the set of r × r orthogonal matrices. Suppose that B,C ∈ Rn×r. Then

BBT = CCT ⇐⇒ ∃X ∈ Or such that BX = C.
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CP-factorization as a nonconvex feasibility problem

RECALL:

Lemma 2.3 r ≥ cp(A)⇐⇒ A has a CP-factorization with r columns.

Lemma 2.4 BBT = CCT ⇐⇒ ∃X ∈ Or such that BX = C.

1 a ”bad” factorization B � 0
A = BBT , but B not nonnegative. (spectral decomposition and zero appending to r)
↓ a suitable orthogonal matrix X ∈ Or

2 a ”good” factorization BX ≥ 0
A = (BX)(BX)T , meanwhile BX nonnegative.

CP-factorization as a nonconvex feasibility problem [Groetzner and Dür, 2020]

find X
s.t. BX ≥ 0

X ∈ Or
(1)

where r ≥ cp(A), B ∈ Rn×r is an arbitrary initial factorization A = BBT not nonnegative.
From Lemma 2.3 and 2.4 we have A ∈ CPn ⇐⇒ (1) is feasible.
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Our Approach

[Groetzner and Dür, 2020] applied the so-called alternating projection method to (1).

Our Approach to nonconvex feasibility problem (1) [L, 2020]

1 We first establish the connection between (1) and (2):

find X
s.t. BX ≥ 0

X ∈ Or
(1) max min (BX)ij

s.t. X ∈ Or
(2)

2 Introducing a differentiable objective approximation function for the sake of adapting the
method below:

min (BX)ij
approximate−→ LSEρ (BX)

3 Adopting a state-of-the-art curvilinear search method, which aims to solve the general
optimization with orthogonality constrains:

min
X∈Rn×p

F(X), s.t. XTX = I,

where F(X) : Rn×p → R is a differentiable function.
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LogSumExp: Smooth Approximation to Min Function

The LogSumExp (LSE) function is given by LSEρ(x) : Rn → R,

LSEρ(x) =
1

ρ
log (

∑n
i=1 exp (ρxi)) .

Lemma 3.1 — Basic properties of LSE

Suppose that ρ < 0, x ∈ Rn. The following results indicate that LSEρ(x) nicely approximates
the minimum function from below.

1 For all x ∈ Rn, we have lim
ρ→−∞

LSEρ(x) = minxi.

2 For all x ∈ Rn, we have

minxi +
1

ρ
log(n) ≤ LSEρ(x) < minxi,

i.e., the error item εx := minxi − LSEρ(x) is in the interval (0,−1
ρ log(n)] .
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LogSumExp: Smooth Approximation to Min Function

The LogSumExp (LSE) function is given by LSEρ(x) : Rn → R,

LSEρ(x) =
1

ρ
log (

∑n
i=1 exp (ρxi)) .

Example 3.2: Values of LSEρ (x)

n=4 ρ = −1 ρ = −2 ρ = −3 ρ = −10

x1 = [5, 2, 6, 3]t 1.6381 1.9353 1.9838 1.9999
x2 = [2, 2, 2, 2]t 0.6137 1.3068 1.5379 1.8613
ερ := −1/ρlog(n) 1.3863 0.6931 0.4621 0.1387

We find that the less ρ is, the better approximation effects.
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LogSumExp: Smooth Approximation to Min Function

Lemma 3.3 — Basic properties of matrix LSE [L, 2020]

Suppose that ρ < 0, B ∈ Rn×r, matrix varible X ∈ Rr×r. The following results indicate that
LSEρ (BX) : Rr×r → R nicely approximates the min (BX)ij from below.

1 For all X ∈ Rr×r, we have lim
ρ→−∞

LSEρ (BX) = min(BX)ij .

2 For all X ∈ Rr×r, we have

min(BX)ij +
1

ρ
log(nr) ≤ LSEρ (BX) < min(BX)ij ,

i.e., the error item εX := min(BX)ij − LSEρ (BX) is in the interval (0,−1
ρ log(nr)].

Zhijian Lai, Akiko Yoshise (University of Tsukuba) RIMSmeeting2020 August 24, 2020 18 / 36



LogSumExp: Smooth Approximation to Min Function

Approximate the problem (2) by problem (3):

max min (BX)ij
s.t. X ∈ Or

(2)
max LSEρ (BX)
s.t. X ∈ Or

(3)

Proposition 3.4 [L, 2020]

Let t resp. tρ denote global maximum of problem (2) resp. (3), and ερ := −1
ρ log(nr) > 0 is

maximum error of LSEρ (BX). Then,

0 < t− tρ ≤ ερ.

Proposition 3.5 [L, 2020]

If problem (3) has a feasible solution X such that LSEρ (BX) ≥ 0, then

1 for the same X, min (BX)ij > 0 for problem (2).

2 hence, we find a CP factorization (BX)(BX)T = A with BX > 0.
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A curvilinear search method

Attempting to optimize (3), we apply the famous curvilinear search method, proposed by Wen
and Yin [Wen and Yin, 2013], for general optimization with orthogonality constrains:

min
X∈Rn×p

F(X), s.t. XTX = I.

Let gradient G := DF(X) =
(
∂F(X)
∂Xi,j

)
. The Lagrangian function is

L(X,Λ) = F(X)− 1
2 tr

(
Λ
(
XTX − I

))
where Λ ∈ Sn is lagrangian multiplier.

Lemma 3.5 — First-order optimality conditions [Wen and Yin, 2013, Lemma 1.]

Suppose that X is a local minimizer of problem above. Then X satisfies the first-order
optimality conditions DXL(X,Λ) = G−XGTX = 0 and XTX = I with the associated
lagrangian multiplier Λ = GTX.

Define
∇F(X) := G−XGTX and A := GXT −XGT .

Then ∇F(X) = AX. Moreover, ∇F(X) = 0 if and only if A = 0.
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A curvilinear search method

Lemma 3.6 — Update scheme [Wen and Yin, 2013, Lemma 3.]

1 X is a feasible point. Given any skew-symmetric matrix W ∈ Rn×n ( i.e. W T = −W ),
the matrix Y (τ) defined below satisfies Y (τ)TY (τ) = XTX and Y (0) = X ,

Y (τ) =
(
I +

τ

2
W
)−1 (

I − τ

2
W
)
X.

Y (τ) : R→ Rn×p is a smooth curve.

2 If set W = A := GXT −XGT . Then Y (τ) is a descent curve at τ = 0, that is

F ′τ (Y (0)) :=
∂F(Y (τ))

∂τ

∣∣∣∣
τ=0

= −1

2
‖A‖2F .

Since ∇F(X) = 0 if and only if A = 0, as long as X is yet to be local minimizer, then
F ′τ (Y (0)) < 0.
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Algorithm 1: CP-factorization via Orthogonality Constrained Problem

Data: Given A ∈ CPn, r ≥ cp(A).
Result: An n× r CP-factorization of A.
Initialization: Choose an initial decomposition B ∈ Rn×r and starting point X0 ∈ Or. Set
0 < θ1 < θ2 < 1, ρ < 0, ε > 0, k ← 0 ;

while ‖∇F(Xk)‖ > ε do

Generate Gk ← −BT ∂LSEρ(BXk)
∂(BXk)

, Ak ← GkX
T
k −XkG

T
k ,Wk ← Ak ;

Find a step size τk > 0 that satisfies the Armijo-Wolfe conditions:

F (Yk (τk)) ≤ F (Yk(0)) + θ1τkF ′τ (Yk(0))

F ′τ (Yk (τk)) ≥ θ2F ′τ (Yk(0)) ;

Set Xk+1 ← Yk (τk), k ← k + 1;

end

The global convergence of local minimizer is guaranteed in [Wen and Yin, 2013, Theorem
2], that is limk→∞ ‖∇F (Xk)‖F = 0.
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Numerical Results

We investigate random instances were generated like [Groetzner and Dür, 2020, Section 7.7]1.

Table: For every value of n and r, our approach has 100% success rate and is significantly
faster than [Groetzner and Dür, 2020] even if our computer is very poor.

Our Approach2

Intel Core i7-4770 3.40 GHz
and 16GB Ram Very poor environment!

[Groetzner and Dür, 2020]
88 Intel Xenon ES-2699 cores (2.2 GHz each)
and a total of 0.792 TB Ram

n r av. success rate (%) av. time (sec.) av. success rate (%) av. time (sec.)

50 51 100 0.06 1.1 504
50 151 100 0.27 100 0.9
100 151 100 0.42 100 9.8
100 301 100 1.41 100 4
150 201 100 0.89 83.3 42
200 301 100 2.31 90.9 47

1
Compute C by setting Cij :=

∣∣Bij

∣∣ for all i, j, where B is a random n× k matrix based on Matlab command randn and finally we take A = CCT to

be factorized. For randomly generated matrices A with several n and k = 2n. For n ≤ 50, we used 100 starting points, for n > 50, we used 10 starting points.

In each case, we used a maximum of 5000 iterations per starting point. The numbers in columns 3− 6 represent the average of 100 randomly generated instances.
2

Some improvements in practice: Instead of Armijo-Wolfe conditions, we use well-known Barzilai-Borwein step. And a heuristic extension — decreasing of

parameter ρ. Also we decide min (BXk+1)ij ≥ 0 as stopping condition.
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Improvement: BB step and Heuristic extension

In practice, parameter ρ is not as small as possible. Although a smaller ρ gives a much tighter
approximation, the speed of convergence, however, often slows.

Figure: Value of objective function
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Lemma [Bomze et al., 2015, Theorem 4.1]

For all A ∈ CPn, we have cp(A) ≤ cpn :=

{
n for n ∈ {2, 3, 4}
1
2n(n+ 1)− 4 for n ≥ 5

CP-factorization as a nonconvex feasibility problem [Groetzner and Dür, 2020]

1
find X
s.t. BX ≥ 0

X ∈ Or
(4)

where r ≥ cp(A), B ∈ Rn×r is an arbitrary initial factorization A = BBT not nonnegative.
From Lemma 2.3 and 2.4 we have A ∈ CPn ⇐⇒ (1) is feasible.
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Proof of Lemma 3.1.

1 We first show an auxiliary result that is also applied for avoiding numerical overflow on
computing value LSEρ(x) in Algorithm 1. Given x ∈ Rn, we have

LSEρ(x) =
1

ρ
log (

∑n
i=1 exp (ρ(xi − c))) + c

for all c ∈ R. It follows from

1

ρ
log (

∑n
i=1 exp (ρ(xi − c))) + c =

1

ρ
log (exp(−ρc)

∑n
i=1 exp (ρxi)) + c

=
1

ρ
log (exp(−ρc)) +

1

ρ
log (

∑n
i=1 exp (ρxi)) + c

=
1

ρ
log (

∑n
i=1 exp (ρxi)) .
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In particular, if we let c := minxi, say xj , then

LSEρ(x) =
1

ρ
log (

∑n
i=1 exp (ρ(xi − xj))) + xj

=
1

ρ
log
(

1 +
∑n

i 6=j exp (ρ(xi − xj))
)

+ xj . (5)

Since for any i 6= j, ρ(xi − xj) ≤ 0 implies 1 < 1 +
∑n

i 6=j exp (ρ(xi − xj)) ≤ n, then the

term log
(

1 +
∑n

i 6=j exp (ρ(xi − xj))
)

is bounded, thus lim
ρ→−∞

LSEρ(x) = xj .

2 Note that xj denotes minxi. Due to the equation (5) and

1

ρ
log(n) ≤ 1

ρ
log
(

1 +
∑n

i 6=j exp (ρ(xi − xj))
)
< 0,

we have 1
ρ log(n) ≤ LSEρ(x)− xj < 0.
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3 It is easily seen that the gradient of LSEρ(x) is the so-called famous “softmax function”,
and the individual components of it is(∂LSEρ(x)

∂xi

)
=

exp(ρxi)∑n
j=1 exp(ρxj)

= exp{ρ(xi − LSEρ(x))}. (6)

Notice that we do not use the form exp(−ρLSEρ(x)) exp(ρxi) due to numerical
underflow and overflow in Algorithm 1. We only prove the next property to complete the
last proof. We declare that for any fixed x ∈ Rn, if we regard LSEρ(x) as a map of
variable ρ ∈ (−∞, 0), denoted by LSEx(ρ), then

∂LSEx(ρ)

∂ρ
< 0
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for all ρ ∈ (−∞, 0). For convenience, we replace LSEx(ρ) or LSEρ(x) sometimes with
LSE at next procedure. We have

∂LSEx(ρ)

∂ρ
=− 1

ρ2
log (

∑n
i=1 exp (ρxi)) +

1

ρ

1∑n
i=1 exp (ρxi)

(
∑n

i=1 xi exp (ρxi))

=
1

ρ
{−LSE + exp(−ρLSE)(

∑n
i=1 xi exp(ρxi))}

=
1

ρ
{
∑n

i=1 xi exp{ρ(xi − LSE)} − LSE}

=
1

ρ
{xT ∂LSE

∂x
− LSE} < 0.

For the last inequality, we observe from (6) that
∑n

i=1
∂LSE
∂xi

= 1 and every entry
∂LSE
∂xi

> 0, hence the term xT ∂LSE∂x is a convex combination of all entries of x, which

implies that xT ∂LSE∂x ≥ minxi > LSE.
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Proof of Proposition 3.4.

By definition of global maximum and Lemma 3.3 we have

LSEρ(BX
∗) ≤ LSEρ(BX∗ρ) = tρ < min (BX∗ρ)ij ≤ min (BX∗)ij = t,

thus 0 < t− tρ. And
t− tρ = min (BX∗)ij − LSEρ(BX∗ρ) ≤ min (BX∗)ij − LSEρ (BX∗) ≤ ερ.
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Consider the so-called copositive program (primal problem)

min {〈C,X〉 | 〈Ai, X〉 = bi (i = 1, . . . ,m), X ∈ COPn} , (7)

where COPn ,
{
A ∈ Sn|xTAx ≥ 0 for all x ∈ Rn+

}
is the cone of so-called copositive

matrices. Here Sn is the set of real symmetric n× n matrices, and the inner product of two
matrices 〈A,B〉 := trace(ATB) as usual. The dual problem of (7) is

max {
∑m

i=1 biyi | C −
∑m

i=1 yiAi ∈ CPn, yi ∈ R} , (8)

where CPn denotes the set of n× n completely positive matrices, which is a proper cone (i.e.,
closed, convex, pointed, and full dimensional) and also is the dual cone of COPn, cf.
[Abraham and Naomi, 2003].
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