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Riemannian Manifold

A Riemannian manifold M is a set that can be locally linearizable, with a smooth
mapping x — (-, -),, which is an inner product on the tangent spaces 7, M. Introduction

Preliminaries

R 5

TXM X 5 Our proposal:
.\1' <f§, T])X Riemannian Interior

Point Methods

Figure: Unit sphere: M = {x e R" : ||x|l, = 1} and T.:M = {v € R" : (x,v) = 0}.
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Riemannian Optimization

Givenf : M — R, solve

min f(x)

xXeEM

where M is a Riemannian manifold.

Figure: Iteration on unit sphere.
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Riemannian Optimization

Givenf : M — R, solve

min f(x)

xXeEM

where M is a Riemannian manifold.

Figure: Iteration on unit sphere.

40+ available manifolds M in Riemannian solver “Manopt”’ [Boumal et al., ]:
e Stiefel manifold, St(n, k) = {X € R™*: XX = I}.
o Fixed rank manifold, R = {X € R™*" : rk(X) = r}.
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Figure: Iteration on unit sphere.

40+ available manifolds M in Riemannian solver “Manopt”’ [Boumal et al., ]:
e Stiefel manifold, St(n, k) = {X € R™*: XX = I}.
o Fixed rank manifold, R = {X € R™*" : rk(X) = r}.
Riemannian version of classical methods. (2002-) steepest decent, conjugate
gradient, trust region, BFGS, proximal gradient, ADMM and more. 6/37
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Figure: Iteration on unit sphere.

Advantages of Riemannian Optimization [Huang, 2019]:
@ Exploit the geometric structure of the constrained set.
@ Convergence properties of like optimization on Euclidean space.

© Transfer the constrained problem to the unconstrained one.
7137



Applications

@ PCA on Stiefel manifold,

St(}’l7 k) = {X - RnXk : XTX = I} Introduction
Preliminaries
mln - tI‘aCG (XTATAX) . Our proposal:
XeSt (n,k) Riemannian Interior

Point Methods

@ Matrix completion on fixed rank manifold,

RTXn — {X c Rmxn . I‘k(X) — r}. ]I:Iulym‘r::ll“
iXperiments
. ( A )2 Concluding
min g X —Aij)”.
mxn
XGRr (ZJ)EQ
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More Requirements in Applications

@ Nonnegative PCA on Stiefel manifold,
St(n, k) = {X e Rk XTX =1}
min — trace(X'ATAX)
XeSt(n,k)
s.t. X >0

@ Nonnegative matrix completion on fixed rank manifold,
R = {X € R™" : rk(X) = r}.

min Z (Xi‘ - Aij)z

mxn
XERr (IJ)EQ
s.t. X >0

~> What should we do at this point? Can we use the solver ”Manopt” directly?
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Some limitations of Riemannian optimization

Given f : M — R, solve
min f(x)

xXeM

where M is a Riemannian manifold.

Some limitations of Riemannian optimization are:

@ Existing manifold solvers lack flexibility, and adding even one more constraint
can make it impossible to use them directly. E.g., x € M, x > 0.

© Adding new constraints does not necessarily guarantee that the feasible set is
still a manifold.

~> We are attempting to develop a new model to address these issues.
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New Topic — Riemannian Constrained Optimization Problem

‘We consider

min f(x)

xeEM
s.t.  h(x) =0, and g(x) <0,

where f: M - R, h: M — R/ and g : M — R™.

(RCOP)
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New Topic — Riemannian Constrained Optimization Problem

‘We consider

min X -
xXEM j?( ) (I{(:()I)) Introduction
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Our proposal:
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Global Algorithms
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@ Still using the geometric structure of M. The advantages of Riemannian
optimization are maintained.
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© Very flexible, even if the constraints of /4, g cannot form a new manifold.
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New Topic — Riemannian Constrained Optimization Problem

‘We consider

min X roduction
xeM f( ) (RCOP) Introductic
s.t.  h(x) =0, and g(x) <0,

Our proposal:
where f: M - R, h: M — R/ and g : M — R™. el
Advantages of (RCOP): \ ‘

@ Still using the geometric structure of M. The advantages of Riemannian S

Concluding

optimization are maintained.
© Very flexible, even if the constraints of /4, g cannot form a new manifold.

Riemannian version of classical algorithms:
@ Augmented Lagrangian Method [Liu and Boumal, 2020, Yamakawa and Sato, 2022];
@ Exact Penalty Method [Liu and Boumal, 2020];
@ Sequential Quadratic Programming Method [Schiela and Ortiz, 2020, Obara et al., 2022].

@ ~ In this talk, we consider Riemannian version of Interior Point Method.
11/37
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Q1: How to move on manifolds? Retraction!

A retraction R maps tangent vectors back to the manifold.

Rx . TxM — M fOr any X. Introduction

Background
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Euclidean Riemannian
X1 = X + apdy | X1 = Ry (ondy)
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Q2: Where to move towards on manifolds? Riemannian Gradient!

For an embedded submanifold M, Riemannian gradient of f : M — R is the
orthogonal projection onto 7., M of the Euclidean gradient,

gradf(x) = Proj,(egradf(x)).
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Supplementary: Vector fields on manifolds

A vector field is a mapping F defined on M such that F(x) € T, M for all x € M.
Riemannian gradient,
x — grad f(x),

is a vector field generated by scalar field f : M — R.

Figure: A vector field on a unit sphere. Source: Wikipedia.
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Covariant derivative & Hessian & Riemannian Newton method

Covariant derivative of a vector field F:

Riemannian connection
VE(x): TyM — T,M, linear operator.

general vector field
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Covariant derivative & Hessian & Riemannian Newton method

Covariant derivative of a vector field F:

Riemannian connection
VE(x): TyM — T,M, linear operator.

general vector field
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Covariant derivative & Hessian & Riemannian Newton method

Covariant derivative of a vector field F:

Riemannian connection
VE(x): TyM — T,M, linear operator.

general vector field

Specially, Hessf(x) £ V grad f(x) is called Riemannian Hessian.

Riemannian Newton method: To find singularity x* € M such that F(x*) = Oy+.
(Step 1.) Solve a linear system on T, M > vy :

VF(xp)ve = —F(xx), (D

(Step 2.) Xg+1 = Ry, (vk). Return to Step 1.
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Introduction
Background

Preliminaries

Formulation of RIPM
@ Our proposal: Riemannian Interior Point Methods T
@ Formulation of RIPM Ef;flﬂ'.f:}m
(] Global AlgOI’ltth Concluding

17/37



Riemannian Interior Point Methods (RIPM)

e Our proposal: Riemannian Interior Point Methods
@ Formulation of RIPM

Introduction

Background

Preliminaries

Our proposal:
Riemannian Interior
Point Methods

Global Algorithms

Numerical
Experiments

Concluding

18/37



Formulation of RIPM

We consider

min f(x)
xeM (RCOP)
s.t.  h(x) =0, and g(x) <0,

Our proposal:

Wheref M — R’ h M — Rl, and g: M — Rm Riemannian Interior

Point Methods

Lagrangian function is

Numerical
Experiments
Y

L(x,y,2) £ f(x) + y"h(x) + 2" g(x). 2)

Concluding

x — L(x,y,z) is a real-valued function on M,
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Formulation of RIPM

We consider

min f(x)
xeM (RCOP)
s.t.  h(x) =0, and g(x) <0,

where f : M — R, h: M — R/, and g : M — R™.

Lagrangian function is

L(x,y,2) £ f(x) + y"h(x) + 2" g(x). 2)

x — L(x,y,z) is a real-valued function on M, then we have
e grad, £(x,y,z) = gradf(x) + Zle yigrad hi(x) + >, zigrad gi(x),

o Hess, £(x,y,z) = Hessf(x) + Sh_, yi Hess hy(x) + 37| zi Hess g;(x).
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KKT Vector Field

Riemannian KKT conditions [Liu and Boumal, 2020] are
grad, L(x,y,z) = OM

Introduction

"= ek
( ) 0 (3) Our proposal:
Zg(x) =0, (2 := diag (21, -, 2n))
z>0.

Global Algorithms

Numerical
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Concluding
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KKT Vector Field

Riemannian KKT conditions [Liu and Boumal, 2020] are

grad, L(x,y,z) = OX7

hx) = ”
( ) 0 (3) Our proposal:
Zg(x) = 0,(Z := diag (z1,---,2m)) S
\r'umcnul
Definition (KKT Vector Field, L. 2022) EHEE
Using s := —g(x), the above becomes B
grad, £(x,y,2) 0,
a | hx) —0 |9
F(w) = 2(x) + s =0, := 0 , and (z,5) > 0, )
ZSe 0

where w := (x,y,z,5) € .4 = M x R x R" x R". Note that T\,.# = T,M x R' x R™ x R™.

20/37



Covariant Derivative of KKT Vector Field

For each x € M, we define
I

H,:R' - T.M, Hwv=2 Z v; grad h;(x). (5)
i=1
Hence, the adjoint operator is i
% % T Point Methods
H! : T:M — R/, H¢ = [(grad hi(x),€) -+, (grad by(x), f}x} . 6) N
Numerical
Lemma (L. 2022) Experiments
The linear operator VFE(w) : Tyl — T,,.# is given by Cereltiing

Hess, L(w)Ax + H Ay + G Az
H;Ax
VF(w)Aw = G*Ax + As . @)

ZAs + SAz

where Aw = (Ax, Ay, As,Az) € TM x Rl x R" x R" = T,, 4.
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Riemannian Interior Point Method (RIPM)

Step 0. Initial wo with (zg,s0) > 0.
Step 1. Solve

VF(Wk)AWk = —F(Wk) ~+ e, ®)

where ¢ £ (Oxa O, O e). Our proposal:
Step 2. Compute the step sizes « such that (zzy 1, sgr1) > 0. L e
Step 3. Update:

W41 = ka (CVkAWk). (9) Global Algorithms

Numerical

Step 4. Let jyu — 0. Returnto 1. FpTe

Concluding
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Riemannian Interior Point Method (RIPM)

Step 0. Initial wo with (zg,s0) > 0.
Step 1. Solve
VF(wp)Awg = —F(wy) + e, (®)

where ¢ £ (Oxa 0, O 6). Our proposal:
Step 2. Compute the step sizes o such that (7341, s541) > 0. L e

Point Methods
Step 3. Update:
Wig1 = Ry, (crAwy). ) \‘
Step 4. Let jyu — 0. Returnto 1. FpTe
Concluding

Theorem (Local Convergence, L. 2022)
Under some standard assumptions.
@ Ifu =o(||Fwp)|l), e — 1, then {wy} locally, superlinearly converges to w*.

@ Ifpu = O(IF(wi)[I?), 1 — cu = O(||F (wi)
converges to w*.

), then {wy} locally, quadratically

22/37
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Global Line Search RIPM Algorithm

Merit function: Choose o(w) = ||[F(w)]%.

Backtracking for step size ay:
© Centrality conditions. L
@ Sufficient decreasing condition.

Our proposal:

Riemannian Interior
With a slight abuse of notation, we also let Point Methods
o(a) = ©(Ry, (Awy)) for fixed wy and Awy, [Q10) B—
N —— e’ Experiments

new iterate . :
Concluding

then ¢(0) = p(wy) =: ¢ and ¢’ (0) = (grad p(wi), Awg). Sufficient decreasing
asks
p(ew) = ¢(0) < axBe’(0).
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Global Line Search RIPM Algorithm

Merit function: Choose o(w) = ||[F(w)]%.

Backtracking for step size ay:
. .. Introduction
© Centrality conditions. ro—
@ Sufficient decreasing condition.
Our proposal:
. . . Riemannian Interior
With a slight abuse of notation, we also let Point Methods
o(a) = ©(Ry, (Awy)) for fixed wy and Awy, [Q10) B—
N’ Experiments
new iterate . )
Concluding

then ¢(0) = p(wy) =: ¢ and ¢’ (0) = (grad p(wi), Awg). Sufficient decreasing
asks
p(ew) = ¢(0) < axBe’(0).
Descent direction: Let Awy, be the solution of VF(wyi)Awy = —F(wg) + prove,
then ¢’ (0) < 0if we set py := s} zx/m, o € (0, 1). Then, {4} is monotonically
decreasing.
24/37



Global Convergence

Assumptions:

@ the functions f(x), h(x), g(x) are smooth; the set {grad h,-(x)}f:1 is linearly
independent in T, M for all x; and w — VF(w) is Lipschitz continuous;

@ the sequences {x;} and {z;} are bounded;

@ the operator VF(w) is nonsingular.

Theorem (Global Convergence, L. 2022)

Let {0y} C (0, 1) bounded away from zero and one. If Assumptions 1~3 hold, then {F(wy)}
converges to zero; and for any limit point w* = (x*,y*,z*,s*) of {wi} ,x* is a Riemannian
KKT point of problem (RCOP).
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Riemannian Interior Point Methods (RIPM)

© Numerical Experiments
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Numerical Experiments

We compare with the other Riemannian methods:!
@ RALM : Riemannian augmented Lagrangian method.
o REPM_Igh : Riemannian exact penalty method with smoothing function LQH.
o REPM . Ise : Riemannian exact penalty method with smoothing function LSE.
@ RSQP : Riemannian sequential quadratic programming.

@ RIPM (Our method): Riemannian interior point method.
KKT residual is defined by

m 1
\j llgrad, £(w)|* + > _{min (0,z)* + max (0, 8(x))* + |zgi(x)|*} + Y _ |hi(x)|* + Manvio(x),

i=1 i=1

where Manvio measures the violation of manifold constraints.

I'The numerical experiments were performed in Matlab R2022a on a computer equipped with an
Intel Core i7-10700 at 2.90GHz with 16GB of RAM.
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Problem I — Nonnegative Low Rank Matrix Approximation

(NLRM)

102 T T Introduction
10' RALM 1 Background
100 REPM(LQH) | | Prefiminarics
1 REPM(LSE) |
Problem I [Song and Ng, 2020] proposed o RSP Our proposal:
10 RIPM 1 Riemannian Interior
103 Point Methods
1 4 ormulat P]
min [|[A —X||% st X >0, T 1O, | s
XeR™" % 109
E 107 H
mxn __ mxn . — 108 F 1
Where ]Rr - {X € R . rk(X) - r} . = 109 F ] Concluding
1010 F \
Data setting: 101
102
B = rand(m, r); 01|
C = rand(r, n); 1014 b ‘
A = B*C+sigma*randn(m,n); 0 1 2 3

Time [s]

Figure: m = 10,n = 8,r = 3 and o = 0.01.
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Problem II — Projection onto nonnegative Stiefel manifold

Problem II[Jiang et al., 2022] Given C € Rk we consider

min || X — C||}, st X >0,

(Model_Stiefel)
XeSt(nk)

Our proposal:
Riemannian Interior
Point Methods
which can be equivalently reformulated into

o

n of RIPM

min [|[X —C||? st X>0,and |XV|F = 1. (Model_Oblique)
XeOB(n,k)

Concluding

Here,
@ Stiefel manifold, St(n, k) £ {X € R™*: XX = I}.
@ Oblique manifold, OB(n, k) £ {X € R"™ : all columns have unit norm}.

@ Vs an arbitrary constant matrix satisfying ||V||r = 1 and VV'T > 0 (irrelevant to X, C).
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Problem II — Projection onto nonnegative Stiefel manifold

@ For each Model, we conducted 20 random trials.

Introduction
@ FEach experiment terminated successfully if solution with KKT residual < 1076 was found. Bt
@ It failed if the maximum iteration 10,000 or maximum time 600 [s] was reached.? e
Our proposal:
Riemannian Interior
Table: Model St Table: Model Ob ST RS
(n, k) (60,12) (70,14) (n, k) (60,12) (70,14) Gloal Algoritms
Rate Time [s] Iter.|Rate Time [s] Iter. Rate Time [s] Iter.|Rate Time [s] Iter.
RALM 1 4.097 34 |1 6.234 37 RALM 0.6 5725 49 |06 8223 52
REPM(LQH) |0 - - 0 - - REPM(LQH) |0 = = 0 = = Concluding
REPM(LSE) (0 - - 0 - - REPM(LSE) (0 - - 0 - -
RSQP 0.65 78.02 7 ]0.85 166.1 7 RSQP 0.7 4446 5 |05 9138 5
RIPM 1 5,555 32 |1 7.574 33 RIPM 1 7134 23 |1 9.268 24

2The success rate (Rate) over the total number of trials, the average time in seconds (Time [s]) and

the average iteration number (Iter.) among the successful trials.
30/37
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Riemannian IPM (RIPM) vs. Euclidean IPM(EIPM)

Riemannian Constrained Optimization Problem

( ) Introduction
min f(x o
x€M (11) el minarics
s.t. h(x) = O, and g(x) S 0, Our proposal:
Riemannian Interior
where M is a Riemannian manifold, f : M — R, 2 : M — R/, and g : M — R™. Point Methods
Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM) c
Numerical
@ RIPM inherits the advantages of Riemannian optimization and can exploit the geometric Experiments

structure of the constraints.

32/37



Riemannian IPM (RIPM) vs. Euclidean IPM(EIPM)

Riemannian Constrained Optimization Problem

. ( ) Introduction
min f(x B
XEM (11) = .
s.t. h(x) = O, and g(x) S 0, Our proposal:
Riemannian Interior
where M is a Riemannian manifold, f : M — R, 2 : M — R/, and g : M — R™. R R ftets
Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM) o
Numerical
@ RIPM inherits the advantages of Riemannian optimization and can exploit the geometric Experiments

structure of the constraints.
@ EIPM is a special case of RIPM when M = R" or R"*,
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Riemannian IPM (RIPM) vs. Euclidean IPM(EIPM)

Riemannian Constrained Optimization Problem

min  f(x)

st.  h(x) =0, and g(x) <0,

where M is a Riemannian manifold, f : M — R, 42 : M — R/, and g : Ml — R™.

Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

@ RIPM inherits the advantages of Riemannian optimization and can exploit the geometric

structure of the constraints.

@ EIPM is a special case of RIPM when M = R" or R"*,

© RIPM solves Newton equation (13) of smaller order on T,M x R':

T(Ax, Ay) := (

AwAx + H Ay
H; Ax

)=

¢
q

).

Introduction

B:

D
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Global h
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Experiments

12)
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Riemannian IPM (RIPM) vs. Euclidean IPM(EIPM)

Riemannian Constrained Optimization Problem

min  f(x) an
st.  h(x) =0, and g(x) <0,

where M is a Riemannian manifold, f : M — R, 2 : M — R/, and g : M — R™.
Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

@ RIPM inherits the advantages of Riemannian optimization and can exploit the geometric
structure of the constraints.

@ EIPM is a special case of RIPM when M = R" or R"*,
© RIPM solves Newton equation (13) of smaller order on T,M x R’ :

WAx 4 HA
T(Ax,Ay)::(ﬁ;AiJr y>=(;). (12)

© RIPM can solve some problems that EIPM cannot. For example, rk(X) = r is not continuous,
we can not apply EIPM.
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Numerical
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Concluding remarks

Riemannian Constrained Optimization Problem

Introduction

‘We consider e

min f(x) prminaris
XE‘[:W h 0 d < O (RCOP) Our proposal:
S.T. X) = an X Riemannian Interior
( ) ’ g( ) _ ’ Point Methods
where M is a Riemannian manifold, f : M — R, h: M — R/, and g : M — R™. R
. . Numerical
Our contributions: Experiments

@ We proposed a Riemannian version of the interior point method.
© We proved the local superlinear/quadratic and global convergence.
© We established some foundational concepts, such as the KKT vector field and
its covariant derivative.
Future work:
@ The more sophisticated and robust global strategies are often based on the trust

region or filter line-search method.
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The End
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Riemannian IPM (RIPM) vs. Euclidean IPM (EIPM)

RIPM can solve a condensed equation (13) of smaller order.

AuAx + HA
T(Ax,Ay>:=<H*A;‘+ y):(;) (13)

For example, the Stiefel manifold can be used as the equality constraints; i.e., we set
h: M = R™k — Sym(k), where h(X) = X "X — I;. Here, EIPM requires us to
solve (13) of order nk + k(k +1)/2.

But RIPM only requires us to solve a problem of order nk — k(k + 1)/2, i.e., the
dimension of St(n, k).
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Riemannian Newton method

Riemannian Newton method: Consider
F(x) =0. (14)
Solve a linear system on T,y M > vy :
VF(xi)ve = —F(xx),
then xx+1 = Ry, (vk).

Standard Newton assumptions & Local Convergence Results:

(N1)There exists x* : F(x*) = 0. .
(N2J)VF(x*) is nonsinggllag operator. = superlinear[Fernandes et al., 2017] }

NP i loeally Lo aer = quadratic[Ferreira and Silva, 2012].
is locally Lipschitz cont. at x*.
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Riemannian Interior Point Methods

Superlinear and Quadratic Convergence

@ Existence. There exists w* satisfying the KKT conditions.
© Smoothness. The functions f, g, h are smooth on M.

© Regularity. The set {grad h;(x*) : i =1,--- I} U {grad g;(x*) : i € A(x)} is
linearly independent in 7« M.

© Strict Complementarity. (z*); > 0if g;(x*) =0 foralli=1,--- ,m.
© Second-Order Sufficiency. (Hess, £(w*),€) > 0 for all nonzero £ € Ty« M satisfying
(&, grad hj(x*)) =0fori=1,--- I, and (£, grad gi(x*)) = 0 fori € A(x*).

Proposition (L. 2022)

If assumptions (1)-(5) hold, then standard Newton assumptions (N1)-(N3) hold for
KKT vector field F.
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Riemannian Interior Point Methods

Superlinear and Quadratic Convergence

On the other hand, to keep (s, zx) > 0:
@ Introducing the perturbed complementary equation,

ZAs 4+ SAz = —ZSe + pe, (15)

so that we are able to keep the iterates far from the boundary.

e Compute the damped step sizes oy, e.g., choose v € (0, 1) and compute

o = min{l, kmiin{—(gl;])ci)i \(Ask),-<0},“kml_in{—(§;)ci)i |(Azk),-<o}}, (16)

such that (sgy1,zk+1) > 0.
The relation of o and v;: [Yamashita and Yabe, 1996]
Q Ify — 1, then oy — 1.
Q If 1 — = O([[F (wi)l)). then I — oy = O (||F (wi)]])-
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History of Euclidean Interior Point Method

Interior Point (IP) Method for NONLINEAR, NONCONVEX (1990-)

Early phase (1990-1995)

@ Local algorithms with superlinear/ quadratic convergence
[El-Bakry et al., 1996, Yamashita and Yabe, 1996].

@ Global algorithms [El-Bakry et al., 1996]
Variations (1995-2010)
@ Inexact Newton/ Quasi Newton IP Method

o Global strategy: many merit functions; linear search, or trust region, etc.
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Update by Retraction

At a current point w = (x, y, z, s) and direction Aw = (Ax, Ay, Az, As), the next
iterate is calculated along a curve on .Z, i.e.,

w(a) := R, (alAw), (17)

for some step length o > 0.

By introducing
w(a) = (x(@), y(@), z(a), s(a)), (18)

we have
x(a) = Ry(aAx),

and y(a) =y + aAy, z(a) = z+ aAz, s(a) = s + aAs.
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Centrality conditions

min(ZySoe) . ZO )
Tso/m 0 T2 TFow
Let v € (0, 1) be a constant. Define centrality functions:

Given wy = (XO,yo,Zo, S()) with (Z(),So) >0, letr ;=

/(@) = min(Z(@)S(a)e) - yn L2, (19)

f(a) = z(a) s(@) = ynal[F(w(a))|- (20)
Fori = 1,11, let

o := max {a:f(t) >0, forallt € (0,a]}. 1)

ae(0,1]
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Global RIP Algorithm

@ Choose oy € (0, 1); for wy, compute the perturbed Newton direction Awy with
[k =z Sk/m (22)

and by
VFE(w)Aw = —F(w) + oy pue. (23)

© Step length selection.
@ Centrality conditions: Choose 1/2 < v < y4—1 < 1; compute o, i = I, I, from
(21); and let
a = min(of, o). (24)
@ Sufficient decreasing: Choose 6 € (0, 1), and 3 € (0, 1/2]. Let oy = 0y,
where ¢ is the smallest nonnegative integer such that oy, satisfies

O(Ry, (cx Awy)) — p(wy) < ayf{grad or, Awy). (25)

Q Let w1 = Ry, (cAwy) and k < k + 1.
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Auxiliary Results I: Boundedness of the sequences

Given € > 0, let us define the set
Qe) :={we A : e < p(w) < o, min(ZSe)/(z"s/m) > 71/2,2"s/|[FW)|| > 72/2} .

Lemma (Boundedness of the sequences I, L. 2022)

Ife > 0 and wy. € Q(€) for all k, then

Q the sequence {z{sk} and {(zx)i(sx)i},i = 1,2,...,m, are all bounded above and below away
from zero.

© the sequence {zi} and {s} are bounded above and component-wise bounded away from zero;
@ the sequence {w} is bounded;

@ the sequence {||VF(wi) ||} is bounded;

@ the sequence { Awy} is bounded.

Lemma (Boundedness of the sequences II, L. 2022)

If {o+} is bounded away from zero. Then, {au} is bounded away from zero.
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Auxiliary Results II: Continuity of Some Special Scalar Fields

Lemma (L. 2022)

Let x € M and Ay be a linear operator on T:M. Then, the values ||A||» and ||A,| r
are invariant under a change of orthonormal basis; moreover,

A = lAxll2 < [|As|p (26)

Lemma (L. 2022)

X ||Hessf( || 27)

is a continuous scalar field on M. It is true for all h;, g;.

x — ||Hy|| and x — ||Gy|] (28)

are continuous scalar field on M.
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Global Convergence Theorem

This theorem, now, is only proved under exponential map exp.
Lemma (Gauss [Do Carmo and Flaherty Francis, 1992, Lemma 3.5])

Letp € M and let v € TyM such that exp,,(v) is well defined. Let
weT,M~T,(T,M). Then

(D exp,,(v)[v], D exp,(v) W) = (v, w). (29)
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Conjugate Gradients (CG) on a tangent space

Input: positive definite map H on T, M and b€ T, M, b#0
Set Uy = 0,7“0 = b,p() =70

Forn=1,2,...
Compute Hp,_1 (this is the only call to H)
llr 112
. =

T {pn-1,Hpn-1),
Un = Un—1 + QpPp—1
Th = Th—1 — aann—l
If r, =0, output s = v,,: the solution of Hs = b

,@ — Hrn“i
T a3

Pn = Tn + BnPn-1

© Exactly the same in form of usual CG.
© Every vectors vy, 1, p, belong to tangent space V = T, M.

© Converges very fast if H is PD with small condition number.
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An Intuitive Barrier Method on Manifolds

Consider

IrélAI/} flx) st c(x)>0. (RCOP_Ineq)

Its logarithmic barrier function is

B(x; ) :=f(x) — n 32211 log ci(x),
where 1 > 0. Note that the function x — B(x; p) is differentiable on,
strict F := {x € M : ¢(x) > 0} . Its Riemannian gradient is
grad B(x; 1) = gradf(x) — >, c,-?tx) grad ¢;(x).

Barrier Method on Manifolds
@ Setxy € M to a strictly feasible point, i.e., c(xo) > 0, and set po > 0 and k < 0.
© Check whether x; satisfies a stopping test for (RCOP_Ineq).

@ Compute an unconstrained minimizer x(g) of B(x; u) with a warm starting point xy.
Q xit1 < x(ux); choose puxt1 < p; k < k + 1. Return to Step 1.
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Barrier Method on Manifolds

Barrier Method

Consider the following simple problem on a sphere manifold,
STi={xcR3: |x[lp = 1},

min a’x st x>0, (SP)
xeS?
where a = [—1,2, 1]7. Its solution is x* = [1,0,0]”.

Now, check the KKT conditions at x (asterisks omitted below):

gradf(x) = (I, — xx")a = [0,2,1]T.

The constraint x > 0 implies ¢;(x) = el-Tx fori=1,2,3;
gradc;(x) = (I, — xx7)e; = [0,0,0]7;
grad c;(x) = (I, — xx7)e; = [0,1,0]7;
grad cz(x) = (I, — xx7)e3 = (0,0, 1]7.

Clearly, the multipliers z* = [0, 2, 1]7, and LICQ and strict complementarity hold. 15/21



Barrier Method on Manifolds

Zhijian Lai, Akiko

Yoshise

(a) (®) (© (d)

Figure: Contour plots of logarithmic barrier function B(x; 1) of (SP) for (a) 1 = 10 (b)
pw=1()p=0.5()p=0.1. The blue area indicates low values.
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Barrier Method on Manifolds

Finally, we find that limy_, . x = x* and that

Jm py/er (i) = 0= 20y, Bm p/ea (ve) = 2 = 205), im pue/es () = 1= 25,

which are the notable features of the classical barrier method; see
[Forsgren et al., 2002, Theorem 3.10 & 3.12].

Figure: Iterates x; of barrier method for (SP).
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Barrier Method on Manifolds

Furthermore, if we denote the minimizer of B(x; 1) by either x,, or x(x), it must be
that grad B(x,,; 1) = 0.

Figure: Existence of a central path for (SP).
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Dominant cost — Newton equation

Dominant cost is to solve

VF(w)Aw = —F(w) + pe, (30)
where
F. 2 grad, L£(x,y,z) 0,
F, 2 h(x) ~ A 0
Fw)y= | = 1
(W) F: ég(x) —|—S ) e O (3 )
Fy & ZSe e

Thus, we need to solve the following linear system on 7xM x R! x R™ x R™:

Hess, L(w)Ax + H Ay + G, Az —F,
H;Ax | -F
G*Ax + As = 3 : (32)

ZAs + SAz —F + pe
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Condensed form of Newton equation

It suffices to focus on condensed form on 7, M x R’:

wAx + H A
T(A&Ay)zz(ﬁmf y)z(;) (33)

where
A, := Hess, L(w) + G,S™1ZG*,

1 (34)
c:=—Fy —GuS™ (ZFZ"i':ue_FS)a q::_F)"

e A, is self-adjoint (but may indefinite) on 7M.

e 7T is self-adjoint (but may indefinite) on 7.M x R’. This is a saddle point
problems on Hilbert space.

@ The Riemannian situation leaves us with no explicit matrix form available.

@ A simple approach is to first find the representing matrix 7 under some basis.

(Expensive !)
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Krylov subspace methods on Tangent space

An ideal approach is to use iterative methods, such as Krylov subspace methods
(e.g., Conjugate Gradients method), on T,:M x R/ directly.

For simplicity, we consider the case of only inequality constraints, where Ay
vanishes, thus we only needs to

solve A,,Ax = ¢ for Ax € T:M. (35)

@ Tt only needs to call an abstract linear operator v — A,,v. (matrix-vector
product)

@ All the iterates vy are in T,M.

@ Since operator A,, is self-adjoint but indefinite, we use Conjugate Residual
(CR) method to solve it.

The discussion of above can be naturally extended to the general case.
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